
This is a repository copy of Effective and efficient Semantic Table Interpretation using
TableMiner(+).

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/126465/

Version: Accepted Version

Article:

Zhang, Z. (2017) Effective and efficient Semantic Table Interpretation using TableMiner(+).
Semantic Web, 8 (6). pp. 921-957. ISSN 1570-0844

https://doi.org/10.3233/SW-160242

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Undefined 1 (2009) 1–5 1
IOS Press

Effective and Efficient Semantic Table

Interpretation using TableMiner+

Editor(s): Pascal Hitzler, Wright State University, USA; Isabel Cruz, University of Illinois at Chicago, USA

Solicited review(s): Michael Granitzer, University of Passau, Germnay; Mike Cafarella, University of Michigan, USA; Venkat Raghavan

Ganesh, University of Illinois at Chicago, USA

Open review(s): Name Surname, University, Country

Ziqi Zhang

School of Science and Technology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ

(This work was carried out while the author was a member of the Department of Computer Science, University of

Sheffield)

E-mail: ziqi.zhang@ntu.ac.uk

Abstract. This article introduces TableMiner+, a Semantic Table Interpretation method that annotates Web tables in a both

effective and efficient way. Built on our previous work TableMiner, the extended version advances state-of-the-art in several ways.

First, it improves annotation accuracy by making innovative use of various types of contextual information both inside and outside

tables as features for inference. Second, it reduces computational overheads by adopting an incremental, bootstrapping approach

that starts by creating preliminary and partial annotations of a table using ‘sample’ data in the table, then using the outcome as

‘seed’ to guide interpretation of remaining contents. This is then followed by a message passing process that iteratively refines

results on the entire table to create the final optimal annotations. Third, it is able to handle all annotation tasks of Semantic

Table Interpretation (e.g., annotating a column, or entity cells) while state-of-the-art methods are limited in different ways.

We also compile the largest dataset known to date and extensively evaluate TableMiner+ against four baselines and two re-

implemented (near-identical, as adaptations are needed due to the use of different knowledge bases) state-of-the-art methods.

TableMiner+ consistently outperforms all models under all experimental settings. On the two most diverse datasets covering

multiple domains and various table schemata, it achieves improvement in F1 by between 1 and 42 percentage points depending

on specific annotation tasks. It also significantly reduces computational overheads in terms of wall-clock time when compared

against classic methods that ‘exhaustively’ process the entire table content to build features for inference. As a concrete example,

compared against a method based on joint inference implemented with parallel computation, the non-parallel implementation

of TableMiner+ achieves significant improvement in learning accuracy and almost orders of magnitude of savings in wall-clock

time.

Keywords: Web table, Named Entity Recognition, Named Entity Disambiguation, Relation Extraction, Linked Data, Semantic

Table Interpretation, table annotation

1. Introduction

Recovering semantics from tables is a crucial task

in realizing the vision of the Semantic Web. On the

one hand, the amount of high-quality tables contain-

ing useful relational data is growing rapidly to hun-

dreds of millions [5,4]. On the other hand, search en-

gines typically ignore underlying semantics of such

structures at indexing, hence performing poorly on tab-

ular data [21,26]. Research directed to this particu-

lar problem is Semantic Table Interpretation [14,

15,21,27,34,25,35,36,3,26,23], which deals with three

types of annotation tasks in tables. Starting with the

input of a well-formed relational table (e.g., Figure

1), and reference sets of concepts (or classes, types),

named entities (or simply ‘entities’) and relations, se-

mantic table interpretation aims to: (1) link entity men-

0000-0000/09/$00.00 © 2009 – IOS Press and the authors. All rights reserved

2 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

tions in content cells (or simply ‘cells’) to the refer-

ence entities (disambiguation); (2) annotate columns

with semantic concepts if they contain entity mentions

(NE-columns), or properties of concepts if they con-

tain data literals (literal-columns); and (3) identify the

semantic relations between columns. The annotations

created can enable semantic indexing and search of the

data and used to create Linked Open Data (LOD).

Although classic Natural Language Processing (NLP)

and Information Extraction (IE) techniques address

similar research problems [45,10,6,28], they are tai-

lored for well-formed sentences in unstructured texts,

and are unlikely to succeed on tabular data [21,26].

Typical Semantic Table Interpretation methods make

extensive use of structured knowledge bases, which

contain candidate concepts and entities, each defined

with rich lexical and semantic information and linked

by relations. The general workflow involves: (1) re-

trieving candidates corresponding to table components

(e.g., concepts given a column header, or entities given

the text of a cell) from the knowledge base, (2) repre-

sent candidates using features extracted from both the

knowledge base and tables to model semantic inter-

dependence between table components and candidates

(e.g., the header text of a column and the name of a

candidate concept), and between various table compo-

nents (e.g., a column should be annotated by a con-

cept that is shared by all entities in the cells from the

column), and (3) applying inference to choose the best

candidates.

This work addresses several limitations of state-of-

the-art on three dimensions: effectiveness, efficiency,

and completeness.

Effectiveness - Semantic Table Interpretation meth-

ods so far have primarily exploited features derived

from two sources: the knowledge bases, and table com-

ponents such as header and row content (to be called

‘in-table context’). In this work, we propose to uti-

lize the so-called ‘out-table context’, i.e., the textual

content around and outside tables (e.g., paragraphs,

captions), to further improve interpretation accuracy.

As an example, the first column in the table shown

in Figure 1 (to be called the ‘example table’) has

a header ‘Title’, which is highly ambiguous and ar-

guably irrelevant to the concept we should use to an-

notate the column. However, on the containing web-

page, the word ‘film’ is repeated 17 times. This is a

strong indicator for us to select a suitable concept for

the column. A particular type of out-table context we

utilize is the semantic markups inserted within web-

pages by data publishers such as RDFa/Microdata an-

notations. These markups are growing rapidly as major

search engines use them to enable semantic indexing

and search. When available, they provide high-quality,

important information about the webpages and tables

they contain.

We show empirically that we can derive useful fea-

tures from out-table context to improve annotation ac-

curacy. Such out-table features are highly generic and

generally available. While on the contrary, many exist-

ing methods use knowledge base specific features that

are impossible to generalize, or suffer substantially in

terms of accuracy when they can be adapted, which we

shall show in experiments.

Efficiency - We argue that efficiency is also an im-

portant factor to consider in the task of Semantic Table

Interpretation, even though it has never been explic-

itly addressed before. The major bottleneck is mainly

due to three types of operations: querying the knowl-

edge bases, building feature representations for can-

didates, and computing similarity between candidates.

Both the number of queries and similarity computa-

tion can grow quadratically with respect to the size of

a table as often such operations are required for each

pair of candidates [21,26,24]. Empirically, Limaye et

al. [21] show that the actual inference algorithm only

consumes less than 1% of total running time. Using

a local copy of the knowledge base only partially ad-

dresses the issue but introduces more problems. First,

hosting a local knowledge base requires infrastructural

support and involves set-up and maintenance. As we

enter the ‘Big-Data’ era, knowledge bases are growing

rapidly towards a colossal structure such as the Google

Knowledge Graph [1], which constantly integrates in-

creasing numbers of heterogeneous sources. Maintain-

ing a local copy of such a knowledge base is likely

to require an infrastructure that not every organization

can afford [29]. Second, local data are not guaranteed

to be up-to-date. Third, scaling up to very large amount

of input data requires efficient algorithms in addition

to parallelization [32], as the process could be bound

by the large number of I/O operations. Therefore in

our view, a more versatile solution is cutting down the

number of queries and data items to be processed. This

reduces I/O operations in both local and remote scenar-

ios, also reducing costs associated with making remote

calls to Web service providers.

In this direction, we identify an opportunity to im-

prove state-of-the-art in terms of efficiency. To illus-

trate, consider the example table that in reality con-

tains over 60 rows. To annotate each column, existing

methods would use content from every row in the col-

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 3

Fig. 1. An example Wikipedia webpage containing a relational table (Last retrieved on 9 April 2014).

umn. However, from a human reader’s point of view,

this is unnecessary. Simply reading the eight rows one

can confidently assign a concept to the column to best

describe its content. Being able to make such inference

with limited data would give substantial efficiency ad-

vantage to Semantic Table Interpretation algorithms,

as it will significantly reduce the number of queries

to the underlying knowledge bases and the number of

candidates to be considered for inference.

Completeness - Many existing methods only deal

with one or two types of annotation tasks in a table

[35,36]. In those that deal with all tasks [21,27,25,

26,34], only NE-columns are considered. As shown

in Figure 1, tables can contain both NE-columns con-

taining entity mentions, and literal-columns contain-

ing data values of entities on the corresponding rows.

Methods such as Limaye et al. [21] and Mulwad et

al. [26] can recognize relations between the first and

third columns, but are unable to identify the relation

between the first and the second columns. We argue

that a Semantic Table Interpretation method should be

able to annotate both NE-columns and literal-columns.

To address these issues, we developed TableMiner

previously [42] that uses features from both in- and

out-table context and annotates NE-columns and cells

in a relational table based on the principle of ‘start

small, build complete’. That is, (1) create prelimi-

nary, likely erroneous annotations based on partial ta-

ble content and a simple model assuming limited in-

terdependence between table components; (2) and then

iteratively optimize the preliminary annotations by en-

forcing interdependence between table components. In

this work we extend it to build TableMiner+, by adding

‘subject column’ [35,36] detection, relation enumera-

tion, and improving the iterative optimization process.

Concretely, TableMiner+ firstly interprets NE-columns

(to be called column interpretation), while coupling

column classification and entity disambiguation in a

mutually recursive process that consists of a LEARN-

ING phase and an UPDATE phase. The LEARNING

phase interprets each column independently by firstly

learning to create preliminary column annotations us-

ing an automatically determined ‘sample’ from the

column, followed by ‘constrained’ entity disambigua-

tion of the cells in the column (limiting candidate en-

tity space using preliminary column annotations). The

UPDATE phase iteratively optimizes the classification

and disambiguation results in each column based on

a notion of ‘domain consensus’ that captures inter-

column and inter-task dependence, creating a global

optimum. For relation enumeration, TableMiner+ de-

tects a subject column in a table and infers its relations

with other columns (both NE- and literal-columns) in

the table.

TableMiner+ is evaluated on four datasets contain-

ing over 15,000 tables, against four baselines and two

4 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

re-implemented near-identical1 state-of-the-art meth-

ods. It consistently obtains the best performance on

all datasets. On the two most diverse datasets covering

multiple domains and various table schemata, it ob-

tains an improvement of about 1-18 percentage points

in disambiguation, 6-42 in classification, and 4-16 in

relation enumeration. It is also very efficient, con-

tributing up to 66% reduction in terms of the amount

of candidates to be processed and up to 29% savings

in wall-clock time compared against exhaustive base-

line methods. Even in the setting where a local copy

of the knowledge base is used, TableMiner+ delivers

almost orders of magnitude savings in wall-clock time

compared against one re-implemented state-of-the-art

method.

The remainder of this paper is organized as follows.

Section 2 defines terms and concepts used in the rel-

evant domain. Section 3 discusses related work. Sec-

tions 4 to 9 introduce TableMiner+ in detail. Sections

10 and 11 describe experiment settings and discuss re-

sults, followed by conclusion in Section 12.

2. Terms and concepts

A relational table contains regular rows and columns

resembling tables in traditional databases. In practice,

Web tables containing complex structures constitute a

small population and have not been the focus of re-

search. In theory, complex tables can be interpreted

by adding a pre-process that parse complex structures

using methods such as Zanibbi et al. [39]

Relational tables may or may not contain a header

row, which is typically the first row in a table. They of-

ten contain a subject column that usually (but not nec-

essarily) corresponds to the ‘primary key’ columns in a

database table [35,36]. This contains the set of entities

the table is about (subject entities, e.g., column ‘Title’

in Figure 1 contains a list of films the table is about),

while other columns contain either entities forming bi-

nary relationships with subject entities, or literals de-

scribing attributes of subject entities.

A knowledge base defines a set of concepts (or

types, classes), their object instances or entities, liter-

als representing concrete data values, and semantic re-

lations that define possible associations between enti-

ties (hence also between concepts they belong to), or

1Despite our best effort, identical replication of existing systems

and experiments has been not possible due to many reasons, see Ap-

pendix D.

between an entity and a literal, in which case the rela-

tion is usually called a property of the entity (hence

a property of its concept) and the literal as the prop-

erty value. In the generic form, a knowledge base is a

liked data set containing a set of triples, statements,

or facts, each composed of a subject, predicate and ob-

ject. The subject could be a concept or entity, the ob-

ject could be a concept, entity, or literal, and the predi-

cate could be a relation or property. A knowledge base

can be a populated ontology, such as the YAGO2 and

DBpedia3 datasets, in which case a concept hierarchy

is defined. However this is not always true as some

knowledge bases do not define strict ontology but loose

concept networks, such as Freebase4.

The task of Semantic Table Interpretation addresses

three annotation tasks. Named Entity Disambiguation

associates each cell in NE-columns with one canon-

ical entity; column classification annotates each NE-

column with one concept, or in the case of literal-

columns, associates the column to one property of the

concept assigned to the subject column of the table;

Relation Extraction (or enumeration) identifies binary

relations between NE-columns, or in the case of one

NE-column and a literal-column and given that the

NE-column is annotated by a specific concept, identi-

fies a property of that concept that could explain the

data literals. The candidate entities, concepts and rela-

tions are drawn from the knowledge base.

Using the example table and Freebase as example,

the first column can be considered a reasonable subject

column and should be annotated by the Freebase type

‘Film’ (URI ‘fb5:/film/film’). ‘A Difficult Life’ in the

first column should be annotated by ‘fb:/m/02qlhz2’

that denotes a movie directed by ‘Dino Risi’ (in the

third column, ‘fb:/m/0j_nhj’). The relation between the

first and third column should be annotated as ‘Directed

by’ (‘fb:/film/film/directed_by’). And the relation be-

tween the first and second column (which is a literal-

column) should be the property of ‘Film’: ‘initial re-

lease date’ (‘fb:/film/film/initial_release_date’), which

we also use to annotate the second column.

2http://www.mpi-inf.mpg.de/yago-naga/yago/
3http://wiki.dbpedia.org/Ontology
4http://www.freebase.com
5fb:http://www.freebase.com

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 5

3. Related work

3.1. Legacy tabular data to linked data

Research on converting tabular data in legacy data

sources to linked data format has made solid contri-

bution toward the rapid growth of the LOD cloud in

the past decade [12,19,30,7]. The key difference from

the task of Semantic Table Interpretation is that the

focus is on data generation rather than interpretation,

since the goal is to pragmatically convert tabular data

from databases, spreadsheets, and similar data struc-

tures into RDF. Typical methods require manually (or

partially automated) mapping the two data structures

(input and output RDF), and they do not link data to

existing concepts, entities and relations from the LOD

cloud. As a result, the implicit semantics of the data

remain uncovered.

3.2. General NLP and IE

Some may argue to use the general purpose NLP/IE

methods for Semantic Table Interpretation, due to their

highly similar objectives. This is infeasible for a num-

ber of reasons. First, state-of-the-art methods [31,17]

are typically tailored to unstructured text content that

is different from tabular data. The interdependence

among the table components cannot be easily modeled

in such methods [22]. Second and particularly for the

tasks of Named Entity Classification and Relation Ex-

traction, classic methods require each target semantic

label (i.e., concept or relation) to be pre-defined and

learning requires training or seed data [28,40]. In Se-

mantic Table Interpretation however, due to the large

degree of variations in table schemata (e.g., Limaye et

al. [21] use a dataset of over 6,000 randomly crawled

Web tables of which no information about the table

schemata is known a priori), defining a comprehen-

sive set of semantic concepts and relations and sub-

sequently creating necessary training or seed data are

infeasible.

A related IE task tailored to structured data is wrap-

per induction [18,9], which automatically learns wrap-

pers that can extract information from regular, recur-

rent structures (e.g., product attributes from Amazon

webpages). In the context of relational tables, wrap-

per induction methods can be adapted to annotate table

columns that describe entity attributes. However, they

also require training data and the table schemata to be

known a priori.

3.3. Table extension and augmentation

Table extension and augmentation aims at gather-

ing relational tables that contain the same entities but

cover complementary attributes of the entities, and in-

tegrate these tables by joining them on the same en-

tities. For example, Yakout et al. [38] propose Info-

Gather for populating a table of entities with their at-

tributes by harvesting related tables on the Web. The

users need to either provide the desired attribute names

of the entities, or example values of their attributes.

The system can also discover the set of attributes for

similar entities. Bhagavatula et al. [2] introduce Wik-

iTables, which given a query table and a collection of

other tables, identifies columns from other tables that

would make relevant additions to the query table. They

first identify a reference column (e.g., country names

in a table of country population) in the query table to

use for joining, then find a different table (e.g. a list of

countries by GDP) with a column similar to the refer-

ence column, and perform a left outer join to augment

the query table with an automatically selected column

from the new table (e.g., the GDP amounts). Lehm-

berg et al. [20] create the Mannheim Search Joins En-

gine with the same goal as WikiTables but focus on

handling tens of millions of tables from heterogeneous

sources.

The key difference between these systems and the

task of Semantic Table Interpretation is that they focus

on integration rather than interpretation. The data col-

lected are not linked to knowledge bases and ambigu-

ity still remains.

3.4. Semantic Table Interpretation

Hignette et al. [14,15] and Buche et al. [3] pro-

pose methods to identify concepts represented by ta-

ble columns and detect relations present in tables in a

domain-specific context. An NE-column is annotated

based on two factors: similarity between the header

text of the column and the name of a candidate con-

cept; plus the similarities calculated for each cell in the

column and each term in the hierarchical paths con-

taining the candidate concept. For relations, they only

detect the presence of semantic relations in the table

without specifying the columns that form binary rela-

tions.

Venetis et al. [35] annotate table columns and iden-

tify relations between the subject column and other

columns using types and relations from a database con-

structed by mining the Web using lexico-syntactic pat-

6 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

terns such as the Hearst patterns [13]. The database

contains co-occurrence statistics about the subject and

object of triples, such as the number of times the

word ‘cat’ and ‘animal’ extracted by the pattern <

?, suchas, ? > representing the is-a relation between

concept and instances. A maximum likelihood infer-

ence model predicts the best type for a column to be the

one maximizing the probability of seeing all the val-

ues in the column given that type for the column. Such

probability is computed based on the co-occurrence

statistics gathered in the database. Relation interpreta-

tion follows the same principle.

Likewise, Wang et al. [36] argue that tables describe

a single entity type (concept) and its attributes and

therefore, consist of an entity column (subject column)

and multiple attribute columns. The goal is to firstly

identify the entity column in the table, then associate

a concept from the Probase knowledge base [37] that

best describes the table schema. Essentially this allows

annotating the subject NE-column and literal-columns

using properties of the concept, also identifying rela-

tions between the subject column and other columns.

Probase is a probabilistic database built in the similar

way as that in Venetis et al. [35] and contains an in-

verted index that supports searching and ranking can-

didate concepts given a list of terms describing pos-

sible concept properties, or names describing possi-

ble instances. The method heavily depends on these

features and the probability statistics gathered in the

database.

Muñoz et al. [23] extract RDF triples for relational

tables from Wikipedia articles. The cells in the tables

must have internal links to other Wikipedia articles.

These are firstly mapped to DBpedia named entities

based on the internal links, then to derive relations be-

tween two entities on the same row and from differ-

ent columns, the authors query the DBpedia dataset for

triples in the form of < subject, ?, object >, where

subject and object are replaced by the two mapped en-

tities. Any predicates found in the query result are con-

sidered as relations between the two entities. The work

is later extended in Muñoz et al. [24] by adding a ma-

chine learning process to filter triples that are likely to

be incorrect, exploiting features derived from both the

knowledge base and the text content from the target

cells.

Zwicklbauer et al. [46] use a simple majority vote

model for column classification. Each candidate entity

in the cells of the column casts a vote to the concept

it belongs to, and the one that receives the most votes

is the concept used to annotate the column. They show

that for this very specific task, it is unnecessary to ex-

haustively disambiguate each cell in a column. Instead,

comparable accuracy can be obtained by using a frac-

tion of the cells from the column. However, the sample

size is arbitrarily decided.

Syed et al. [34] deal with all three annotation tasks

using DBpedia and Wikitology [33], the latter of which

contains an index of Wikipedia articles describing en-

tities and a classification system that integrates several

vocabularies including the DBpedia ontology, YAGO,

WordNet6 and Freebase. The method begins by firstly

annotating each NE-column based on candidate en-

tities from every cell in the column. Candidate enti-

ties for each cell are retrieved by composing structured

queries to match the cell text, the row content, and the

column header against different fields defined in the

Wikitology index, such as the title and redirects, the

first sentence and links from candidate entities’ origi-

nal Wikipedia articles. Candidate concepts for the col-

umn combines the types associated with each candi-

date entity from each cell, and the scores are based on

the number of candidate entities associated with that

concept and the relevance score of candidate entities

in the search results returned by Wikitology. The col-

umn annotations are then used as input in Named En-

tity Disambiguation, which is cast as queries to Wiki-

tology with new constraints using the column’s anno-

tation. Finally, relations between two NE-columns are

derived based on the similar method by Muñoz et al.

[23] using DBpedia. This method is later used in Mul-

wad et al. [27] and Mulwad et al. [25].

Limaye et al. [21] propose to model table compo-

nents and their interdependence using a probabilistic

graphical model. The model consists of two compo-

nents: ‘variables’ that model different table compo-

nents, and ‘factors’ that are further divided into node

factors modeling the compatibility between the vari-

able and each of its candidate, and edge factors mod-

eling the compatibility between the variables believed

to be correlated. For example, given an NE-column,

the header of the column is a variable that takes val-

ues from a set of candidate concepts; and each cell in

the column is a variable that takes values from a set of

candidate entities. The node factor for the header could

model the compatibility between the header text and

the names of each candidate concept; while the edge

factor could model the compatibility between any can-

didate concept for the header and any candidate entity

6http://wordnet.princeton.edu/

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 7

from each cell. The strength of compatibility could be

measured using methods such as string similarity met-

rics [11] and semantic similarity measures [43]. Then

the task of inference amounts to searching for an as-

signment of values to the variables that maximizes the

joint probability. A unique feature of this method is

that it solves the three annotation tasks simultaneously,

capturing interdependence between various table com-

ponents at inference, while other methods either tackle

individual annotation tasks or tackles each separately

and sequentially.

Mulwad et al. [26] argue that computing the joint

probability distribution in Limaye’s method is very ex-

pensive. Built on the earlier work by Syed et al. [34]

and Mulwad et al. [27,25], they propose a light-weight

semantic message passing algorithm that applies infer-

ence to the same kind of graphical model. This is sim-

ilar to TableMiner+ in the way that the UPDATE phase

of TableMiner+ can be considered as a similar seman-

tic message passing process. However, TableMiner+

is fundamentally different since it (1) adds a subject

column detection algorithm; (2) deals with both NE-

columns and literal-columns, while Mulwad et al. only

handle NE-columns; (3) uses an efficient approach

bootstrapped by sampled data from the table while

Mulwad et al. build a model that approaches the task in

an exhaustive way; (4) defines and uses context around

tables as features while Mulwad et al. has used knowl-

edge base specific features; (5) uses different methods

for scoring and ranking candidate entities, concepts

and relations; and (6) models interdependence differ-

ently which, if transforms to an equivalent graphical

model, would result in fewer factor nodes.

3.5. Remark

Existing Semantic Table Interpretation methods

have several limitations. First, they have not consid-

ered using features from out-table context, which is

highly generic and generally available. Instead, many

have used knowledge base specific features that are

difficult or impossible to generalize. For example, the

co-occurrence statistics used by Venetis et al. [35]

and Wang et al. [36] are unavailable in knowledge

bases such as YAGO, DBpedia, and Freebase. Meth-

ods such as Limaye et al. [21] and Mulwad et al. [26]

use the concept hierarchy in their knowledge bases.

However, Freebase does not have a strict concept hier-

archy. These methods can become less effective when

adapted to different knowledge bases, as we shall show

later.

Second, no existing methods explicitly address effi-

ciency, which we argue as an important factor in Se-

mantic Table Interpretation tasks. Current methods are

non-efficient because they typically adopt an exhaus-

tive strategy that examines the entire table content,

e.g., column classification depends on every cell in the

column. This results in quadratic growth of the num-

ber of computations and knowledge base queries with

respect to the size of tables, as such operations are usu-

ally required for every pair of candidates, e.g., candi-

date relation lookup between every pair of entities on

the same row [26,23,24], or similarity computation be-

tween every pair of candidate entity and concept in a

column [21]. This can be redundant as Zwicklbauer et

al. [46] have empirically shown that comparable accu-

racy can be obtained by using only a fraction of data

(i.e., sample) from the column. However, there remains

the challenge to automatically determine the optimal

sample size and elements.

Further, existing methods are incomplete, since they

either only tackle certain annotation tasks [35,36], or

only deal with NE-columns [21,27,25,26,34].

In an attempt to address some of the above issues,

we previously developed a prototype TableMiner [42]

that is able to annotate NE-columns and disambiguate

entity cells in an incremental, mutually recursive and

bootstrapping approach seeded by automatically se-

lected sample from a table. And in Zhang [41] we fur-

ther explored different methods for selecting the sam-

ple and its effect on accuracy. This work joins the two

and largely extends them in a number ways: (1) adding

a new algorithm for subject column detection and for

relation enumeration; (2) revising the column classifi-

cation and entity disambiguation processes (primarily

in the UPDATE process); (3) performing significantly

more comprehensive experiments to thoroughly evalu-

ate the new method; and (4) releasing both the dataset

and software to encourage future research.

4. Overview

Figure 2 shows the data flow and processes of

TableMiner+. Given a relational table it firstly detects a

subject column (Section 6), which is used by later pro-

cesses of column interpretation and relation enumer-

ation. Then TableMiner+ performs NE-column inter-

pretation, coupling column classification with entity

disambiguation in an incremental, mutually recursive,

bootstrapping approach. This starts with a LEARNING

phase (Section 7) that interprets one NE-column at a

8 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Fig. 2. The overview of TableMiner+. (a) a high-level architecture diagram; (b) detailed architecture with input/output. d - table data. Grey colour

indicates annotated table elements. Angle brackets indicates annotations. Inside a table: H - header. E, a, b, x, z - content cells

time independently to create preliminary concept an-

notation for an NE-column and entity annotation for

the cells, followed by an UPDATE phase (Section 8)

that iteratively revises the annotations by enforcing

interdependence between columns, and between the

classification and disambiguation results.

In the LEARNING phase, for preliminary column

classification (Section 7.2), TableMiner+ works in an

incremental, iterative manner to gather evidence from

each cell in the column at a time until it reaches a

stopping criteria (automatically determined), usually

before covering all cells in the column. Therefore,

TableMiner+ can use only partial content in the column

to perform column classification. We say that it uses

a ‘sample’ from the column for the task and each el-

ement in the sample is a cell which TableMiner+ has

used as evidence for preliminary column classification

until stop. In theory, the size and elements of the sam-

ple can affect the outcome and hence the accuracy of

classification. For this reason, a sample ranking pro-

cess (Section 7.1) precedes preliminary column clas-

sification to re-order table rows based on the cells in

the target column with a goal to optimize the sam-

ple to obtain the highest accuracy of classification.

Next, the preliminary concept annotation for the col-

umn is used to constrain entity candidate space in dis-

ambiguating cells in the column (preliminary cell dis-

ambiguation, Section 7.3). Using a sample for column

classification and constraining entity candidate space

allows TableMiner+ to be more efficient than state-of-

the-art methods that exhaustively process all content

from a column.

The UPDATE phase begins by taking the entity an-

notations in all NE-cells to create a ‘domain represen-

tation’ (Section 8.1), which is compared against candi-

date concepts for each NE-column to revise the prelim-

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 9

inary column classification results (Section 8.2). If any

NE-column’s annotation changes due to this process,

the newly elected concept is then used to revise dis-

ambiguation results in that column (Section 8.3). This

process repeats until no changes are required.

Finally relation enumeration (Section 9) discovers

binary relations between the subject column and other

NE-columns; or identifies a property of the concept

used to annotate the subject column to best describe

data in the literal-columns. In the latter case, the prop-

erty is considered both the annotation for the literal-

column, and the relation between the subject column

and the literal-column.

The incremental, iterative process used by prelimi-

nary column classification is implemented as a generic

incremental inference with stopping algorithm (I-Inf),

which is also used for subject column detection and is

described in Section 5.

At different steps, TableMiner+ uses features from

both in-table and out-table context listed in Table

1. In particular, out-table context includes table cap-

tions, webpage title, surrounding paragraphs, seman-

tic markups inserted within webpages if any. Table

captions and the title of the webpage may mention

key terms that are likely to be the focus concept in

a table. Paragraphs surrounding tables may describe

the content in the table, thus containing indicative

words of the concepts, relations, or entities in the ta-

ble. Semantic markups use certain vocabularies (e.g.,

schema.org) to annotate important pieces of informa-

tion on a webpage. For example, Figure 3 shows an

annotation on the IMDB webpage of the movie ‘The

Godfather (1972)’. Here it annotates the name of the

director for the movie. Intuitively if we use this name

as contextual features to disambiguate names in the ta-

ble of cast members on this webpage, we may want to

give it a higher weight than other features not included

in such semantic markups.

Fig. 3. Example semantic markup in a webpage.

In the following sections we describe details of each

component, and we will highlight the changes or addi-

tions to the previous TableMiner (if any) in each sec-

Table 1

Types of context from which features are created for Semantic Table

Interpretation.

In-table context Out-table context

column header webpage title

row content table caption and/or title

column content paragraphs (unstructured text)

semantic markups

tion. In Appendix F we list an index of mathemati-

cal notations and equations that are used throughout

the remainder of this article. Readers may use this for

quick access to their definitions.

5. I-Inf

We firstly describe the I-Inf algorithm that we have

previously introduced in [42]. Here we generalize it so

it can be used by both subject column detection and

preliminary column classification. As shown in Algo-

rithm 1, it starts by taking input a dataset D, an empty

set of key-value pairs < k, v > denoting the state, and

i indicates the current iteration number. Then it itera-

tively processes each single data item d from D (func-

tion process) to generate a set of key-value pairs, which

are used to update the state (function update) by either

resetting scores of existing key-value pairs or adding

new pairs. At the end of each iteration, I-Inf checks for

convergence (function convergence), in which case the

algorithm stops. To do so, it computes entropy of the

current and previous iterations using the corresponding

sets of key-value pairs (Equation 1), and convergence

happens if the difference between the two entropy val-

ues is less than a threshold.

Algorithm 1 I-inf

1: Input: i = 0, D, {< k, v >}i ← ∅
2: Output: the collection of < k, v > ranked by v

3: for all d ∈ D do

4: i = i+ 1
5: {< k, v >}i−1 ← {< k, v >}i
6: {< k′, v′ >} ← process(d)

7: update({< k, v >}i, {< k′, v′ >})
8: if convergence({< k, v >}i, {< k, v >}i−1)

then

9: break

10: end if

11: end for

10 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

entropy(i) =

−
∑

<k,v>∈{<k,v>}i

P (< k, v >) log2 P (< k, v >)

(1)

P (< k, v >) =
v

∑

<k,v>∈{<k,v>}i
v

(2)

where i indicates the ith iteration. Intuitively, when

the entropy converges, we expect P (< k, v >) for

each key-value pair to also converge. This could

suggest that the processing of additional data items

changes little the value of each key-value pair with re-

spect to the sum for all pairs (i.e., the denominator in

Equation 2). Effectively this means that although the

absolute value for each pair still changes upon addi-

tional data items, the change in their relative values

may be neglectable and hence their rankings are sta-

bilized. I-Inf will be discussed in more details later

where they are used in specific cases.

6. Subject column detection

6.1. Preprocessing

Subject column detection begins by classifying cells

from each column (denoted by Tj) into one of the

data types: ‘empty’, ‘named entity’, ‘number’, ‘date

expression’, ‘long text’ (e.g., sentence, or paragraph),

and ‘other’. This is done by using simple regular ex-

pressions that examine the syntactic features of cell

text, such as number of words, capitalization, mentions

of months or days in a week. A vast amount of liter-

ature can be found on this topic [3,14,15]. Then each

column is assigned a most frequent datatype by count-

ing the number of cells belonging to that type. The

only exception is that a column is empty only if all

cells are empty.

Next, if a candidate NE-column has a column header

that is a preposition word, it is discarded. An example

like this is shown in Figure 4, where the columns ‘For’

and ‘Against’ are clearly not subject columns but rather

form relations with the subject column ‘Batsman’.

6.2. Features

Next, features listed in Table 2 are constructed for

each remaining candidate NE-column. The fraction of

Fig. 4. An example table containing columns with preposition words

as headers.

empty cells (emc) of a column is simply the number

of empty cells divided by the number of rows in the

column. Likewise, the fraction of cells with unique

content (uc) is a ratio between the number of cells

with unique text content and the number of rows. The

distance from the first NE-column (df) counts how

many columns the current column is away from the

first candidate NE-column from the left. NE-columns

are also checked by regular expressions to identify the

number of cells likely to contain acronyms or ids such

as airline IACO codes (e.g., using features like upper-

case letters and presence of white spaces). A column

that is an acronym or id column (ac(Tj) = 1, or 0

otherwise) is disfavored. The intuition is that as the

subject of a table one would prefer to use full names of

entities for the purpose of clarity.

Context match score (cm) for a column Tj counts

the frequency of the column header’s composing

words in the header’s context:

cm(Tj) =
∑

xj∈Xj

∑

w∈bow(Tj)

freq(w, xj)× wt(xj)

(3)

where xj ∈ Xj are different types of context for

the header of column Tj , bow(Tj) returns the bag-of-

words representation of the column header’s text l(Tj),

and wt(xj) is the weight given to a specific type of

context. Intuitively, the more frequent a column header

text is repeated in the table’s context the more likely

it is the subject column of the table. The context el-

ements used for computing cm include webpage title,

table caption and surrounding paragraphs.

Web search score (ws) of a column gathers evi-

dence from the Web to predict the likelihood of it being

the subject column, and it is contributed by individual

rows in the table. Given a table row Ti, a query string

is firstly created by concatenating all text content from

cells on this row, i.e., l(Ti,j) for all j. Then the query is

sent to a search engine to retrieve the top n webpages.

Let P denote these webpages, then each NE-cell that

composes the query receives a score as:

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 11

Table 2

Features used for subject column detection. Examples are based on

the visible content in the example table

Feature Notation Example

Fraction of empty cells emc 0.0 for column ‘Title’

Fraction of cells with unique content uc 1.0 for column ‘Title’, 5/8 for column ‘Director’

If >50% cells contain acronym or id ac -

Distance from the first NE-column df 0 for column ‘Title’, 2 for column ‘Director’

Context match score cm -

Web search score ws -

ws(Ti,j) = countp(Ti,j , P)+countw(Ti,j , P) (4)

countp(Ti,j , P) =
∑

p∈P

(freq(l(Ti,j), ptitle)× 2 + freq(l(Ti,j), psnippet))

(5)

countw(Ti,j , P) =

∑

p∈P

∑

w∈bowset(Ti,j)

freq−(w, ptitle)× 2 + freq−(w, psnippet)

|bow(Ti,j)|

(6)

countp sums up the frequency of the cell text l(Ti,j)
in both the titles (ptitle) and snippets (psnippet) of re-

turned webpages. Frequency in titles are given double

weight as they are considered to be more important.

countw firstly transforms cell text into a set of unique

words bowset(Ti,j), then counts frequency of each

word. freq− ensures those occurrences of w that are

part of occurrences of l(Ti,j) are eliminated and not

double counted. bow(Ti,j) returns the bag-of-words

representation of the cell text.

For each row, the cell that receives the highest score

is considered to be containing the subject entity for the

row. The intuition is that the query should contain the

name of the subject entity plus contextual information

of the entity’s attributes. When searched, it is likely

to retrieve more documents regarding the subject en-

tity than its attributes, and the subject entity is also ex-

pected to be repeated more frequently.

Example 1. For the first content row in the example

table, we create a query by concatenating text from the

1st, 3rd and 4th cells on the row (only NE-columns

are candidates of subject columns), i.e., ‘big deal

on madonna street, mario monicelli, marcello mas-

troianni’. This is searched on the Web to return a list of

documents. Then for each document, we count the fre-

quency of each phrase in the title and snippet and com-

pute countp for each corresponding cell. Next, take the

1st cell for example, ‘big deal on madonna street’ is

transformed to a set of unique words {‘big’, ‘deal’,

‘madonna’, ‘street’}, and we count the frequency of

each word in the titles and snippets of each document

to compute countw. If any occurrence is part of an oc-

currence of the whole phrase that is already counted in

countp, we ignore them. Likewise, we repeat this for

the 3rd and 4th cells. Finally, we find that the 1st cell

receives the highest Web search score, and we mark it

as the subject entity for this row.

In principle the Web search score of a column

ws(Tj) simply adds up ws(Ti,j) for every row i in the

column. However, this is practically inefficient and ex-

tremely resource consuming as Web search APIs typ-

ically has limited quota. In fact, it is also unneces-

sary. Again using the example table, we do not need

to read all 60 rows to decide the column ‘Title’ as the

subject column. Therefore, we compute Web search

scores of a column in the context of the I-Inf algo-

rithm. To do so, we simply need to define D as the

collection of table rows Ti, and each key-value pair as

< Tj , ws(Tj) >.

Example 2. Following Example 1, we obtain three

key-value pairs after processing the first content row:

< T1, 10 >, < T3, 5 > and < T4, 2 >, where T1, T3
and T4 are columns and 10, 5 and 2 are hypothetical

Web search scores for the cell T1,1, T1,3, and T1,4 re-

spectively. We continue to process the remaining rows

one at a time by repeating the process, each time up-

dating the set of key-value pairs with the Web search

scores obtained for the cells from the new row. The

entropy of the current and the previous iterations are

calculated based on the key-value pairs, and if conver-

12 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

gence happens we stop and obtain the final scores of

each column.

6.3. Detection

Features (except df) are then normalized into rela-

tive scores by the maximum score of the same feature

type. Next, they are combined to compute a final sub-

ject column score subcol(Tj) and the column with the

highest score is chosen as subject column.

subcol(Tj) =

ucnorm(Tj) + 2(cmnorm(Tj) + wsnorm(Tj))− emcnorm(Tj)
√

df(Tj) + 1

(7)

where norm indicates normalized scores. uc, cm and

ws are all indicative features of subject column in a ta-

ble. However, uc is given half the weight of cm and

ws. This is rather arbitrary and the intuition is that sub-

ject columns do not necessarily contain unique values

at every row [35], hence uc is a weaker indicator than

others. A column that contains empty cells is penal-

ized, and the total score is normalized by its distance

from the left-most NE-column as subject columns tend

to appear on the left and before columns describing

subject entities’ attributes.

An alternative approach would be to train a machine

learning model using these features to predict subject

column. However, we did not explore this extensively

as we want to keep TableMiner+ unsupervised. Also

we want to focus on creating semantic annotations in

tables in this work.

7. NE-Column interpretation - the LEARNING

phase

After subject column detection, TableMiner+ pro-

ceeds to the LEARNING phase where the goal is to per-

form preliminary column classification and cell disam-

biguation on each NE-column independently.

In preliminary column classification (Section 7.2),

TableMiner+ generates candidate concepts for an NE-

column and computes confidence scores for each can-

didate. Intuitively, if we already know the entity an-

notation for each cell, we can define candidate con-

cepts as the set of concepts associated with the entity

from each cell. However, cell annotations are not avail-

able at this stage. To cope with this ‘cold-start’ prob-

lem, preliminary column classification encapsulates a

cold-start disambiguation process in the context of the

I-Inf algorithm. Specifically, in each iteration, a cell

taken from the column is disambiguated by compar-

ing the feature representation of each candidate entity

against the feature representation of that cell. Then the

concepts associated with the highest scoring (i.e., the

winning) entity7 are gathered to create a set of candi-

date concepts for the column. The candidate concepts

are scored, and compared against those from the previ-

ous iteration. Preliminary column classification ends if

convergence happens, and the winning concept for the

column is selected to annotate the column. Note that

the ultimate goal of cold-start disambiguation is to cre-

ate candidate concepts for the column. Thus the dis-

ambiguation results can be changed in the later phase.

Since I-Inf enables TableMiner+ to use only a sam-

ple of the column data to create preliminary column

annotations, the sample ranking process (Section 7.1)

is applied before preliminary column classification to

ensure that the latter uses an optimal sample which po-

tentially contributes to the highest accuracy.

In preliminary cell disambiguation (Section 7.3),

the annotation of the column created in the previous

stage is used to (1) revise cold-start disambiguation re-

sults in cells that have been processed; and (2) con-

strain candidate entity space in the disambiguation of

the remaining cells.

For both preliminary column classification and

cell disambiguation, we mostly8 follow our previous

method in Zhang [42]. For the sample ranking pro-

cess we use our method described in Zhang [41]. For

the sake of completeness we describe details of these

work below. We also renamed many concepts and a

comprehensive list can be found in Appendix A.

7.1. Sample ranking

Preliminary column annotations depend on cold-

start disambiguation of the cells in the sample. For this

reason, we hypothesize that a good sample should con-

tain cells that are ‘easy’ to disambiguate, such that it

is more likely to obtain high disambiguation accuracy,

which then may contribute to high classification ac-

curacy. We further hypothesize that a cell makes an

7Practically, our implementation also takes into account the fact

that there can be multiple entities with the same highest score from

a cell. For the sake of simplicity, throughout the discussion we as-

sume there is only one. This also applies to the winning concept on

a column and relation between two column.
8Minor modifications will be pointed out.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 13

easy disambiguation target if: (1) we can create rich

feature representation of its candidate entities, or its

context, or both; and (2) the text content is less am-

biguous hence fewer candidates are retrieved (i.e., if a

name is used by one or very few entities). Previously,

we introduced four methods based on these hypothe-

sis and have shown that they have comparable perfor-

mance in terms of both accuracy and efficiency. Here

we choose the method based on ‘feature representation

size’, which is slightly more balanced.

Given an NE-column, each cell is firstly given a

preference score. Then the rows containing these cells

are re-ordered based on the descending order of the

scores. Since preliminary column classification fol-

lows an incremental, iterative procedure using the I-Inf

algorithm until convergence, effectively by changing

the order of the cells (and rows), a different set of cells

could have been processed by the time of convergence

(thus a different sample is used). And this possibly re-

sults in different classification outcome.

To compute the preference score of each cell, we

firstly introduce a ‘one-sense-per-discourse’ hypothe-

sis in the context of a non-subject NE-column. One-

sense-per-discourse is a common hypothesis in sense

disambiguation. The idea is that that a polysemous

word appearing multiple times in a well-written dis-

course is very likely to share the same sense [8].

Though this is widely followed in sense disambigua-

tion in free texts, we argue that it is also common

in relational tables: given a non-subject column, cells

with identical text are extremely likely to express the

same meaning (e.g., same entity or concept). Note that

one-sense-per-discourse is more likely to hold in non-

subject columns than subject-columns, as the latter

may contain cells with identical text content that ex-

presses different meanings. A typical example is the

Wikipedia article ‘List of peaks named Bear Moun-

tain’9, which contains a disambiguation table with

a subject column containing the same value ‘Bear

Mountain’ on every row, and several other attribute

columns to disambiguate these names. A screenshot is

shown in Figure 5.

The principle of one-sense-per-discourse allows us

to treat cells with identical text content as singleton,

to build a shared and combined in-table context by in-

cluding the rows of each cell. As a result, we can create

a larger and hence richer feature representation based

9http://en.wikipedia.org/wiki/List_of_peaks_named_Bear_Mountain,

last retrieved 28 May 2015.

Fig. 5. One-sense-per-discourse does not always hold in subject–

columns.

on the enlarged context. Next, we count the number of

features in the feature representation of a cell and use

the number as the preference score.

Example 3. Following Example 2 and assuming that

we now need to interpret the non-subject column ‘Di-

rector’ (column 3), and the table is complete. By ap-

plying the rule of one-sense-per-discourse, we will put

the content rows 3, 4 and 7 adjacent to each other, as

the target cells (3,3), (4,3) and (7,3) contain identical

text ‘Dino Risi’, which we assume to have the same

meaning. Then suppose we use the row context of a

cell to create a bag-of-words feature representation.

The three cells will share the same feature representa-

tion, which takes the text content from rows 3, 4 and

7 (excluding the three target cells in question) and ap-

plies the bag-of-words transformation. This gives us a

bag-of-words representation of 16 features and we use

the number 16 as the preference score for the three tar-

get cells. We repeat this to other cells in the column,

and eventually we re-rank the rows to obtain the ta-

ble shown in Figure 6. Another example is shown in

Figure 2 (from data d2 to d3).

Fig. 6. Sample ranking result based on the example table. The three

‘Dino Risi’ cells will have the same feature representation based on

the row context highlighted within dashed boxes.

7.2. Preliminary column classification

Next, with the table rows re-arranged by sample

ranking, TableMiner+ proceeds to classify the column

using the I-Inf algorithm. Using Algorithm 1, D con-

tains the ranked list of cells from the column where

14 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

each element d is an individual cell; for a key-value

pair the key (k) is a candidate concept for the column,

and the value v is the confidence score. The process

operation (line 6) performs cold-start disambiguation

of a cell to generate candidate concepts and compute

their scores (Section 7.2.1); the update operation (line

7) takes the output of cold-start disambiguation from a

cell and updates the set of candidate concepts for the

entire column (Section 7.2.2). This repeats until con-

vergence.

7.2.1. Cold-start disambiguation

We first retrieve candidate entities for a cell and then

disambiguate the cell based on the similarity between

the feature representation of the cell and candidate en-

tities.

Candidate entity generation Given a cell, we search

its text content l(Ti,j) in a knowledge base to retrieve

candidate entities Ei,j . If a candidate’s name l(ei,j)
does not have overlap with l(Ti,j), the candidate is dis-

carded.

Confidence score of entity Given a candidate entity

ei,j ∈ Ei,j , we calculate its confidence score de-

pending on two components: an entity context score

ec comparing ei,j and each type of the cell’s context

xi,j ∈ Xi,j , and an entity name score en comparing

l(ei,j) and l(Ti,j).
To compare ei,j with the cell’s context xi,j ∈

Xi,j , we compute the overlap between the bag-of-

words representation of the candidate entity bow(ei,j)
and the bag-of-words representation of each context

bow(xi,j). To build bow(ei,j), the triples containing

ei,j as subject are retrieved from the knowledge base.

Then bow(ei,j) simply concatenates objects of all

triples and transforms them into a bag-of-words.

The context of the cell Xi,j contains out-table and

in-table context shown in Table 1. Row content con-

catenates l(Ti,j′) where j 6= j′. These are likely to be

attribute data values of entities. Column content con-

catenates l(Ti′,j) where i 6= i′. These are likely to refer

to entities that are semantically similar or related. Col-

umn header could contain useful features as entities

sometimes use words that indicate its semantic type

in its names (e.g., ‘River Sheaf’). Webpage title, table

captions/titles and surrounding paragraphs can contain

words that are important to entities. Semantic markups

may annotate important entities or their attributes on

the webpage. They are extracted as RDF triples and the

objects of triples that are literals are concatenated.

The overlap between ei,j and any out-table context

is computed using a frequency weighted dice function:

dice(ei,j , xi,j) =

2×
∑

w∈bowset(ei,j)∩bowset(xi,j)

(freq(w, ei,j) + freq(w, xi,j))

|bow(ei,j)|+ |bow(xi,j)|

(8)

The overlap between ei,j and any in-table context

is measured based on coverage, as intuitively the pres-

ence of any in-table features in the bag-of-words rep-

resentation of a candidate entity is a stronger signal of

relevance.

coverage(ei,j , xi,j) =

∑

w∈bowset(ei,j)∩bowset(xi,j)

freq(w, xi,j)

|bow(xi,j)|

(9)

Then let overlap(ei,j , xi,j) be the generalized func-

tion (either dice or coverage) that measures overlap

between a candidate entity and its source cell’s context

xi,j , the entity context score is the weighted sum of the

overlap between ei,j and each xi,j ∈ Xi,j :

ec(ei,j) =
∑

xi,j∈Xi,j

overlap(ei,j , xi,j)× wt(xi,j)

(10)

The entity name score is measured based on the

name of ei,j and the text content in Ti,j using the stan-

dard Dice coefficient as:

en(ei,j) =

√

2× |bowset(ei,j) ∩ bowset(Ti,j)|

|bowset(ei,j)|+ |bowset(Ti,j)|

(11)

Finally, an overall confidence score cf(ei,j) is com-

puted using Equation 12 below. Note that this is

different from our previous work [42]. The factor
√

|bow(Ti,j)| balances the weight between the can-

didate entity’s context and name scores by the num-

ber of tokens in bow(Ti,j). Intuitively, an entity men-

tion that is a long name consisting of multiple tokens

(e.g., ‘Harry Potter and the Philosopher’s Stone’) is

less likely to be ambiguous than a single-token name

(‘Harry’). Therefore the entity name score in the for-

mer case should be given higher weight (or conversely,

the entity context score is given less weight). When the

mention has only a single token, both scores are given

the equal weight.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 15

cf(ei,j) = en(ei,j) +
ec(ei,j)

√

|bow(Ti,j)|
(12)

Candidate concept generation Then the set of can-

didate concepts associated with the winning entity are

collected and added to the set of candidate concepts for

the column Cj . Mathematically,

Cj ←
⋃

i∈I

con(e+i,j) (13)

where e+i,j denotes the winning entity for cell Ti,j

and con(e+i,j) returns the set of concepts that the entity

belongs to, I is the set of rows to be considered. In case

of a sample is used, I includes a subset of rows in the

table, otherwise I simply denotes the total number of

rows in the table.

Confidence score of concept For each candidate con-

cept, we compute a confidence score based on two

components: a concept instance score ce depending

on its contributing entities, and a concept context

score cc comparing the name of the concept and the

context of the header.

The concept instance score of a candidate concept is

the sum of the confidence scores of the winning enti-

ties on each row where the winning entities elect the

candidate concept:

ce(cj) =

∑

i∈I

{

cf(e+i,j) if con(e+i,j) ∩ {cj} 6= ∅

0 else

I

(14)

Given a candidate concept, if the winning entity on

every row i ∈ I elects the concept, and the confidence

score of each of them approaches to 1.0, the concept

instance score will approach to the highest of 1.0.

The concept context score is computed in the same

principle as entity context score ec using Equation 10,

and the function used to calculate an overlap score be-

tween cj and each of its context xj ∈ Xj is the fre-

quency weighted dice function in Equation 8. This is

adapted by replacing ei,j with cj and xi,j with xj .

The out-table context for a column header includes all

out-table context shown in Table 1. The in-table con-

text includes all but row content; and column content

concatenates all cells Ti,j , because entity names can

contain indicative words of their semantic types. For

bow(cj) we take the name and URI of the concept and

transform them into a bag-of-words.

The final confidence score of a candidate concept

cf(cj) equally combines ce(cj) and cc(cj):

cf(cj) = ce(cj) + cc(cj) (15)

7.2.2. Update candidate concepts for the column

Cold-start disambiguation derives a set of candidate

concepts from each cell in a column. If a concept cj
is new to the column, we create a new key-value pair

< cj , cf(cj) > and insert it into the set of key-value

pairs for the column. If the concept already exists, its

concept instance score is re-computed (as it depends

on the winning entity from each contributing row) and

the overall confidence score is updated accordingly.

7.2.3. Repetition and convergence

The above processes are repeated in the context of

I-Inf until convergence is detected by comparing the

set of candidate concepts from the current and previ-

ous iterations. The end output of this process is c+j the

winning concept used to annotate the column.

Example 4. Following Example 3 we continue to clas-

sify the ‘Director’ column in the table shown in Fig-

ure 6. Starting from the first cell ‘Dino Risi’, we re-

trieve candidate entities and compute a confidence

score for each. Assuming the winning entity is the

Freebase topic ‘fb:/m/0j_nhj’, we then extract its as-

sociated concepts and compute confidence score for

each concept. Some of the concepts are ‘Film director

(fb:/film/director)10’, ‘Film writer (fb:/film/writer)’,

and ‘Award nominee (fb:/award/award_nominee)’.

Then as we proceed to the second and third cells,

no new concepts are added and the scores of ex-

isting concepts are updated. Suppose that the win-

ning entity for the fourth cell is ‘Mario Monicelli

(fb:/m/041kw5)’ and the associated concepts are ‘Film

writer (fb:/film/writer)’ and ‘TV personality (fb:/tv/tv

_personality)’. Here the score of ‘Film writer’ is fur-

ther updated and ‘TV personality’ is added as candi-

date concept for the column. Assuming that we reach

convergence at this point as the change of scores of

candidate concepts compared to the previous itera-

tion is neglectable, and the highest scoring candi-

date concept is ‘Film writer’. We therefore stop at the

fourth cell and annotate the column as ‘Film writer

(fb:/film/writer)’.

10All examples are superficial and adapted based on real data.

16 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

7.3. Preliminary cell disambiguation

Next, c+j is used as constraint to perform prelimi-

nary cell disambiguation in the column. The process

re-starts from the first cell in the column. For cells that

have already passed a cold-start disambiguation pro-

cess during preliminary column classification, we sim-

ply need to re-select the highest scoring candidate en-

tities satisfying the condition: con(ei,j) ∩ {c
+
j } 6= ∅.

For any new cells, disambiguation follows the same

procedure as cold-start disambiguation (Section 7.2.1)

with one modification: candidate generation uses c+j as

a filter to select only entities that are associated with

c+j as disambiguation candidates. Compared to the ex-

haustive strategy adopted by state-of-the-art methods,

this reduces computation by cutting down the number

of candidate entities for consideration.

Disambiguation of each new cell generates a set of

concepts, of which some can be new while others may

already exists in Cj . By the end of the process, Cj
is updated by: (1) adding newly derived concepts; (2)

for those already exist in Cj at the beginning, revising

their confidence scores. This changes Cj and in some

cases, causes the winning concept for the column to

be inconsistent from that at the beginning of the pre-

liminary cell disambiguation stage. This is handled by

the UPDATE phase to be discussed in the following

section.

Example 5. Following Example 4, we use ‘Film writer

(fb:/film/writer)’ as constraint to disambiguate the

cells in the column. For the four cells already pro-

cessed in Example 4, we simply re-select from their

candidate entities the highest scoring one that is also

an instance of this concept. To disambiguate the new

cell ‘Nanni Loy’, we only consider candidate enti-

ties that are instances of the concept for the col-

umn:‘Film writer’. Assuming that the winning entity

is ‘fb:/m/02qmpfs’. Then its associated concepts ‘Film

writer’, ‘Film director (fb:/film/director)’, ‘Film actor

(fb:/film/actor)’ are used to further update the candi-

date concepts on the column. At the end of the process,

it is likely that the highest scoring concept for the col-

umn has changed to ‘Film director (fb:/film/director)’.

8. NE-Column interpretation - the UPDATE phase

Once the LEARNING phase is applied to all NE-

columns in the table, the UPDATE phase begins to en-

force interdependence between classification and dis-

ambiguation within each column as well as across dif-

ferent columns. This is done by an iterative optimiza-

tion process shown in Algorithm 2. Note that our previ-

ous work [42] only captures interdependence between

classification and disambiguation within each separate

column. Here we improve it by also capturing cross-

column interdependence with a notion of ‘domain con-

sensus’.

Algorithm 2 UPDATE

1: Input: C, E , prev_C ← ∅, prev_E ← ∅
2: while stabilized(C, E , prev_C, prev_E)=false do

3: prev_C ← C, prev_E ← E
4: bow(domain)← domainrep(E)

5: for all Cj ∈ C do

6: for all cj ∈ Cj do

7: cf(cj) = ce(cj) + cc(cj) + dc(cj)
8: end for

9: c+j ← electConcept(Cj)

10: Cj , Ei,j ← disambiguate(Ti,j , c
+
j)

11: update(Cj , C, Ei,j , E)

12: end for

13: end while

8.1. Domain representation

In each iteration, the process starts with creating a

bag-of-words representation of the domain using the

winning entities from all cells (E) in the table at the

current iteration (line 4 in Algorithm 2):

bow(domain)←
⋃

i,j

defbow(e+i,j) (16)

where defbow denotes ‘definitional’ bag-of-words,

and takes a definitional sentence about an entity and

converts it into a bag-of-words representation in the

same way as bow(·). A definitional sentence is com-

monly found in almost any knowledge base. For exam-

ple, WordNet has a one-sentence definition for every

synset; the first sentence in an Wikipedia article usu-

ally defines an entity [16]; this also applies to the de-

scription of a Freebase topic (e.g., a concept or named

entity) or a DBpedia resource. The idea is that the def-

initional sentence provides a focused description of

the entity, likely to contain informative words about

the general domain it is related to. In particular, it of-

ten contains words forming hypernymy relation with

the entity [16,44]. For example, the Freebase defini-

tional sentence about the English city ‘Sheffield’ con-

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 17

tains words11 ‘city’, ‘metropolitan’, ‘borough’, ‘York-

shire’, and ‘England’, which are useful words defining

the concept space of the entity.

8.2. Column annotation revision

The bag-of-words representation of the domain is

then used to revise the concept annotations on all NE-

columns (C). To do so, we compute a domain consen-

sus score dc for each candidate concept from each NE-

column, and add this to their overall confidence score

(line 7 in Algorithm 2). The domain consensus score

is based on the frequency weighted dice overlap be-

tween the bag-of-words representations of the concept

and the domain.

dc(cj) =
√

dice(cj , domain) (17)

Since the sizes of bow(cj) and bow(domain) are

often different orders of magnitude, square root is

used to balance the score. Also domain consensus

is computed with respect to entities from all cells

from any columns, which serves as a way of ensur-

ing inter-column dependence. After revising the confi-

dence scores of candidate concepts, the winning con-

cepts for each column are re-selected (Line 9).

8.3. Cell annotation revision

For any column, if the new winning concept is dif-

ferent from the that generated in the previous itera-

tion, the disambiguation result on that column is re-

vised (Line 10). This follows the procedure of prelim-

inary cell disambiguation (Section 7.3).

These updating processes are repeated until all an-

notations are stabilized. Specifically, in each iteration

function stabilized checks the winning concepts for

all NE-columns and the winning entities for all cells in

the previous iteration against those in the current itera-

tion. The UPDATE process is called to be stabilized if

no difference is detected.

Note that re-computing disambiguation and classifi-

cation may require retrieving data of new entity candi-

dates from the knowledge base and subsequently con-

structing their feature representation for disambigua-

tion due to the possible change of c+j at each itera-

tion. However, this design still largely improves the

exhaustive strategy because: (1) empirically the UP-

11http://www.freebase.com/m/0m75g, last retrieved on 13 April

2014.

DATE phase stabilizes fast and in most cases involves

merely re-selecting those ‘losing’ candidate entities

that were already seen in the LEARNING phase; (2)

when new candidates are indeed added it only happens

in significantly fewer cells than the entire column that

an exhaustive strategy would otherwise have to deal

with.

Example 6. Following Example 5, assuming we have

annotated all NE-columns and their cells (also see d6

in Figure 2). We begin the UPDATE process by tak-

ing the winning entity annotations from columns 1, 3,

and 4 in the Table shown in Figure 6 to create a bag-

of-words representation of the domain. Again using

the ‘Director’ column, we proceed to compute a do-

main consensus score for each candidate concept for

this column (i.e., ‘Film director’, ‘Film writer’ etc) and

update their confidence scores. The winning concept

is re-selected, which we assume is changed to ‘Film

director’. This is different from that at the beginning

(‘Film writer’). Therefore, we take the new concept

and use it to revise cell annotations in the column. We

do this for the other two columns and repeat this pro-

cess until all annotations are no longer changed.

9. Relation enumeration and annotating

literal-columns

9.1. Relation enumeration

Relation enumeration firstly begins by interpreting

relations between the subject column and any other

columns on each row independently. Let Tj be the

subject column in a table and Tj′ denote any other

columns. Given the winning subject entity e+i,j for cell

Ti,j and Ti,j′(j 6= j′) as another cell on the same

row, the candidate set of relations between Ti,j and

Ti,j′ , denoted by Rij,j′ , is derived from the triples

containing e+i,j as subject, denoted by Ψi,j = {<

e+i,j , predicate, object >}. Then let ψi,j ∈ Ψi,j be

one of the triples, and functions p(ψi,j), o(ψi,j) return

the predicate and object from the triple respectively,

the candidate relations Rij,j′ is the set of unique predi-

cates in Ψi,j , i.e., {p(ψi,j)|∀ψi,j ∈ Ψi,j}.
Then a confidence score is computed for each can-

didate relation rij,j′ ∈ Rij,j′ . To do so, the subset of

triples from Ψi,j containing rij,j′ as predicate are se-

lected. Then the object of each triple in this set is

matched against the content in Ti,j′ using the fre-

18 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

quency weighted dice function (Equation 8), and the

highest score is assigned to be the confidence score for

the candidate relation:

cf(rij,j′) =

max
ψi,j∈Ψi,j ,p(ψi,j)=ri

j,j′

dice(Ti,j′ , o(ψi,j))
(18)

where function dice(Ti,j′ , o(ψi,j)) computes an

overlap score between the bag-of-words representa-

tions of the cell and the object of a triple that contains

rij,j′ as predicate. The winning relation for the row is

denoted by ri+j,j′ .

After the winning relation is computed for each row

between Tj and Tj′ , the candidate set of relations for

the two columns R(j, j′) is derived by collecting the

winning relations on all rows:

R(j, j′)←
⋃

i

ri+i,j′ (19)

Then a confidence score is computed for each in-

stance rj,j′ ∈ R(j, j′), and it consists of two parts:

a relation instance score re and a relation context

score. The relation instance score is computed in the

same way as concept instance score:

re(rj,j′) =

∑

i

{

cf(ri+j,j′) if ri+j,j′ ≡ rj,j′

0 else

|{Ti}|
(20)

where i denotes the row index of the table and |{Ti}|
returns the number of rows in the table.

The relation context score is computed in the same

way as entity context score using Equation 10, and the

function used to calculate an overlap score between

rj,j′ and each of its context is the frequency weighted

dice function in Equation 8. This is adapted by re-

placing ei,j with rj,j′ and xi,j with xj,j′ . The bag-

of-words representation bow(rj,j′) is based on l(rj,j′)
which returns the name and URI of the relation. The

context of a relation includes column header (which

sometimes indicates the relation with the subject col-

umn), surrounding paragraphs and semantic markups.

Other types of context are less likely to contain men-

tions of relations.

The final confidence score of a candidate relation

adds up its instance and context score with equal

weights, and the final binary relation that associates

subject column Tj with column T ′
j is the candidate

with the highest confidence score.

Example 7. Assuming the entity annotation for cell

T3,1 in the table of Figure 6 is ‘A Difficult Life

(fb:/m/02qlhz2)’, which has two triples<fb:/m/02qlhz2,

fb:/film/film/directed_by, ‘Dino Risi’> and <fb:/m/

02qlhz2, fb:/film/film/starring, ‘Dino Sordi’>. To pre-

dict the relation between columns T1 and T3 on this

row, the object values of the two triples are matched

against the text value ‘Dino Risi’ in cell T3,3 based on

overlap. Then the first triple will receive a score of 1.0

while the second 0.5. Hence the relation between the

two columns elected by this row (r3+1,3) is the predicate

‘fb:/film/film/directed_by’ and cf(r3+1,3) = 1.0. Next

we repeat this process for the remaining rows to elect a

relation for every other row between the two columns,

and the set of all these relations become R3,3. Sup-

pose that r4+1,3 is also ‘fb:/film/film/directed_by’ and

cf(r4+1,3) = 0.9. Then to compute the overall confi-

dence score of ‘fb:/film/film/directed_by’ across the

two columns, the relation instance score adds up the

two values and become 1.9. We then calculate the re-

lation context score and add it to the instance score to

derive the final score.

9.2. Labeling literal-columns

Literal-columns are expected to contain attribute

data of entities in the subject column. They do not de-

note entities and therefore, cannot be interpreted us-

ing the column interpretation method described above.

In previous work [21,34,27,25,26] they are simply ig-

nored. This work also assigns a column annotation that

best describes the attribute data in literal-columns.

Given a literal-column T ′
j that forms a binary rela-

tion rj,j′ with the subject column Tj , the annotation

for this column is simply l(rj,j′), since rj,j′ typically

describes a property of the subject column concept in

such cases.

10. Experiment settings

Semantic Table Interpretation can be evaluated by

both in-vitro (assessing the annotations directly) and

in-vivo (assessing the accuracy of applications built on

top of the annotations) experiments. In this work, we

use in-vitro experiments because (1) they are the most

commonly used evaluation approach and (2) standard

datasets are available.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 19

10.1. Knowledge base and datasets

We use Freebase as the knowledge base for Seman-

tic Table Interpretation, as it is currently the largest

knowledge base and linked data set in the world. It

contains over 3.1 billion facts about over 58 million

topics (e.g., entities, concepts), significantly exceed-

ing other popular knowledge bases such as DBpedia

and YAGO. Further it has direct mappings to resources

from other datasets, making them easier to be used as

gold standard. For evaluation, we compiled and an-

notated four datasets using Freebase: Limaye200, Li-

mayeAll, IMDB and MusicBrainz. To the best of

our knowledge, this is the largest dataset for this task

and we make them available to encourage comparative

studies12.

10.1.1. LimayeAll and Limaye200

These datasets are the rebuilt versions of the origi-

nal four datasets used by Limaye et al. [21]. The orig-

inal datasets consist of over 6,000 tables, 94% col-

lected from Wikipedia and the rest from the general

Web. Entities in the tables were annotated with links

to Wikipedia articles; columns and binary relations be-

tween columns were annotated by concepts and rela-

tions in the YAGO knowledge base (2008 version).

These datasets are re-created for a number of

reasons. First, Wikipedia has undergone significant

changes since the publication of the datasets such that

a large proportion of the source webpages - as well

as the contained tables - have been changed. Second,

we notice that the original ground truth for named en-

tity disambiguation were very sparse and possibly bi-

ased. As shown in Appendix C, it is less well-balanced

than the re-created dataset and a simple exact name

match baseline has achieved significantly higher accu-

racy than the original reported results in Limaye et al.

[21]. Third, this work uses a different knowledge base

from YAGO, such that the original ground truth cannot

be directly used.

Entity ground truth - LimayeAll We run a process

to automatically update the webpages in the original

dataset and re-annotate entity cells by mapping the

12Please contact the author on how to obtain, as the dataset is very

large. Although Freebase has been closed, this work was however,

first submitted in May 2013, at which time the close-down of Free-

base was not foreseeable. To enable comparative studies, we also re-

lease cached Freebase data for this work. Also the current API on

GitHub implements an interface with DBpedia, and a plan is made

to migrate relevant software to the Google Knowledge Graph once

an appropriate API is available.

original Wikipedia ground truth to Freebase. Details of

this process is described in Appendix B.

Column annotation and relation ground truth - Li-

maye200 To create the ground truth for evaluating

column classification and relation enumeration, a ran-

dom set of 200 tables are drawn from the LimayeAll

dataset. These tables are firstly manually examined

to identify subject columns, then annotated following

a similar process as Venetis et al. [35]. Specifically,

TableMiner+ and the baselines (Section 10.3) are run

on these tables and the candidate concepts for all table

columns and relations between the subject column and

other columns in each table are collected and presented

to annotators. The annotators mark each label as ‘best’,

‘okay’, or ‘incorrect’. The basic principle is to prefer

the most specific concept/relation among all suitable

candidates. For example, given a cell ‘Penrith Pan-

thers’, the concept ‘Rugby Club’ is the ‘best’ candidate

to label its parent column while ‘Sports Team’ and ‘Or-

ganization’ are ‘okay’. The annotators may also insert

new labels if none of the candidates are suitable.

10.1.2. IMDB

The IMDB dataset contains over 7,000 tables ex-

tracted from a random set of IMDB movie webpages.

Each IMDB movie webpage13 contains a table listing a

‘cast’ column of actors/actresses and a column of cor-

responding characters played. Cells in the actor/actress

column are linked with an IMDB item id, which, when

searched in Freebase, returns a unique (if any) mapped

Freebase URI. Thus entities in these columns are an-

notated automatically in such a way. The ‘character’

column is not used since they are not mapped in Free-

base. The cast column is also manually labeled with

‘best’ and ‘okay’ concepts in the same way as for Li-

maye200. No subject column or relations are annotated

because only one column is considered in this dataset.

10.1.3. MusicBrainz

The MusicBrainz dataset contains some 1,400 tables

extracted from a random set of MusicBrainz record

label webpages. Each MusicBrainz record label web-

page14 contains a table listing the music released by

a production company. Each webpage uses pagination

to separate very large tables, and only the first page

is downloaded. The table typically has 8 columns, of

which one lists music release titles (subject column)

and one lists music artists. Each release title or artist

13E.g., http://www.imdb.com/title/tt0071562/
14E.g., http://musicbrainz.org/label/9e6b4d7f49584db78504-

d89e315836af

20 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

has a MusicBrainz id, which can be mapped to a Free-

base URI in the same way as for the IMDB dataset.

Thus entities in these two columns are annotated in

such a way. Then the table columns and binary rela-

tions between the subject column and others are also

annotated manually following the same procedure as

for IMDB and Limaye200.

10.1.4. Dataset statistics

Table 3 shows general statistics of the datasets. Fig-

ure 7 shows the distribution of rows and columns

containing entity annotations in the ground truth, and

length of text in cells by number of tokens. Tables in

MusicBrainz contain no more than 50 rows because

of the pagination on the webpage and only the first

page is downloaded. The IMDB entity ground truth has

only 1 column in every table; while for MusicBrainz,

this is either 1 or 2 columns. Very long cell text is

found to be rare in LimayeAll, but slightly more fre-

quent in MusicBrainz due to long names of classic

music titles. Cells in IMDB tables are typically per-

son names and usually contains 1 or 2 tokens. Ar-

guably, LimayeAll and Limaye200 are the most di-

verse datasets, since they cover a significantly larger

number of domains and more diverse table structures

and schemata, whereas IMDB and MusicBrainz each

contains only one table structure and schema.

Table 4 compares against datasets used by other

studies. Arguably, TableMiner+ is evaluated using the

most comprehensive collection of datasets known to

date.

10.2. Evaluation metrics

Effectiveness - Subject column detection is evaluated

by Precision. Then the three annotation tasks of Se-

mantic Table Interpretation are evaluated using the

standard Precision, Recall and F1 measures. Since

TableMiner+ ranks candidates by scores, only the high-

est ranked prediction by TableMiner+ is considered.

Each ‘best’ label is awarded a score of 1 while each

‘okay’ label is awarded 0.5. Further, if there are mul-

tiple highest-ranked candidates, each candidate con-

sidered correct only receives a fraction of its score as
score

#topranked . For example, if a column containing film

titles has two concept candidates with the same highest

score: ‘Film’ (best) and ‘Book’ (incorrect), this pre-

diction receives a score of 0.5 instead of 1. This is

to penalize the situation where the Semantic Table In-

terpretation system fails to discriminate false positives

from true positives. From a knowledge base population

point of view, false positives cause incorrect triples to

be populated into knowledge bases and the LOD cloud.

For column classification and relation enumeration,

evaluation reports results under both ‘strict’ and ‘tol-

erant’ mode. To evaluate column classification, the

strict mode only considered ‘best’ annotations; while

the tolerant mode considers both ‘best’ and ‘okay’ an-

notations. Evaluating relation enumeration under the

strict mode only considers relations between subject

column and other columns in a table, and only ‘best’

annotations are included. Under the tolerant mode,

in addition to also including ‘okay’ annotations, if

TableMiner+ predicts correct relations between non-

subject columns or the reversed relation between the

subject column and other columns, then each predic-

tion is awarded a score of 0.5.

Moreover, since most state-of-the-art methods have

focused on only NE-columns, we report results ob-

tained on NE-columns as well as both NE- and literal-

columns for column classification and relation enu-

meration.

The efficiency of TableMiner+ is assessed by empirical

wall-clock time and savings in terms of candidate en-

tities needed to be considered for disambiguation. As

discussed before, retrieving candidate entities and their

data, constructing feature space and computing sim-

ilarities consume the large majority of time. A more

reliable way of improving efficiency is thus reducing

the size of the candidate space. To reduce network la-

tency we use a caching mechanism in each compara-

tive model and TableMiner+ (see Section 10.3). Specif-

ically, when a request to the knowledge base is sent for

the first time, we cache the query results locally. Then

all subsequent identical requests will only be served by

the local cache.

10.3. Comparative models and configurations

TableMiner+ is evaluated against four baseline meth-

ods and two re-implemented state-of-the-art methods.

The implementation of all these methods are released

on GitHub15.

10.3.1. Baselines

Each baseline starts with the same subject column

detection component, but uses different methods for

disambiguating entity cells, classifying columns, and

annotating relations between subject column and other

columns.

15https://github.com/ziqizhang/sti

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 21

Table 3

Statistics of the datasets for evaluation. ‘All’ under ‘Labeled columns’ shows the number of both labeled NE- and literal-columns, while ‘NE’

refers to only NE-columns. Likewise ‘All’ under ‘Labeled relations’ shows the number of labeled relations between subject columns and either

NE- or literal columns, while ‘NE’ refers to only relations with NE-columns.

Dataset Tables Subject column Entities Labeled columns Labeled relations

All NE All NE

Limaye200 200 X - 615 415 361 204

LimayeAll 6,310 227,046 - - - -

IMDB 7,416 92,321 7,416 7,416 - -

MusicBrainz 1,406 X 93,266 9,842 4,218 7,030 5,624

Fig. 7. Dataset statistics (min., max. avg. (black diamonds), kth quantile): #r - number of rows; #nec - number of columns containing annotated

named entities in ground truth; cl - content cell text length in terms of number of tokens delimited by non-alphanumeric characters.

Table 4

Comparison against datasets used by state-of-the-art. ‘-’ indicates unknown or not clear.

Method Dataset Tables Columns Entities Relations

TableMiner+

Limaye200 200 615 - 361

LimayeAll 6,310 - 227,046 -

IMDB 7,416 7,416 92,321 -

MusicBrainz 1,406 9,842 93,266 -

Hignette et al. [14,15] 1 dataset - 81 - -

Limaye et al. [21] 4 datasets 6,310 747 142,737 90

Syed et al. [34] 1 dataset 5 21 171 -

Venetis et al. [35] 1 dataset 168 - - -

Buche et al. [3] 1 dataset 90 81 - 316

Mulwad et al. [26] 1 dataset 203-490 - - -

Zhang [42] 2 datasets 7,446 7,608 94,406 -

Zhang [41] 2 datasets 6,310 615 227,046 -

Baseline ‘name match’ Bnm firstly disambiguates ev-

ery cell in an NE-column by retrieving candidate enti-

ties from Freebase using the text content in the cell as

query, then selecting a single entity: the highest ranked

candidate whose name matches exactly the cell text.

If no candidates are found to match, the top-ranked

candidate is chosen. Freebase adopts a ranking algo-

rithm that reflects both the relevance and popularity of

a topic in the knowledge base.

Next, to classify the NE-column with a concept, en-

tities from each cell cast a vote for the concepts they

22 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

are associated to, and the one receiving the most votes

is chosen as the annotation for the column.

Relation enumeration follows a similar procedure.

Candidate relations on each row is derived and their

scores computed in the same way as TableMiner+

(Section 9.1, Equation 18). Then each candidate with a

score greater than 0 is selected from the row and con-

sidered as a candidate relation for the two columns and

casts a vote toward the candidate. The best relations

for the two columns are those receiving the most votes.

Literal-columns are annotated the same way as

TableMiner+ (Section 9.2).

Baseline ‘similarity-based’ firstly disambiguates ev-

ery cell in an NE-column, then derives column anno-

tations based on the winning entity from every cell.

For cell disambiguation, we compute a score for

each candidate entity as the sum of a simple context

score and the string similarity between the name of the

candidate and the cell text. The context score is com-

puted using Equation 9, where x is the row content

only.

For column classification, candidate concepts for an

NE-column are firstly gathered based on the winning

entities from each cell. The final score of a candidate

concept consists of two parts: (1) the number of win-

ning entities associated with the concept normalized

by the number of rows in the table, and (2) a string

similarity score between the concept’s name and the

header text (if exists).

For relation enumeration and the annotation of

literal-columns, we use the same procedures from the

name match baseline Bnm.

To compute string similarity, we test three metrics

and therefore create three similarity baselines: Cosine

(Bcos), Dice (Bdice) coefficient, and Levenshtein (Blev).

The key differences between the four baselines and

TableMiner+ are: (1) TableMiner+ uses out-table con-

text while the baselines do not; (2) TableMiner+ adopts

a bootstrapping, incremental approach with an itera-

tive, recursive optimization process to enforce inter-

dependence between different annotation tasks. The

baselines however, use an exhaustive strategy and are

based on very simple interdependence (i.e., both rela-

tion enumeration and column classification depend on

cell disambiguation).

10.3.2. Re-implementation of state-of-the-art

We re-implemented two state-of-the-art methods

and adapted them to Freebase as there are no existing

software that can be directly used, and also different

knowledge bases have been used in the original work.

We choose to implement the methods by Limaye et al.

[21] and Mulwad et al. [26], as they are able to address

all three annotation tasks in Semantic Table Interpreta-

tion. Re-implementation of these methods is not a triv-

ial task. First, the use of different knowledge bases im-

plies that certain features used in the original work are

unavailable, must be adapted or replaced. Second, each

method has used in-house tools for pre-processing or

training. Therefore, our re-implementation has focused

on the core inference algorithm in the two methods.

We advise readers that the re-implementation is not

guaranteed to be an identical replication of the original

systems. We describe details of re-implementation in

Appendix D, and here we summarize key points. Note

that both methods can only deal with NE-columns.

Limaye et al. (Limaye2010) model a table as a factor

graph and apply joint inference to solve the three anno-

tation tasks simultaneously. A factor encodes the com-

patibility between a variable (e.g., a cell) and its can-

didates (e.g., candidate entities), or between variables

believed to be interdependent. In the original work, the

compatibility is calculated based on a number of fea-

tures, the weight of which is learned using a super-

vised model. Our implementation16 simply uses equal

weights. Further, we discard all relation variables and

only build a smaller factor graph of concept and en-

tity variables. This is because empirically, we have no-

ticed that adding relation variables caused drop in the

accuracy of column classification (see Appendix D).

Mulwad et al. model a table using a similar factor

graph, then apply a light-weight inference algorithm

based on semantic message passing. Their method de-

pends on a pre-process that disambiguates entity cells

(i.e., the so-called ‘entity ranker’). This process uses

a supervised model built on features that are specific

to the knowledge bases used in the original work. We

create two models each with a different substitute of

the ‘entity ranker’. Mulwad2013 uses a simple ranker

that linearly combines features equivalent to those

used in the original work (but derived from Freebase)

to score and rank candidate entities. Mulwad2013tm+

uses TableMiner+’s formula of entity confidence score

(cf(ei,j) in Section 7.2.1) to score and rank candidate

entities.

16We used Mallet GRMM: http://mallet.cs.umass.edu/grmm/

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 23

10.3.3. TableMiner+ configuration

The convergence threshold in the I-Inf algorithm

is set to 0.0117 in both subject column detection and

the preliminary column classification phases. The Web

search API used for computing the Web search score in

subject column detection is the Bing Search API18 and

default parameters are used. TableMiner+ uses various

context for Semantic Table Interpretation. The weights

of context in different annotation tasks are defined in

Table 5.

Context is assigned a weight of 1.0 if it is consid-

ered ‘very important’ or 0.5 otherwise (subjectively

decided). For example, in subject column detection, if

header words are found in the webpage title or table

captions, they are stronger indicators (hence ‘very im-

portant’) of subject column than if found in paragraphs

that are distant from tables. For column classification

and relation enumeration, different types of context are

equally weighted because the bag-of-words represen-

tations for candidate concepts and relations are based

on their names - semantically very important features

but can be very sparse therefore any matches are con-

sidered a strong signal.

In the four datasets, semantic markups are only

available in IMDB and MusicBrainz as the Microdata

format. Any2319 is used to extract these annotations

as RDF triples and the objects of triples are concate-

nated to create features. Annotations within the HTML

< table > tags are excluded.

10.3.4. Parallelization and hardware

All models except Limaye2010 do not require par-

allelization as they are reasonably fast. Each model is

able to run on a server with 4GB memory. Limaye2010

requires similarity computation between every pair of

candidate entity and concept for each column, the

amount of which grows quadratically with respect to

the size of a table. Thus the running of Limaye2010

is parallelized on 50 threads, each allocated with 4GB

memory.

17This is a rather arbitrary choice that was found to perform rea-

sonably well during development. We did not experiment with dif-

ferent choices extensively.
18http://datamarket.azure.com/dataset/bing/search
19https://any23.apache.org/

11. Results and discussion

11.1. Subject column detection

Table 6 shows the precision of predicting subject

columns in the Limaye200 and MusicBrainz datasets.

The unsupervised subject column detection method

achieves a precision of near 96% and 93% on the Li-

maye200 and MusicBrainz datasets respectively, com-

pared to the reportedly 94-96% precision by a super-

vised model in Venetis et al. [35], and therein 83% by

a baseline that chooses the leftmost column that does

not contain numeric data.

Figure 8 shows the convergence statistics in comput-

ing the Web search score (ws) in the I-Inf algorithm.

The number of tables in which the ws score is calcu-

lated20 is: 145 (73%) in Limaye200, 4,711 (75%) in Li-

mayeAll, and 1,402 (near 100%) in MusicBrainz. Ta-

ble 7 shows the statistics of the slowest convergence

on each dataset.

Fig. 8. Convergence statistics (max, min, average (black diamond),

k
th quantiles) for I-Inf in the calculation of the Web search score for

subject column detection. itr - number of iterations (rows processed)

until convergence; % - fraction of table rows processed.

Using Limaye200 as an example, Figure 8 suggests

that to compute the ws score, on average, only 4 rows

(or less than 35%) are processed, and in 75% of ta-

bles no more than 5 rows (or less than 55%) are pro-

cessed. Table 7 suggests that among all 145 tables that

need calculation of ws scores, only 10 tables have all

of their rows processed. They have an average of 7.2

rows and none has greater than 20 rows. Then 26.2%

of these 145 tables have at least 50% of their rows pro-

cessed. However, on average they have only 6 rows

20In cases that only one NE-column is available in a table, this

column is simply selected as the subject column.

24 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table 5

Different context weight used in different components.

Component In-table context Out-table context

column
header

row
content

column
content

webpage

title

table caption

/title paragraphs
semantic
markups

Sub.Col. detection §6.2 - - - 1.0 1.0 0.5 -

Entity context score §7.2.1 1.0 1.0 0.5 1.0 1.0 0.5 1.0

Concept context score §7.2.1 1.0 - 1.0 1.0 1.0 1.0 1.0

Relation context score §9.1 1.0 - - - - 1.0 1.0

Table 6

Subject column detection results in Precision

Dataset Tables Precision

Limaye200 200 95.5

MusicBrainz 1406 92.7

Table 7

Statistics of the slowest convergence in the calculation of the Web

search score for subject column detection.

Limaye200 LimayeAll MusicBrainz

100% of rows processed in

% of tables 6.9% 5.9% 6.5%

Avg. rows 7.2 6.5 4.6

Rows >20 0 4 0

>50% of rows processed in

% of tables 26.2% 19.8% 12.6%

Avg. rows 6.0 6.0 5.2

Rows >20 0 7 0

and none of them have greater than 20 rows. These

figures suggest potentially significant improvement in

efficiency over an exhaustive approach that computes

the ws score using all rows in tables. The figures on

the LimayeAll and MusicBrainz datasets suggest even

greater savings. Consider that typical Web search APIs

are quota-limited and pay-per-use, and it is extremely

expensive (if not impossible) to run a local search en-

gine on a reasonable sample of the entire Web. We be-

lieve that the I-Inf algorithm delivers substantial bene-

fits in the task of subject column detection.

Manual inspection shows that in most cases the er-

rors fall under several categories. The first is due to du-

plicate values in subject columns. An extreme exam-

ple is the disambiguation table discussed before (i.e.,

‘List of peaks named Bear Mountain’), in which the

subject column contains only a single unique value.

The second is caused by long-named entities in sub-

ject columns. For example, the subject column in the

MusicBrainz tables lists titles of music releases, some

of which has a name consisting of more than 10 to-

kens. This severely penalizes their context match cm

and ws scores as it is unlikely to find exact match of

their names in table context and search result docu-

ments. The third category includes arguable (few) ta-

bles that in strict terms, do not necessarily have a sub-

ject column. This includes tables listing events, such as

lap records of racing car drivers in a particular tourna-

ment. In these cases, annotators typically selected the

leftmost NE-column.

11.2. Effectiveness

11.2.1. Against baselines

Tables 8, 9 and 10 compare TableMiner+ against the

four baselines in the cell disambiguation, column clas-

sification and relation enumeration tasks respectively.

The highest figures are marked in bold. Overall, it is

clear that TableMiner+ always obtains the best perfor-

mance in all tasks and on all datasets. It also shows

stronger improvement in the classification and relation

enumeration tasks.

For disambiguation, even the simplistic baseline

Bnm obtains surprisingly competitive results on the Li-

mayeAll and IMDB datasets. In fact, on the original

datasets by Limaye et al. [21] Bnm obtains a surpris-

ingly high F1 of 92.6, significantly higher than the

weighted average21 of 84.1 based on figures reported

in Limaye et al. [21]. As discussed earlier, our analy-

sis - shown in Appendix C - suggests that the original

datasets are sparse and less balanced.

Its highly competitive performance on the IMDB

dataset could be explained by the domain and the

method for ranking search results by Freebase. Movie

is a highly popular domain representing a fair large

proportion of Freebase. Since Freebase Search API

promotes popular topics, when a person name is

21Macro-average over all datasets taking into account the size of

each dataset.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 25

Table 8

Disambiguation results (F1) on four datasets.

Limaye200 LimayeAll IMDB MusicBrainz

Bnm 78.3 82.2 92.8 57.0

Blev 78 82.1 93.5 84.83

Bcos 79.2 82.7 93.4 84.76

Bdice 79.9 82.8 93.5 84.84

TableMiner+ 82.3 83.7 97.6 84.87

Table 9

Classification results (F1) on three datasets.

Bnm Blev Bcos Bdice TableMiner+

L
im

ay
e2

0
0

NE-columns only
strict 23.9 45.4 43.5 48.9 65.8

tolerant 48.8 63.8 62.2 66.1 75.0

All columns
strict 31.4 48.7 46.9 51.3 64.0

tolerant 51.1 63.3 61.8 65.0 71.5

IM
D

B

NE-/All columns
strict 22.7 32.3 31.9 32.0 97.0

tolerant 60.0 64.6 64.4 64.5 97.2

M
u

si
cB

ra
in

z

NE-columns only
strict 59.1 82.6 83.4 83.9 85.2

tolerant 61.7 82.6 83.6 83.9 85.9

All columns
strict 54.6 72.2 72.6 72.9 74.3

tolerant 55.9 72.2 72.7 72.9 74.7

Table 10

Relation enumeration results (F1) on two datasets.

Bnm Blev Bcos Bdice TableMiner+

L
im

ay
e2

0
0

NE-columns only
strict 61.3 61.7 61.8 61.8 72.5

tolerant 65.8 66.3 66.5 66.4 76.0

All columns
strict 59.7 61.0 60.6 61.1 66.2

tolerant 63.0 64.4 64.1 64.4 68.7

M
u

si
cB

ra
in

z

NE-columns only
strict 63.8 67.2 67.1 67.1 67.9

tolerant 65.0 68.3 68.2 68.2 69.1

All columns
strict 78.7 82.0 81.9 81.9 82.6

tolerant 79.2 82.5 82.4 82.4 83.1

searched it is more likely to obtain movie-related top-

ics as top results than any other domains. Hence by

selecting the top result Bnm is very likely to succeed.

While although music is also a highly popular do-

main, Bnm could not replicate similar performance.

Manual inspection shows that a fair proportion of mu-

sic titles and artists uses very ambiguous names (e.g.,

‘Trouble’, a musical release, ‘Pine’, an artist). In con-

trast, other baselines perform significantly better by

considering row content in tables.

Compared to the baselines, TableMiner+ consis-

tently obtains the best performance. On the most di-

verse dataset LimayeAll, it improves F1 by between

0.9 and 1.5 points. On the MusicBrainz dataset, it

makes little difference from Blev, Bcos, and Bdice. By

examining the data it is found that the out-table con-

text on MusicBrainz webpages are very sparse. In most

cases, the webpage contains only the table. Microdata

annotations are also predominantly found inside table

structures, which are not used by TableMiner+. On the

contrary, the IMDB dataset is completely the opposite:

the webpages contain much richer out-table context

(including pre-defined Microdata annotations), but lit-

tle in-table context as the tables have only two columns

26 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

and neither has column headers. TableMiner+ achieves

significant improvement (between 3.9 and 4.6) over

baselines on IMDB. This strongly suggests that out-

table context serves as useful clues for disambiguating

entities in table cells, particularly when in-table con-

text is absent. Further, the Microdata-annotations ex-

tracted from these webpages could have been a strong

contributor considering that the only difference in out-

table context used on LimayeAll and IMDB is that the

latter also uses them as features.

For classification, TableMiner+ in most cases out-

performs baselines by a very large margin. Experi-

ments on the most diverse dataset Limaye200 see an

improvement of between 16.9 and 41.9 under strict

mode and 8.9-26.2 under tolerant mode when only

NE-columns are considered. When all columns are in-

cluded, the figures are 12.7-32.6 strict and 6.5-20.4 tol-

erant. MusicBrainz sees the smallest improvement of

the minimum of 1.3 strict and 2.0 (both v.s. Bdice) when

only NE-columns are considered, or 1.4 strict and 1.8

tolerant when all columns are included. This is due to

the same reason behind TableMiner+’s moderate per-

formance in the disambiguation task on this dataset:

the out-table context is very sparse, thus TableMiner+

in most cases only uses in-table context. Again the

most significant improvement is obtained on the IMDB

dataset. With the lack of in-table context, particu-

larly column headers that are considered a crucial fea-

ture in annotating table columns, all baselines perform

poorly compared against TableMiner+. TableMiner+

more than tripled their performance under the strict

mode and significantly outperforms under the tolerant

mode, achieving near-perfect accuracy in both cases.

Also note that the performance by Bnm is generally

inferior on any dataset. This is due to its inability to

promote a single top ranked candidate concept in most

cases, or in other words, multiple winning candidates

are penalized by the scoring method. Other baselines

improve this by also considering the string similarity

between candidate concept’s label and table column

headers.

For relation enumeration, on the multi-domain Li-

maye200 dataset, an improvement of between 10.7-

11.2 strict and 9.5-10.2 tolerant is obtained when only

relations between NE-columns are considered. Re-

gardless of column types, the figures are 5.1-6.5 strict

and 4.3-5.7 tolerant. Improvement on MusicBrainz is

smaller: the minimum of 2.8 strict and 0.8 tolerant

with NE-columns only, and the minimum of 0.6 strict

and 0.7 tolerant if all columns are included. Again this

could be attributed to the lack of out-table context in

this dataset.

11.2.2. Against state-of-the-art

Table 11 shows that TableMiner+ outperforms the

re-implemented state-of-the-art models by a large mar-

gin in most cases. Surprisingly, models Limaye2010

and Mulwad2013 have underperformed many base-

lines in most occasions, particularly in the disambigua-

tion task. This may be attributed to two reasons. First,

as discussed before, the original work has used knowl-

edge base specific features that are unavailable in Free-

base, or supervised processes to optimize features.

This has made the adaptation work difficult and al-

though we have made careful attempt to implement al-

ternatives, we cannot guarantee an identical replica-

tion of the original methods. Second, we observe that

in the cell disambiguation task, both Limaye2010 and

Mulwad2013 have only used features that are based on

string similarity metrics. Our similarity baselines (Blev,

Bcos, Bdice) also use string similarity features but add an

important type of feature that proves to be very effec-

tive: a context score that compares the bag-of-words

representation of candidate entities of a cell against the

row context of the cell.

By using the disambiguation component of Table-

Miner+, Mulwad2013tm+ made significant improve-

ment over Mulwad2013 on the cell disambiguation and

column classification tasks. It also outperforms base-

lines in several occasions, but still obtained lower ac-

curacy than TableMiner+.

The poor performance of all three models on the

column classification task under strict mode is mainly

due to the fact that the algorithms empirically favored

general concepts (‘Person’) over more specific ones

(‘Movie Directors’). Again this could be caused by the

lack of a clean, strict concept hierarchy that could be

more reliable reference of concept specificity than the

alternative features we have to use in Freebase. How-

ever, concept hierarchies are not necessarily available

in all knowledge bases. Nevertheless, TableMiner+ is

able to predict a single best concept candidate in most

cases without such knowledge. Additionally, the ex-

tremely poor accuracy on the IMDB dataset under the

strict mode is largely because all tables in the dataset

share the same schema.

We must re-iterate that despite our best effort, the

re-implementation is not identical to the original works

due to many reasons stated above. Hence following the

practice adopted by Mulwad et al. [26], we also com-

pare against state-of-the-art using reported figures in

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 27

Table 11

Comparison (F1) against the two re-implemented state-of-the-art (NE-columns only). Note that the re-implementation is not guaranteed to be

identical to the original works due to reasons such as the use of specific tools, change of knowledge bases and datasets.

Limaye2010 Mulwad2013 Mulwad2013tm+ TableMiner+

D
is

am
b

ig
. Limaye200 - 64.3 68.3 80.2 82.3

LimayeAll - 66.0 70.1 81.9 83.7

IMDB - 80.6 76.0 96.0 97.6

MusicBrainz - 66.4 73.4 83.0 84.87

C
la

ss
ifi

ca
ti

o
n Limaye200

strict 28.4 30.5 37.4 65.8

tolerant 51.9 52.3 58.9 75.0

IMDB
strict 1.7 15.1 59.8 97.0

tolerant 49.3 55.2 78.2 97.2

MusicBrainz
strict 72.4 65.6 71.0 85.2

tolerant 72.4 74.2 79.3 85.9

R
el

at
io

n

Limaye200
strict - 55.9 55.1 72.5

tolerant - 60.5 58.5 76.0

MusicBrainz
strict - 60.5 49.5 67.9

tolerant - 67.6 62.7 69.1

Table 12

TableMiner+ on Limaye200 (classification and relation enumeration)

and LimayeAll (disambiguation) and state-of-the-art reported figures.

All results are based on NE-columns only. [26] and [35] report results

under tolerant mode only, weigted average are used where necessary.

Disamb. Class. Relation

TableMiner strict
83.7

65.8 72.5

TableMiner tolerant 75.0 76.0

Limaye et al. [21] 84.1 44.5 58.3

Mulwad et al. [26] 75.9 54.9 83.5

Venetis et al. [35] - 68.6 54.8

Table 12. As it is shown, TableMiner+ has obtained

very competitive results.

11.2.3. Remark

Overall, we believe these results are very positive.

The rich context model adopted by TableMiner+ -

especially the usage of out-table context - enables

TableMiner+ to achieve the best performance in all

tasks, and significantly outperform both baseline and

state-of-the-art methods that ignore out-table contex-

tual features in most cases. In particular, column clas-

sification appears to benefit most, suggesting that out-

table context provides very useful clues for annotating

table columns. The superior performance observed on

the IMDB dataset further confirms this, and also shows

that existing semantic markups within webpages can

be very useful features in this task. Intuitively, when

describing table content we tend to focus on the gen-

eral information rather than specific data in individual

table components, which possibly explains the partic-

ular contribution by out-table context to the column

classification task. Moreover, results on the IMDB

dataset also suggest that TableMiner+ can be easily

adapted to solve tasks in list structures, which are es-

sentially single column tables without headers.

11.3. Efficiency

Firstly, the efficiency of TableMiner+ is compared

against the baselines Blev, Bcos and Bdice that represent

the exhaustive strategy. The three baselines are almost

identical in terms of efficiency since they only differ in

the string similarity metric used. Therefore, only Blev

is compared as an example.

Table 13 compares the wall-clock hours of Table-

Miner+ against Blev on the four datasets, and shows

the proportion of time spent by TableMiner+ on data

retrieval - including searching for candidate entities

and retrieving their data from Freebase or cache.

TableMiner+ is shown to be faster than Blev, despite its

complicated feature modeling and algorithmic compu-

tation.

TableMiner+ achieves efficiency improvement by

using sample-driven column classification and reduc-

ing the number of candidates for cell disambigua-

tion, therefore cutting down both the number of data

retrieval and feature construction operations. Specifi-

cally, it benefits from two design features. First, the

one-sense-per-discourse hypothesis ensures that val-

28 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table 13

Wall-clock hours observed for TableMiner+ as savings against the

baseline Blev .

Savings

(hours)

Savings

(% of Blev)

% of time

on data

retrieval

Limaye200 3.7 21.7% 99%

LimayeAll 45.7 15.2% 97%

IMDB 3.9 4.1% 96%

MusicBrainz 34.3 28.6% 97%

Table 14

Candidate entity reduction in disambiguation operations by

TableMiner+ compared against exhaustive baseline Blev and a

would-be exhaustive TableMiner (exh-TableMiner).

Blev exh-TableMiner

Overall Overall Constrained Dis-

ambiguation phase

Limaye200 48.4% 30.4% 39.2%

LimayeAll 52.2% 32.7% 41.4%

IMDB 10.6% 10.6% 59.4%

MusicBrainz 66.4% 44.3% 50.4%

ues repeating on multiple cells in non-NE columns are

disambiguated collectively costing only one operation.

This avoids both repeated data retrieval and feature

construction operations for the same set of entity can-

didates. Whereas classic methods disambiguate these

cells individually, costing extra computation. Second,

the bootstrapping approach in TableMiner+ reduces the

total number of candidate entities by firstly creating

preliminary column annotations using a sample instead

of the entire column content, then using this outcome

to constrain candidate space in entity disambiguation.

Table 14 compares the total number of candidate en-

tities processed during disambiguation operations in

TableMiner+ against (1) the exhaustive baseline Blev,

and (2) a ‘would-be exhaustive TableMiner+’ (exh-

TableMiner+) which exploits one-sense-per-discourse

but is forced to disambiguate every unique cell in

the column before running column classification (i.e.,

without using I-Inf to create preliminary column an-

notations to constrain disambiguation). TableMiner+’s

improvement is shown as reduction in % against the

two reference methods.

Compared against the exhaustive baseline Blev,

TableMiner+ reduces the total number of candidate en-

tities to be disambiguated by 10-67%. Note that the

smallest improvement on the IMDB dataset is due to

(1) the dataset being dominated by very small tables

Table 15

Number of entity candidates need to be retrieved from Freebase at

the UPDATE phase.

Number hof total

Limaye200 177 3.9h

LimayeAll 7,762 5.1h

IMDB 418 0.8h

MusicBrainz 867 1.6h

(see Figure 7 on average less than 15 rows), and as a

result, I-Inf in the LEARNING phase does not converge

or converges relatively slowly (to be discussed in Ap-

pendix E); and (2) one-sense-per-discourse being void

since only one column (hence the subject column) is

available. Empirically, this translates to the very small

improvement in wall-clock time shown in Table 13.

The reduction narrows when compared against exh-

TableMiner+, however it still represents a substantial

improvement. If we only consider the new cells to be

disambiguated after the preliminary column classifica-

tion phase, in which case the disambiguation candidate

space is constrained by the preliminary column anno-

tations (i.e., ‘constrained disambiguation phase’ in Ta-

ble 14), TableMiner+ improves over exh-TableMiner+

by a significant 39-60%.

Furthermore, as mentioned before, one potential is-

sue that may damage TableMiner+’s efficiency is that

during the UPDATE phase, new entity candidates can

be retrieved and processed, due to the change of win-

ning concepts on a column in each update iteration.

In the worst case, the total number of candidates to

be retrieved from Freebase equals that in an exhaus-

tive method. However, empirically it is found that

this rarely happens. The number of entity candidates

to be retrieved from Freebase in the UPDATE phase

are shown in Table 15, compared to the total number

of new entity candidates retrieved from Freebase by

TableMiner+ in all phases. Further, Table 16 shows the

number of iterations until stabilization is reached in the

UPDATE phase. It suggests that the UPDATE phase

stabilizes very fast. Compared to the semantic mes-

sage passing algorithm in Mulwad et al. [26], at high-

level, the iterative UPDATE phase is similar to running

semantic message passing on a graph containing two

types of variable nodes - column headers and content

cells - and one type of factor nodes that model com-

patibility between the variable nodes. This is a much

simpler graph than that used by Mulwad et al., which

can fail to converge and empirically a threshold must

be used to exit the loop.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 29

Table 16

Number of iterations until stabilization at the UPDATE phase. 1 itr

- fraction of tables on which the UPDATE phase stabilizes after 1

iteration.

Max. Avg. 1 itr.

Limaye200 4 1.3 72.8%

LimayeAll 5 1.3 75.8%

IMDB 4 1.2 79.7%

MusicBrainz 4 1.3 73.1%

Table 17

Wall-clock hours observed for TableMiner+ (1 thread), Mulwad2013

(1 thread), and Limaye2010 (50 threads) when only local cache is

used

Table

Miner+

Mulwad

2013

Limaye

2010

LimayeAll 4.6 5.4 76.0

IMDB 2.3 2.5 28.5

MusicBrainz 1.0 1.9 9.0

Secondly, we compare TableMiner+ against Li-

maye2010 and Mulwad2013. To factor out network la-

tency we re-run the three systems using cached Free-

base data and compare the wall-clock time. Note that

TableMiner+ and Mulwad2013 are both run in a single

thread while Limaye2010 is run with parallelization

using 50 threads. Both Mulwad2013 and Limaye2010

exhaustively process the entire table before running in-

ference algorithms. Table 17 shows that TableMiner+

is the most efficient, completing the annotation tasks

faster than the other two systems. It is significantly

faster than Limaye2010, which spent an enormous

amount of time on computing similarity between pairs

of entity and concept candidates in each column. The

improvement by TableMiner+ is rather compelling:

had we implemented parallelization for TableMiner+,

the savings in wall-clock time would be in the orders of

magnitude. We believe this is convincing evidence that

Semantic Table Interpretation can significantly bene-

fit from efficient algorithms, while parallelization can

only be partial solution.

11.4. The effect of using partial content for

interpretation

TableMiner+ uses partial content from a table col-

umn to perform preliminary column classification, the

outcome of which is used to guide preliminary cell dis-

ambiguation. The annotations are then revised by the

UPDATE process, which allows evidence from the re-

maining content from the table to feed back into the

annotation process. Hence one question that remains

to be answered is whether a Semantic Table Interpreta-

tion system that is purely based on partial data can be

as good as systems that use the entire table content.

To answer this question we carry out additional ex-

periments that are detailed in Appendix E. First, we

drop the UPDATE phase from TableMiner+ to create

a model TMnu
iinf (nu means ‘no update’). Effectively,

this means that preliminary column classification in

TMnu
iinf will create the final column annotations using

a sample from each column, and preliminary cell dis-

ambiguation will create the final cell annotations based

on the column classification results. Next, we create al-

ternative models by replacing the stopping criteria au-

tomatically calculated by I-Inf in TMnu
iinf with arbi-

trarily set sample size. For example, we may config-

ure the system to use a maximum of 10 rows from a

column in preliminary column classification.

Results have shown that TMnu
iinf still consistently

outperforms the best performing baseline in almost

all occasions. Compared against the alternative mod-

els using arbitrarily set sample size, it is able to ob-

tain either the best or very close (with a difference of

merely 0.1-0.6 point) performance in accuracy. We be-

lieve that these further confirm that: (1) Semantic Ta-

ble Interpretation can benefit from using various in-

table and out-table features; (2) it is possible to achieve

higher accuracy using only partial data in the task, im-

proving both effectiveness and efficiency; (3) the I-Inf

algorithm is very robust as it is able to automatically

determine an optimal sample size for column classifi-

cation.

12. Conclusion

This work introduced TableMiner+, a Semantic Ta-

ble Interpretation method that annotates tabular data

for semantic indexing, search and knowledge base

population. We have made several contributions to

state-of-the-art. First, TableMiner+ uses various con-

text both inside and outside tables as features in Se-

mantic Table Interpretation. This is shown to be partic-

ularly useful for improving annotation accuracy. Sec-

ond, TableMiner+ is able to make inference based on

partial content sampled from a table. This is shown

to deliver significant efficiency improvement against

state-of-the-art methods that exhaustively process the

entire table. Third, TableMiner+ offers a comprehen-

sive solution, solving all annotation tasks of Semantic

30 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table Interpretation and deals with both entity and lit-

eral columns. And finally, we release the largest col-

lection of datasets as well as the first publicly available

software for the task.

Extensive experiments show that TableMiner+ out-

performs all baselines and re-implemented (near iden-

tical) state-of-the-art methods on any datasets under

any settings. On the two most diverse datasets cov-

ering multiple domains and different table schemata,

it significantly improves over all the other models by

up to 42 percentage points. Compared against classic,

exhaustive baselines, TableMiner+ reduces empirical

wall-clock time by up to 29% and in the column clas-

sification task alone, but uses only 55% of table con-

tent (as opposed to 100% by exhaustive methods) to

classify columns in the two most diverse datasets. It is

also significantly faster than the re-implemented meth-

ods even when network latency is eliminated by using

a local copy of the knowledge base.

TableMiner+ is however, still limited in a number

of ways. First, relation enumeration is yet incomplete,

as TableMiner+ only handles binary relations between

the subject column and other columns. Second, several

threshold setting (e.g., I-Inf convergence threshold)

and weighting in formulas (e.g., subject column score

formula) could be improved by using machine learning

techniques to learn optimal configurations from data.

Third, TableMiner+ is evaluated using Freebase, and in

the general domain. Plans are made to adapt it to other

knowledge bases such as DBpedia and WikiData, as

well as adpating to domain specific contexts. Finally,

We will explore these directions in the future work.

Acknowledgement Part of this research has been

sponsored by the EPSRC funded project LODIE:

Linked Open Data for Information Extraction, EP/

J019488/1. I am particularly grateful to reviewers and

editors for their invaluable time and effort devoted to

this work to help improve this article substantially.

References

[1] Singhal Amit. Introducing the knowledge graph: Things, not

strings. In Official Blog (of Google). Google Blog, 2012.

[2] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug

Downey. Methods for exploring and mining tables on

wikipedia. In Proceedings of the ACM SIGKDD Work-

shop on Interactive Data Exploration and Analytics, IDEA

’13, pages 18–26, New York, NY, USA, 2013. ACM.

10.1145/2501511.2501516.

[3] Patrice Buche, Juliette Dibie-Barthélemy, Liliana Ibanescu,

and Lydie Soler. Fuzzy web data tables integration guided by

an ontological and terminological resource. IEEE Transactions

on Knowledge and Data Engineering, 25(4):805–819, 2013.

10.1109/TKDE.2011.245.

[4] Michael J. Cafarella, Alon Halevy, Daisy Wang, Eugene Wu,

and Yang Zhang. Uncovering the relational web. In Pro-

ceedings of the 11th International Workshop on Web and

Databases, June 2008.

[5] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene

Wu, and Yang Zhang. Webtables: exploring the power of tables

on the web. Proceedings of VLDB Endowment, 1(1):538–549,

August 2008. 10.14778/1453856.1453916.

[6] Silviu Cucerzan. Large-scale named entity disambiguation

based on Wikipedia data. In Proceedings of the 2007

Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning

(EMNLP-CoNLL), pages 708–716, Prague, Czech Republic,

June 2007. Association for Computational Linguistics.

[7] Li Ding, Dominic DiFranzo, Alvaro Graves, James R.

Michaelis, Xian Li, Deborah L. McGuinness, and James A.

Hendler. TWC data-gov corpus: Incrementally generating

linked government data from data.gov. In Proceedings of the

19th International Conference on World Wide Web, WWW

’10, pages 1383–1386, New York, NY, USA, 2010. ACM.

10.1145/1772690.1772937.

[8] William A. Gale, Kenneth W. Church, and David Yarowsky.

One sense per discourse. In Proceedings of the Workshop

on Speech and Natural Language, HLT ’91, pages 233–237,

Stroudsburg, PA, USA, 1992. Association for Computational

Linguistics.

[9] Anna Lisa Gentile, Ziqi Zhang, Isabelle Augenstein, and Fabio

Ciravegna. Unsupervised wrapper induction using linked data.

In Proceedings of the Seventh International Conference on

Knowledge Capture, K-CAP ’13, pages 41–48, New York, NY,

USA, 2013. ACM. 10.1145/2479832.2479845.

[10] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Ex-

ploiting shallow linguistic information for relation extraction

from biomedical literature. In Proceedings of the 11th Confer-

ence of the European Chapter of the Association for Computa-

tional Linguistics (EACL 2006), Trento, Italy, April 2006.

[11] Wael H. Gomaa and Aly A. Fahmy. A survey of text similarity

approaches. International Journal of Computer Applications,

68(13):13–18, April 2013. 10.5120/11638-7118.

[12] Lushan Han, Tim Finin, Cynthia Parr, Joel Sachs, and Anupam

Joshi. Rdf123: From spreadsheets to rdf. In Proceedings of the

7th International Conference on The Semantic Web, ISWC ’08,

pages 451–466, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] Marti A. Hearst. Automatic acquisition of hyponyms from

large text corpora. In Proceedings of the 14th Conference on

Computational Linguistics - Volume 2, COLING ’92, pages

539–545, Stroudsburg, PA, USA, 1992. Association for Com-

putational Linguistics. 10.3115/992133.992154.

[14] Gaëlle Hignette, Patrice Buche, Juliette Dibie-Barthélemy, and

Ollivier Haemmerlé. An ontology-driven annotation of data

tables. In Proceedings of the 2007 international conference on

Web information systems engineering, WISE’07, pages 29–40,

Berlin, Heidelberg, 2007. Springer-Verlag.

[15] Gaëlle Hignette, Patrice Buche, Juliette Dibie-Barthélemy,

and Ollivier Haemmerlé. Fuzzy annotation of web data ta-

bles driven by a domain ontology. In Proceedings of the

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 31

6th European Semantic Web Conference on The Semantic

Web: Research and Applications, ESWC’2009, pages 638–

653, Berlin, Heidelberg, 2009. Springer-Verlag. 10.1007/978-

3-642-02121-3_47.

[16] Jun’ichi Kazama and Kentaro Torisawa. Exploiting wikipedia

as external knowledge for named entity recognition. In Joint

Conference on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning, pages

698–707, 2007.

[17] Vijay Krishnan and Christopher D. Manning. An effec-

tive two-stage model for exploiting non-local dependencies

in named entity recognition. In Proceedings of the 21st

International Conference on Computational Linguistics and

the 44th Annual Meeting of the Association for Computa-

tional Linguistics, ACL-44, pages 1121–1128, Stroudsburg,

PA, USA, 2006. Association for Computational Linguistics.

10.3115/1220175.1220316.

[18] Nicholas Kushmerick. Phd thesis: Wrapper induction for in-

formation extraction, 1997. AAI9819266.

[19] Andreas Langegger and Wolfram Wöß. Xlwrap - querying

and integrating arbitrary spreadsheets with sparql. In Pro-

ceedings of the 8th International Semantic Web Conference,

ISWC ’09, pages 359–374, Berlin, Heidelberg, 2009. Springer-

Verlag. 10.1007/978-3-642-04930-9_23.

[20] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Kai Eckert,

Heiko Paulheim, and Christian Bizer. Extending tables with

data from over a million websites. In Semantic Web Challenge

2014, 2014.

[21] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. An-

notating and searching web tables using entities, types and rela-

tionships. Proceedings of the VLDB Endowment, 3(1-2):1338–

1347, 2010. 10.14778/1920841.1921005.

[22] Chunliang Lu, Lidong Bing, Wai Lam, Ki Chan, and Yuan Gu.

Web entity detection for semi-structured text data records with

unlabeled data. International Journal of Computational Lin-

guistics and Applications, 4, 2013.

[23] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Triplifying

wikipedia’s tables. In Anna Lisa Gentile, Ziqi Zhang, Claudia

d’Amato, and Heiko Paulheim, editors, The Linked Data for

IE workshop at ISWC2013, volume 1057 of CEUR Workshop

Proceedings. CEUR-WS.org, 2013.

[24] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Using

linked data to mine rdf from wikipedia’s tables. In Proceed-

ings of the 7th ACM International Conference on Web Search

and Data Mining, WSDM ’14, pages 533–542, New York, NY,

USA, 2014. ACM. 10.1145/2556195.2556266.

[25] Varish Mulwad, Tim Finin, and Anupam Joshi. Automatically

generating government linked data from tables. In Working

notes of AAAI Fall Symposium on Open Government Knowl-

edge: AI Opportunities and Challenges. AAAI, November

2011.

[26] Varish Mulwad, Tim Finin, and Anupam Joshi. Semantic mes-

sage passing for generating linked data from tables. In Interna-

tional Semantic Web Conference, Lecture Notes in Computer

Science, pages 363–378. Springer Berlin Heidelberg, 2013.

10.1007/978-3-642-41335-3_23.

[27] Varish Mulwad, Tim Finin, Zareen Syed, and Anupam Joshi.

T2ld: Interpreting and representing tables as linked data. In

Axel Polleres and Huajun Chen, editors, ISWC Posters and De-

mos, CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[28] David Nadeau and Satoshi Sekine. A survey of named entity

recognition and classification. Linguisticae Investigationes,

30(1):3–26, January 2007. Publisher: John Benjamins Publish-

ing Company.

[29] Nik Rouda. Getting real about big data: Build versus buy. In

Oracle White Paper. ESG, 2014.

[30] Satya S. Sahoo, Wolfgang Halb, Sebastian Hellmann, Kings-

ley Idehen, Ted Thibodeau Jr, S’́oren Auer, Juan Sequeda, and

Ahmed Ezzat. A survey of current approaches for mapping of

relational databases to rdf, 01 2009.

[31] Sunita Sarawagi and William W. Cohen. Semi-markov con-

ditional random fields for information extraction. In In Ad-

vances in Neural Information Processing Systems 17, pages

1185–1192. MIT Press, 2004.

[32] Gonçalo Simões, Helena Galhardas, and Luis Gravano. When

speed has a price: Fast information extraction using approxi-

mate algorithms. Proc. VLDB Endow., 6(13):1462–1473, Au-

gust 2013. 10.14778/2536258.2536259.

[33] Zareen Syed, Tim Finin, and Anupam Joshi. Wikipedia as an

ontology for describing documents. In Proceedings of the Sec-

ond International Conference on Weblogs and Social Media.

AAAI Press, March 2008.

[34] Zareen Syed, Tim Finin, Varish Mulwad, and Anupam Joshi.

Exploiting a web of semantic data for interpreting tables. In

Proceedings of the Second Web Science Conference. ACM,

April 2010.

[35] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius

Paşca, Warren Shen, Fei Wu, Gengxin Miao, and Chung

Wu. Recovering semantics of tables on the web. Pro-

ceedings of VLDB Endowment, 4(9):528–538, June 2011.

10.14778/2002938.2002939.

[36] Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q.

Zhu. Understanding tables on the web. In Proceedings of

the 31st international conference on Conceptual Modeling,

ER’12, pages 141–155, Berlin, Heidelberg, 2012. Springer-

Verlag. 10.1007/978-3-642-34002-4_11.

[37] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu.

Probase: a probabilistic taxonomy for text understanding. In

Proceedings of the 2012 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’12, pages 481–492,

New York, NY, USA, 2012. ACM. 10.1145/2213836.2213891.

[38] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and

Surajit Chaudhuri. Infogather: Entity augmentation and at-

tribute discovery by holistic matching with web tables. In Pro-

ceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’12, pages 97–108, New

York, NY, USA, 2012. ACM. 10.1145/2213836.2213848.

[39] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table

recognition: Models, observations, transformations, and infer-

ences. International Journal of Document Analysis and Recog-

nition, 7(1):1–16, March 2004. 10.1007/s10032-004-0120-9.

[40] Ziqi Zhang. Named entity recognition: Challenges in docu-

ment annotation, gazetteer construction and disambiguation,

2013.

[41] Ziqi Zhang. Methods of using partial data in disambiguating

web tables. In Proceedings of the 19th International Confer-

ence on Knowledge Engineering and Knowledge Management,

2014.

[42] Ziqi Zhang. Towards effective and efficient semantic table in-

terpretation. In Proceedings of the 13th International Semantic

Web Conference, pages 487–502. Springer International Pub-

lishing, 2014. 10.1007/978-3-319-11964-9_31.

32 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

[43] Ziqi Zhang, Anna Lisa Gentile, and Fabio Ciravegna. Re-

cent advances in methods of lexical semantic relatedness - a

survey. Natural Language Engineering, 19:411–479, 4 2013.

10.1017/S1351324912000125.

[44] Ziqi Zhang and José Iria. A novel approach to automatic

gazetteer generation using wikipedia. In Proceedings of the

2009 Workshop on The People’s Web Meets NLP: Collabo-

ratively Constructed Semantic Resources, People’s Web ’09,

pages 1–9, Stroudsburg, PA, USA, 2009. Association for Com-

putational Linguistics.

[45] GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Ex-

ploring various knowledge in relation extraction. In Proceed-

ings of the 43rd Annual Meeting on Association for Compu-

tational Linguistics, ACL ’05, pages 427–434, Stroudsburg,

PA, USA, 2005. Association for Computational Linguistics.

10.3115/1219840.1219893.

[46] Stefan Zwicklbauer, Christoph Einsiedler, Michael Granitzer,

and Christin Seifert. Towards disambiguating web tables. In

International Semantic Web Conference (Posters & Demos),

pages 205–208, 2013.

Appendix

A. Name changes from Zhang [41]

In the following, we use italic to highlight names

adopted in our previous work.

– the LEARNING phase - the forward learning

phase

– the UPDATE phase - the backward update phase

– preliminary annotations/interpretation - initial

annotations/interpretation

– entity context score (ec) - context score ctxe

– entity name score (en) - name score nm

– entity confidence score (cf) - final confidence

score fse

– concept instance score (ce) - base score bs

– concept context score (cc) - context score ctxc

– concept confidence score (cf) - final confidence

score fsc

B. Recreation of the Limaye datasets

The original Limaye datasets are firstly divided into

tables extracted from Wikipedia (wiki-table) and those

from the general Web (Web-table). Each wiki-table is

re-created based on the live version of Wikipedia. To

do so, the corresponding Wikipedia article is down-

loaded, and tables containing links to other Wikipedia

articles (internal links) are extracted. Each newly ex-

tracted table is then submitted to a content checking

process against the original table. Let Tnew denote one

such table from the new Wikipedia article and T old de-

note the original table. bow(Tnew) and bow(T old) cre-

ates a bag-of-words representation of Tnew and T old

respectively by concatenating the text content from all

cells and headers in each table then converting them

into bag-of-words representations. The similarity be-

tween the two tables is computed using the frequency

weighted dice function in Equation 8 to obtain a score

between 0 and 1.0. Then if the one Tnew that has the

highest similarity score satisfies the following condi-

tions it is selected: (1) has a similarity score of greater

than 0.5; (2) contains at least an equal number of rows

as T old and at least two columns; (3) has less than 200

rows22.

If no tables are extracted from the new source article

or pass the content check, the original table T old is re-

annotated by a ‘fuzzy’ matching process. First, the in-

ternal links are extracted from the new Wikipedia arti-

cle and a map between the links and their anchor texts

is created. Multiple links that share the same anchor

texts are discarded. Then, each content cell in T old

is looked up in the map. If the text of a content cell

matches any anchor text, the link is selected for that

cell.

In some cases, no Wikipedia articles can be found to

contain the original table, usually because the article

has been deleted. In this case, the original table is kept

as-is. Original Web-tables are also kept as-is, since no

provenance has been recorded for them.

Thus after re-creating all tables in these datasets,

they are re-annotated according to Freebase to create

the entity annotation ground truth. Each internal link in

a table is firstly searched using the MediaWiki API23

to find the corresponding Wikipedia page number. The

page number is then queried on Freebase using MQL24

to find the corresponding Freebase URI. The end out-

come of this process is a collection of tables whose

cells are annotated by Freebase URIs.

C. Testing with the original Limaye datasets

In addition to the re-created entity ground truth de-

scribed above, another version has also been created by

only re-annotating entity cells without re-downloading

22Very large tables in the original datasets are split into smaller

ones. The criteria of splitting is unknown. In this case, tables from

the original dataset are used.
23http://www.mediawiki.org/wiki/API:Main_page
24http://www.freebase.com/query

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 33

the most recent webpages. Each Wikipedia internal

link in the original table ground truth is mapped to

a Freebase URI using the MediaWiki API and Free-

base using the MQL API, following the procedures

discussed in the previous section. To contrast against

the new Limaye dataset, this is to be called the original

Limaye dataset, LimayeAll-Original.

TableMiner+ and the four baselines are tested on

this dataset for entity disambiguation and results are

shown in Table 18. Surprisingly, the most simplistic

baseline Bnm obtains the highest accuracy (F1) while

TableMiner+ scores the second. Considering the intu-

ition behind Bnm this could suggest that LimayeAll-

Original is biased toward popular entities. To obtain a

better understanding, two types of analysis have been

carried out.

Table 18

Disambiguation results (F1) on LimayeAll-Original.

Bnm Blev Bcos Bdice TableMiner+

92.6 91.2 91.8 91.5 92.0

First, the dataset statistics of LimayeAll-Original is

gathered and compared against LimayeAll, as shown

in Table 19. The statistics show that LimayeAll nearly

doubled LimayeAll-Original in terms of the number

of entity annotations in the ground truth. Further, Li-

mayeAll also has a larger population of short entity

names, as measured by the number of tokens in cells.

Typically, short names are much more ambiguous than

longer names, thus making disambiguation tasks more

challenging. Together this could have made LimayeAll

a more balanced dataset with much improved level of

diversity, increasing the difficulty of the task and pos-

sibly offsetting the bias in LimayeAll-Original.

Table 19

Comparing the statistics of the re-constructed LimayeAll dataset

against the original LimayeAll-Original.

LimayeAll LimayeAll-

Original

Avg.# rows 21.2 20.8

Avg.# NE-annotated cols. 2.1 1.1

Total # annotated

NE cells (A.N.C.)

227,046 118,927

single-token A.N.C. 30.5% 24.5%

A.N.C. with two tokens 44.4% 45%

Second, to obtain a more balanced view of the per-

formance of different systems on LimayeAll-Original,

Table 20

Precision on the manually annotated 903 named entity annotations

that the three systems disagree on.

Precision Precision either-or (579)

Bnm 25.3 39.4

Blev 32.1 42.7

TableMiner+ 48.2 75.1

the results created by the baselines and TableMiner+

are manually inspected and re-annotated. To do so, a

random set of 100 tables are selected from LimayeAll-

Original and the output by Bnm, Blev and TableMiner+

are collected. The output of Bcos and Bdice are not

examined since they only differ from Blev in terms

of the string similarity metric and the performance

of the three systems is not much different. Then for

each method, the predicted entity annotations that are

already covered by the ground truth in LimayeAll-

Original are excluded. Then, in the remaining annota-

tions, those that all three systems predict the same are

removed. The remainder are the ones that the three sys-

tems ‘disagree’ on, and are manually validated. This

resulted in a total of 903 entity annotations, of which

579 is predicted correctly by at least one system. Ta-

ble 20 shows the precision by the three systems based

on this part of data. TableMiner+ significantly outper-

forms the two baselines. Manual inspection of 20% of

the wrong annotations by all three methods shows that

it is largely because (over 80%) the knowledge base

does not contain the correct candidate. When only an-

notations that are correct by any one method are con-

sidered (‘Precision either-or’), TableMiner+ achieves a

precision of 75.1, 35.7 higher than Bnm and 32.4 higher

than Blev.

D. Implementation of state-of-the-art

We describe adaptations of the methods by Limaye

et al. [21] and Mulwad et al. [26] below.

D.1. Limaye2010

The first point of adaptation relates to features used

to compute the compatibility between candidate con-

cepts and entities (Section 4.2.3 in [21], ‘Column type

and cell entity’). Limaye et al. use the YAGO concept

hierarchy to compute a specificity score of a concept

with respect to an entity. Freebase however, does not

have such a hierarchy. Instead, we compute a speci-

ficity of a concept based on its number of instances

34 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

in Freebase. A concept that has a smaller number of

instances has a higher specificity score than a con-

cept with more instances. Further, Limaye et al. also

use the concept hierarchy to compute similarity be-

tween a candidate entity and concept. Our alternative

implementation computes a similarity score based on

the bag-of-words representations of an entity and a

concept. Specifically, we retrieve the triples contain-

ing the entity and the concept as subject respectively,

then build their bag-of-words representations by taking

the objects from their triple sets. We then compute the

overlap between the two bag-of-words representations

using the frequency weighted dice function in Equa-

tion 8.

The second point of adaptation relates to feature

weights. In the original work, the weights are learned

using a supervised method and training data. Here we

opt for a simple solution of equal weights.

The third point of adaptation is the removal of rela-

tion variables from the construction of factor graphs.

This is because empirically, we have noticed that

adding relation variables caused 3 percentage points

drop in the accuracy of column classification, and also

resulted in inconsistent constraints on the constructed

graph. This is likely due to the lack of strict con-

cept hierarchy in Freebase. In Limaye et al., candi-

date relations are derived as the set of all possible re-

lations between any pair of candidate concepts from

two columns, and candidate concepts are derived as

concepts associated with entities in the cells from each

column. In Freebase, it is common to find an entity as-

sociated with several concepts of different granularity

and domains (e.g., ‘Tony Blair’ is a ‘Person’, ‘Politi-

cian’, ‘TV Personality’, ‘Guitarist’ etc; ‘Labour Party’

is a ‘Political Party’, ‘Organization’, ‘Employer’ etc.).

Without a concept hierarchy we are unable to prune the

candidate concept space to discard the highly general,

less relevant concepts, which may have caused noisy

candidate relations to be generated and added to the

factor graph. Such noise may have created misleading

evidence that damages overall inference accuracy. As a

result, our implementation only builds a smaller factor

graph of concept and entity variables for each table.

D.2. Mulwad2013

The only adaptation of the method by Mulwad et

al. relates to the entity ranker, for which the original

method uses a supervised named entity disambigua-

tion module trained on manually annotated data. The

entity ranker takes a query (containing the cell’s text

to be disambiguated) as input, and outputs a ranked

list of candidate entities from Wikitology. It uses a

number of features derived from Wikitology, includ-

ing: a candidate entity’s index score, its Wikipedia

page length, page rank, the string similarity (Leven-

shtein and Dice) between the candidate entity and the

string in the query. The string similarity is calculated

between the query string and all possible names for the

candidate entity.

We replace the original entity ranker with an unsu-

pervised method that takes the following features: a

candidate entity’s index score (based on its rank in the

query results returned by Freebase), and the string sim-

ilarity (Levenshtein and Dice) scores between the can-

didate entity and the string in the query calculated in

the same way as in the original work. We then sim-

ply take the sum of the scores as the final score for the

candidate entity.

E. The effect of using samples in TableMiner+

To specifically evaluate the accuracy of annotations

using sample data as opposed to an entire table col-

umn, four ‘slim’ versions of TableMiner+ are created.

Firstly, the UPDATE phase is dropped from the col-

umn interpretation component. This creates TMnu
iinf

(nu means ‘no update’). The column annotations cre-

ated by preliminary column classification based on

sample are considered to be final and used in pre-

liminary cell disambiguation. Then, three alternative

models are created by replacing the automatically de-

termined I-Inf stopping criteria with arbitrarily set

sample size. The first uses a maximum of 10 rows

as sample to create column annotations (TMnu
10), the

second uses a maximum of 20 rows (TMnu
20), and

the third uses the entire column (TMnu
all). TM

nu
10

and TMnu
20 can be considered as supervised versions

of TableMiner+ without UPDATE. Ideally, the best

threshold is to be empirically derived25. Results of

these settings are also compared against the best per-

forming baseline Bdice and the full TableMiner+.

E.1. Accuracy

Tables 21, 22 and 23 show F1 accuracy obtained on

the disambiguation, classification and relation enumer-

25Zwicklbauer et al. [46] have shown that a sample size between

10 and 20 rows lead to close-to-maximum performance in column

classification.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 35

Table 21

Named entity disambiguation results (F1) of the ‘slim’ versions

of TableMiner+ compared against the best baseline Bdice and the

full TableMiner+. The highest figures among all slim versions of

TableMiner+ are highlighted in bold.

Limaye200 LimayeAll IMDB MusicBrainz

Bdice 79.9 82.8 93.5 84.84

TableMiner+ 82.3 83.7 97.6 84.87

TMnu
10 81.3 83.3 96.4 84.69

TMnu
20 81.4 83.3 96.1 84.82

TMnu
all 81.3 83.3 96.1 84.85

TMnu
iinf 81.2 83.3 96.4 84.62

Table 22

Classification results (F1) of the ‘slim’ versions of TableMiner+ compared against the best baseline Bdice and the full TableMiner+. The highest

figures among all slim versions of TableMiner+ are highlighted in bold.

Bdice TableMiner+ TMnu
10 TMnu

20 TMnu
all TMnu

iinf

L
im

ay
e2

0
0

NE-columns only
strict 48.9 65.8 56.5 56.5 56.5 56.9

tolerant 66.1 75.0 71.7 71.8 71.6 72.1

All columns
strict 51.3 64.0 56.2 56.4 56.4 56.7

tolerant 65.0 71.5 68.6 68.8 68.6 69.1

IM
D

B

NE-/All columns
strict 32.0 97.0 65.1 60.3 60.3 64.5

tolerant 64.5 97.2 81.7 79.3 79.3 81.4

M
u

si
cB

ra
in

z

NE-columns only
strict 83.9 85.2 83.3 83.4 83.4 83.3

tolerant 83.9 85.9 85.2 85.4 85.4 85.2

All columns
strict 72.9 74.3 73.4 73.5 73.6 73.4

tolerant 72.9 74.7 74.4 74.5 74.5 74.4

Table 23

Relation enumeration results (F1) of the ‘slim’ versions of TableMiner+ compared against the best baseline Bdice and the full TableMiner+. The

highest figures among all slim versions of TableMiner+ are highlighted in bold.

Bdice TableMiner TMnu
10 TMnu

20 TMnu
all TMnu

iinf

L
im

ay
e2

0
0

NE-columns only
strict 61.8 72.5 70.0 70.2 69.6 69.6

tolerant 66.4 76.0 74.9 75.1 74.6 74.6

All columns
strict 61.1 66.2 63.8 64.2 63.9 63.9

tolerant 64.4 68.7 67.5 67.9 67.6 67.6

M
u

si
cB

ra
in

z

NE-columns only
strict 67.1 67.9 67.5 67.6 67.6 67.5

tolerant 68.2 69.1 68.6 68.7 68.7 68.6

All columns
strict 81.9 82.6 82.1 82.2 82.2 82.2

tolerant 82.4 83.1 82.6 82.7 82.7 82.6

ation tasks respectively. First and foremost, TMnu
iinf

outperforms the best performing baseline in almost

all occasions except two cases: disambiguation on

MusicBrainz and classification on MusicBrainz under

‘NE-column only’ and ‘strict’ mode, in which cases

the difference is very small (0.2 and 0.6 point). With-

out the UPDATE phase, the key differences of TMnu
iinf

from the baseline are the use of out-table context as

features and using partial content for column classifi-

cation. The consistent improvement over the baseline

is another confirmation of the benefits of using out-

table context in Semantic Table Interpretation, partic-

ularly in the task of column classification where the

improvement is the greatest.

36 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

Table 24

Statistics of the slowest convergence of I-Inf when used for preliminary

column classification in the LEARNING phase.

Limaye

200

Limaye

All

IMDB Music

Brainz

100% of rows processed in

% of tables 33.8% 30.7% 27.6% 7.5%

Avg. rows 11.0 10.0 13.0 8.5

Rows >20 10 190 0 24

>50% of rows processed in

% of tables 47.8% 47.6% 49.2% 13.9%

Avg. rows 11.4 11.0 12.0 8.6

Rows >20 16 442 0 47

Comparison against other slim versions of Table-

Miner+ shows that TMnu
iinf is very competitive: it is

able to obtain the best performance in many cases

and where it does not, it achieves close-to-best perfor-

mance (with a difference of merely 0.1-0.6 point). In

particular, in the classification task on the Limaye200

dataset, TMnu
iinf outperforms all the other versions un-

der any settings. Considering that Limaye200 is the

most diverse dataset for this task while IMDB and Mu-

sicBrainz each has only one type of table schema, the

results suggest that the I-Inf algorithm is very much

capable of automatically selecting optimal sample size

for column classification.

Also interesting to note is that the exhaustive ver-

sion TMnu
all appears to have little advantage over any

sample-based versions. It only outperforms all the rest

in 5 cases, where the improvement is merely 0.1-

0.2 point. In many cases, results are even worse than

sample-based versions. This could be attributed to the

addition of noisy candidate concepts when more cells

are allowed to feed in evidence to column classifica-

tion compared to sample-based versions.

Compared against the full TableMiner+, the results

show that the addition of the UPDATE phase indeed

further improves learning accuracy, particularly in the

classification and relation enumeration tasks where the

benefits are substantial in most cases.

E.2. I-Inf convergence speed

While the I-Inf algorithm is already shown to be

very effective, it is also very efficient. Figure 9 shows

the convergence statistics in the preliminary column

classification phase of TableMiner+ on all datasets. Ta-

ble 24 shows the statistics of the slowest convergence

on each dataset.

Fig. 9. Convergence statistics (max, min, average (black diamond),

k
th quantiles) for I-Inf at the LEARNING phase. itr - number of

iterations (rows processed) until convergence; % - fraction of content

cells processed in a column

On all datasets, I-Inf in the preliminary column clas-

sification phase typically converges in an average of 10

iterations. In other words, only 10 cells are processed

to create preliminary column classification. This also

explains the observation that the learning accuracy ob-

tained by TMnu
iinf is very similar to TMnu

10 . It repre-

sents about 55% of data in an average table from the

Limaye200 and LimayeAll datasets, less than 30% in

the case of MusicBrainz, and about 75% for IMDB

where the majority (75%) are small tables (see Figure

7). In the cases that TableMiner+ does not converge or

converges slowly (Table 24), the tables are very small.

F. Mathematical notation lookup table

Continue on the next page.

Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+ 37

Table 25: Mathematical notations in alphabetical order. §- Section, Eq. -

Equation, Alg. - Algorithm

Notations

Definition First defined in

< k, v > a key-value pair in the I-Inf Algorithm §5, near Alg. 1

Cj candidate concepts for Tj §7.2.1, near Eq. 13

cj ∈ Cj a candidate concept for Tj §7.2.1, near Eq. 14

c+j the highest scoring concept for Tj §7.2.3 beginning

C the set of Cj for all columns in the table §5, near Alg. 2

D a generic dataset used in the I-Inf algorithm §5, near Alg. 1

d ∈ D a generic data item used in the I-Inf algorithm §5, near Alg. 1

Ei,j candidate entities from Ti,j §7.2.1 beginning

ei,j ∈ Ei,j a candidate entity from Ti,j §7.2.1 beginning

e+i,j the highest scoring entity for Ti,j §7.2.1, near Eq. 13

E the set of Ei,j for all cells in the table §8.1, near Alg. 2

i ∈ I
I is the set of row indexes in the sample used by preliminary

column classification; i is the index of one row unless

otherwise stated

§7.2.1, near Eq. 13

p ∈ P a webpage, and a set of webpages §6.2, near Eq. 4

ptitle The title of a webpage in the results returned by a search engine §6.2, near Eq. 5

psnippet
The snippet of a webpage in the results returned by a search

engine
§6.2, near Eq. 5

Rj,j′ candidate relations between two columns §9.1, near Eq. 19

Rij,j′ candidate relations between two columns collected from row i §9.1 beginning

rj,j′ ∈ Rj,j′ a candidate relation between two columns §9.1, near Eq. 19

rij,j′ ∈ Rj,j′ a candidate relation between two columns collected from row i §9.1, near Eq. 18

ri+j,j′ ∈ Rj,j′
the highest scoring candidate relation between two columns

collected from row i
§9.1, near Eq. 19

R the set of Rj,j′ for all pairs of columns

Ti a table row §6.2, near Eq. 4

Tj a table column §6.1 beginning

Ti,j a table cell §6.2, near Eq. 4

w a single word §6.2, near Eq. 3

x ∈ X
x denotes a particular type of context (e.g., header text,

paragraphs). X denotes the set of all types of contexts
§6.2, near Eq. 3

ψi,j ∈ Ψi,j
ψi,j denotes a triple whose subject is ei,j ;

Ψi,j denotes the set of all such triples
§9.1, near Eq. 18

Functions

Definition Used in equations

bow(·)
returns a bag-of-words (multiset) of an object, applying

morphological normalization and stop words removal
Eq. 3, 6, 8, 9, 12, 16

bowset(·) returns the set of unique tokens in bow(·) Eq. 6, 8, 9, 11

cc(cj) concept context score of cj Eq. 15

ce(cj) concept instance score of cj Eq. 14, 15

cf(cj) overall confidence score of cj Eq. 15

cf(ei,j) overall confidence score of ei,j Eq. 12, 13, 14

cf(rj,j′)
overall confidence score of a relation (on a particular row

or between two columns in general)
Eq. 18, 20

con(ei,j) returns the concepts associated with ei,j Eq. 13, 14

countp(Ti,j , P) component function of the Web search score Eq. 4, 5

38 Z. Zhang / Effective and Efficient Semantic Table Interpretation using TableMiner+

countw(Ti,j , P) component function of the Web search score Eq. 4, 6

coverage(ei,j , xi,j) measures overlap between bow(ei,j) and bow(xi,j) Eq. 9

dc(cj) domain consensus score of cj Eq. 17

defbow(e+i,j)
a special bag-of-words representation of e+i,j based on

its definition in a knowledge base
Eq. 16

dice(·, ·)
frequency weighted dice function measuring overlap between

two objects
Eq. 8, 17, 18

ec(ei,j) entity context score of ei,j Eq. 10, 12

en(ei,j) entity name score of ei,j Eq. 11, 12

entropy(i) entropy of iteration i computed in the I-Inf algorithm Eq. 1

freq(w, ·) returns the frequency of w in bow(·) Eq. 3, 5, 6, 8, 9

l(·) returns the ‘name’ or ‘label’ of an object Eq. 4,5

o(ψi,j) returns the object of triple ψi,j Eq. 18

overlap(ei,j , xi,j)
generalized function to denote either coverage(ei,j , xi,j)
or dice(ei,j , xi,j)

Eq. 10

p(ψi,j) returns the predicate of triple ψi,j Eq. 18

re(rj,j′) relation instance score of rj,j′ Eq. 20

subcol(Tj) returns a score of the degree to which Tj is the subject column Eq. 7

wt(·) weight assigned to a feature Eq. 3, 10

