Semantic Web 1 (2016) 1-5 1
10S Press

QA?: a Natural Language Approach to
Question Answering over RDF Data Cubes

Editor(s): Stamatia Dasiopoulou, Pompeu Fabra University, Spain; Georgios Meditskos, Centre for Research and Technology Hellas, Greece;
Leo Wanner, ICREA and Pompeu Fabra University, Spain; Stefanos Vrochidis, Centre for Research and Technology Hellas, Greece; Philipp
Cimiano, Bielefeld University, Germany

Maurizio Atzori?, Giuseppe M. Mazzeo® and Carlo Zaniolo®

& Department of Maths and Computer Science, University of Cagliari, V. Ospedale 72, 09124 Cagliari, Italy
E-mail: atzori@unica.it

b Computer Science Department, UCLA, 3532D Boelter Hall Los Angeles, CA 90095-1596, CA, USA
E-mail: mazzeo@cs.ucla.edu, zaniolo@cs.ucla.edu

Abstract. In this paper we present QA a question answering (QA) system over RDF data cubes. The system first tags chunks of
text with elements of the knowledge base, and then leverages the well-defined structure of data cubes to create a SPARQL query
from the tags. For each class of questions with the same structure a SPARQL template is defined, to be filled in with SPARQL
fragments obtained by the interpretation of the question. The correct template is chosen by using an original set of regex-like
patterns, based on both syntactical and semantic features of the tokens extracted from the question. Preliminary results obtained
using a limited set of templates are encouraging and suggest a number of improvements. QA3 can currently provide a correct
answer to 27 of the 50 questions of the test set of the task 3 of QALD-6 challenge, remarkably improving the state of the art in

natural language question answering over data cubes.

Keywords: question answering, RDF data cube, statistical queries, free natural language

1. Introduction

Governments of several countries have recently be-
gun to publish information about public expenses, us-
ing the RDF data model [25] in order to improve trans-
parency. The need to publish statistical data, which
concerns not only governments but also many other
organizations, has pushed the definition of a specific
RDF-based model, i.e., the RDF data cube model [7],
whose first draft was proposed by W3C in 2012, and
its current version was published in January 2014.
The availability of data of public interest from dif-
ferent sources has fostered the creation of projects,
such as LinkedSpending [15], that collect statistical
data from several organizations, making them avail-
able as an RDF knowledge base, following the Linked
Data principles. However, while RDF data can be effi-
ciently queried using the powerful SPARQL language,

only technical users can effectively extract human-
understandable information. The problem of provid-
ing a user-friendly interface that enables non-technical
users to query RDF knowledge bases has been widely
investigated during the last few years. All the proposed
solutions provide some systems which translate sim-
ple actions and statements entered by the user into a
SPARQL query, whose result represents the answer to
the intention that the user expressed through its oper-
ations. Among these systems we find those based on
exploratory browsing, faceted search and by-example
structured query are based on a tailored user inter-
face, that requires user training and provides limited
expressivity statistical queries (for instance limited or
no support for inner select, group-by or other aggregate
operators). Seeking to overcome these problems, re-
cent work has focused on natural language interfaces
which let the user type any question in natural lan-

1570-0844/16/$35.00 (©) 2016 — I0OS Press and the authors. All rights reserved

2 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

guage and translate it into a SPARQL query. While NL
QA can be very user-friendly and potentially very ex-
pressive it poses many difficult research issues. In fact,
while many systems only accept a controlled natural
language (CNL), that is a language which is generated
by a restricted grammar and vocabulary, and can be
efficiently interpreted by machines, more recent work
focus on free natural language question answering over
RDF data.

The current state-of-the-art system for (free) ques-
tion answering over Wikipedia/DBpedia is Xser [32],
which was able to yield an F-score equal to 0.72 and
0.63 in 2014 and 2015 QALD challenges [31] respec-
tively. Although its accuracy is far from being very
high, Xser largely won over the other participating sys-
tems. This confirms that translating natural language
questions into SPARQL queries is a really hard task.

In particular, the problem of creating NL QA inter-
faces for RDF data cubes is one that has received much
recent attention and proven particularly challenging.
Statistical question answering (SQA), meaning ques-
tion answering over data cubes, is a very recent re-
search area born thanks to the success of projects such
as OpenSpending', that collects datasets on public fi-
nancial information, and LinkedSpending [15,18], that
focuses on representing OpenSpending data through
the use of RDF and a W3C standardized vocabu-
lary for datacubes [7]. The intersection between RDF
data cubes and SQA is sometimes referred to as RD-
CQA [17]. In [17] the RDCQA benchmark of 100
questions and 50 datasets used for Task 3 (“Statistical
question answering over RDF datacubes™) of the 6th
Question Answering on Linked Data (QALD-6) Chal-
lenge is also described.

In this paper we propose QA’ (pronounced as QA
cube), a free natural language question answering sys-
tem tailored for RDF cubes. It is based on a general
tagging system and an original regex-like pattern lan-
guage to describe flexible SPARQL partial templates.
Their use is interleaved, that is, tagging helps the
matching and filling in the correct template, but it can
also be driven by the results of the matching. A ques-
tion only partially tagged, or a chosen template which
is incompletely filled in are signs that the question was
interpreted to a limited extent or wrongly interpreted.
This makes the system very flexible and tunable in its
ability of trading off precision vs recall, depending on
the applications. As we will see in the following, QA’

"https://openspending.org/

participated in the set of the task 3 of QALD-6 chal-
lenge, remarkably improving the state of the art in free
natural language question answering over data cubes.

The paper is organized as follows. First, in Section 2
the model used to represent data cubes in RDF is de-
scribed. Then, the approach used by QA® is presented
in Section 3, and preliminary experimental results are
reported in Section 4. Section 5 reviews the related
work in the area of Statistical Question Answering
over RDF data. A discussion on the specific problem
of answering OLAP-related questions through natural
languages and lessons learned in this work, including
possible improvements, are presented in Section 6. Fi-
nally, Section 7 concludes the paper, describing the on-
going work.

2. The RDF data cube model

The RDF Data Cube Vocabulary [7] has been re-
cently proposed as a W3C Recommendation for rep-
resenting multi-dimensional statistical data using the
RDF format. The model underlying this vocabulary is
based on the SDMX model [6], an ISO standard for
representing statistical data that can be shared among
organizations.

In the following, we briefly describe the RDF data
cube model, focusing our attention on the features
depicted in Fig. 1, that are the most relevant to the
question answering task. A data cube, called daraset,
is an instance of the class gb:Dataset?. The cells
of the data cube, called observations, are instances
of the class gb:0Observation. Each observation
can have one or more attribute, dimension, and mea-
sure properties. The properties that define measures
are of type gb:MeasureProperty. These proper-
ties associate the observations with quantitative val-
ues (e.g., an amount of money), having a numer-
ical range. Attributes and dimensions are of type
gb:AttributeProperty and gb:Dimension
Property, respectively. Their value can be either a
literal or an object. Dimensions represent the context
of the observation (e.g., the city in which the measured
expenditure happened), whereas attributes provide ad-
ditional information about the measure, such as the
unit of measure (e.g., the currency used for represent-
ing the expenditure). However, attribute values are also
used (e.g., in several datasets of LinkedSpending [15])

2gb is the prefix for the
http://purl.org/linked-data/cube#

namespace

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes 3

gb:dataset

gb:Dataset gb:0Observation

attributeProperty
attributeValue
dimensionPropert . .
Py dimensionValue
measureProperty
measureValue

Fig. 1. The RDF data cube model simplified

to represent the temporal context of the observation
(e.g., the year).

Fig. 2 depicts a set of triples that use the RDF
data cube vocabulary. Assuming that the prefix ex de-
note an example namespace, the first four triples de-
fine the metadata of the dataset, in particular: (i) the
dataset object with URI ex : expenses, (ii) a dimen-
sion with URI ex:department, (iii) an attribute
with URI ex:refYear, and (iv) a measure with
URI ex:amount. The fifth triple defines an obser-
vation with URI ex: obs1, and the sixth triple states
that this observation belongs to the ex:expenses
dataset. The last three triples specify the depart-
ment (ex :PublicWorks), the year (2015), and the
amount (5432 . 1) of the observation ex:obsl.Ina
typical RDF cube several observations would be de-
fined (here, we limit our example to one observation
for sake of brevity), each associated with the measures,
dimensions, and attributes defined by the metadata.
Typical queries on such data combine aggregation with
simple constraints defined on the attributes/measures
of the observation. For instance, a user might be inter-
ested in the total amount spent by the Department of
Public Works in 2015, which can be found using the
following SPARQL query:

SELECT sum(xsd:decimal (?measure)) {
?observation gb:dataset ex:expenses.
?observation ex:amount ?measure.
?observation ex:department

ex:PublicWorks.
?observation ex:refYear
"2015" " xsd:gYear.

3. An overview of QA

QA is a system that translates natural language
questions into SPARQL queries, assuming that the an-
swer to the questions can be provided using the knowl-
edge base (KB) “known” by the system. In particu-
lar, the KB contains a set of data cubes stored using
the RDF data cube model described in Section 2. QA®
works in three steps:

— the question is tagged with elements of the KB,
belonging to the same dataset. This step also de-
tects which dataset is the most appropriate to an-
swer the question;

— the question is tokenized, using the Stanford tok-
enizer and POS tagger [20], and the tags obtained
at this step are augmented using the tags obtained
at the previous step. The sequence of tokens is
then matched against some regular expressions,
each associated with a SPARQL template;

— the chosen template is filled with the actual
clauses (constraints, filters, etc.) by using the tags
and structure of the dataset.

Fig. 3 visually shows the steps performed by QA’. In
the following, each step is described in more detail.

3.1. Tagging the questions with elements of the KB

The purpose of the first step of the QA3 system is
two-fold:

1. finding the correct dataset to be queried, and

2. finding references in the question to concepts and
values in that dataset, to generate the SPARQL
query in the following steps.

It must be noted that missing the correct dataset will
definitely lead to a completely wrong answer, there-
fore accuracy in this step is of paramount importance

4 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

ex:expenses rdf:type
ex:department rdf:type
ex:refYear rdf:type
ex:amount rdf:type
ex:obsl rdf:type
ex:obsl gb:dataset
ex:obsl ex:department
ex:obsl ex:refYear
ex:obsl ex:amount

gb:Dataset
gb:DimensionProperty
gb:AttributeProperty
gb:MeasureProperty
gb:0bservation
ex:expenses
ex:PublicWorks
"2015"" "xsd:gYear
"5432.1"" "xsd:double

Fig. 2. Example of possible triples using the RDF Data Cube Vocabulary

Step 1: Tagging the question using KB labels Step 2: Finding best:

Stanford tokenization
Lemmatization
POS tagging

Normalize words using synsets
Tag phrases (n-grams) using the KB Index| =~
Select the best matching dataset Linked
Compute confidence score Spending
Associate RDF fragments to phrases Labels

Natural Language
question

SPARQL Step 3: Filling in the SPARQL template

Tagged phrases from step 1
Find best-matching out of our 7 templates | templates

Dataset from step 1
Find measure for the question
Compute missing SPARQL fragments

Rules for

7 Templates aggregates

Regexes + N "
SF?ARQL using Compute constraints and clauses

Fill in the SPARQL templates

SPARQL Query

LinkedSpending RDF dataset

Fig. 3. Overview of the internal steps performed by QA

to keep final performance acceptable. Furthermore, the
problem of finding the right dataset is peculiar to the
statistical question answering over linked data, since
most of the other general-purpose question answering
systems assume only one given KB, either a single
one or the union of different KBs. In statistical QA, a
system should be able to answer questions over hun-
dreds of publicly available datasets about government
spendings. For instance, the project LinkedSpending
[15] currently counts about 1K datasets. In order to
avoid ambiguities and non-sense, such as aggregating
a measure defined in a dataset over observations de-
fined in a different dataset, the creation of a unique big
dataset from the union of all given datasets is imprac-
tical.

The idea behind the solution for this step adopted
by QA3 is to choose the dataset that better “covers”
the question, that is, the one that minimizes the por-
tion of the question not referring to elements in the
dataset. This way, we can reduce the problem of find-
ing the correct dataset to the problem of tagging the
question. This is accomplished by the steps shown in
Algorithm 1.

First, an in-memory index of all literals (labels,
comments, and values) contained in each dataset is cre-
ated, associating each of them to the corresponding
URI in the RDF cube graph. As a simple optimiza-
tion, we index multiple occurrences of the same lit-
eral only once. Although lossy, since different URIs
may be associated to the same literal, this trivial com-
pression reduces by orders of magnitudes (depending

on the dataset) the footprint of the index, scaling well
even for large datasets (where chances of multiple oc-
currences are much higher).

All textual elements, that are keys in the indexes
and the question itself, are normalized, by remov-
ing the stop words and performing lemmatization by
means of the WordNet lemmatizer. For maximum
recall and resilience, the system also handles op-
tional synsets, such as those provided by WordNet, al-
though in our experiments we only used the follow-
ing two equivalence classes: {earning, revenue} and
{expenditure, spending}.

After normalization, for each dataset the ques-
tion is tagged with the corresponding index. Given a
dataset, we are able to tag the question with linear time
complexity, by applying the following approach: we
lookup the index for every n-gram from the question,
with n varying from 7 to 1. This way if our normalized
question is composed of k words, we perform O(7k)
operations, and we are able to match all phrases made
of up to 7 words. By using a negative step (as we said,
we start using 7-grams down to single words) we auto-
matically give higher priority to matchings involving
longer phrases, something desirable to avoid fragmen-
tation in the tagging and maximize the chances of a
correct tagging.

The result of the matching between O and the
dataset D can be represented as a set of pairs (C,T),
where C is a chunk of Q and T is a set of triples in
D. Each matching is associated with a quality measure
(or score), which is intuitively based on the weighted

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes 5

Algorithm 1 QA3tagger pseudocode

Require: Question Q (a string)
1: // this is performed only once and cached

: for all D € datasets do
normalize literals in D (see details in Sect. 3.1)
create index Ip

end for

: // this is performed for every given question Q
: for all D € datasets do

scorep < |Q|

10: forne7...1do

for all P = n-gram € Q do

R AR e

—_
—

12: if phrase P € Ip then

13: in Q tag P with its URL from I,

14: scorep <= scorep — n

15: else if phrase P ¢ title or description of D
then

16: scorep <= scorep — 1.1 -n

17: end if

18: end for

19: end for

20: end for

21:

22: // compute the correct dataset
23: return argmin e e (SCOrep)

percentage of Q that is covered by tagged chunks. We
tried different heuristics and weights, but we found
that the following score function has very good perfor-
mance in terms of dataset recognition:

untagged words —0.1-# words matching the dataset descr.

The lower the score, the better the tagging. In fact,
this measure corresponds to the number of words that
remained untagged (potentially related to wrong or in-
sufficient tagging) except for a reward of an extra 10%
given for any occurrence of the dataset name or de-
scription. This measure enables the system to choose
the dataset which most likely has to be used to provide
an answer to the question. Depending on the setting
(e.g., in order to improve recall), the top-k datasets can
be used as candidates, and the final choice is made in
the following steps performed by the system. In case
of a high score (that is, bad tagging), QA3 is able to
autonomously understand that it cannot compute the
correct answer, therefore refusing to answer and even-
tually increasing precision over processed answers.

3.2. Finding the SPARQL query template

The domain in which QA® operates is strongly struc-
tured, especially if we compare it to the domain in
which general purpose question answering systems are
required to work. As a consequence, the meaningful
questions (i.e., questions that can be answered using
the available KB) are likely to have a SPARQL trans-
lation which follows a limited set of well defined tem-
plates. For instance, following the running example in
Sect. 2, if the user wants to know how much her city
spent for public works in 2015, the question has to
contain all the elements needed to detect the dataset to
be used, the measure to aggregate and the aggregation
function, and the constraints to be applied to restrict
the computation on the observations in which the user
is interested. This question, like a wide range of simi-
lar questions, can be answered by using the following
SPARQL query template:

SELECT sum(?measure) {
?observation gb:dataset <dataset>
?observation <measure> ?measure
<constraints>

where <dataset> and <measure> must be re-
placed with the correct URIs, and <constraints>
must be replaced with a set of triples specifying the
constraints for the variable ?observation, repre-
senting the observations. These constraints are ex-
tracted from the question and represented as SPARQL
fragments, replacing the <constraints> place-
holder in the main template.

Another possibility is asking which department has
spent the most in 2015. In this case, the SPARQL query
will select the value of the dimension that represents
the department, and will provide the one associated
with the largest sum of money spent. Even this ques-
tion, like most of the questions that can be asked in
this domain, can be answered using a SPARQL query
which has a structure that can be used to answer many
similar questions.

In order to leverage the typical homogeneity of the
structures of these questions, we implemented a sys-
tem which allows the definition of a set of SPARQL
templates and to automatically detect the one that
should be used to provide an answer. To this end, each
template is associated with one (or possibly more) reg-
ular expressions built on the tokens of the questions.
The tokens are obtained using the Stanford parser [20],

6 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

Aggregation function | Words

sum sum, total

avg average, avg

max max, maximum, highest, largest
min min, minimum, lowest, smallest

Fig. 4. Words used to recognize aggregate functions in questions

which tokenizes the question and annotates each to-
ken with its lemma, its POS (part of speech) tag, and
its NER (named entity recognition) tag. We augment
the annotations with the elements of the knowledge
base (dataset, measure, dimension, attribute, literal)
provided by the previous step, and with a tag repre-
senting a possible aggregate function. For the latter, we
associated each aggregation function with words that
users typically use to denote the function, as reported
in Figure 4.

Thus, for each token we have the following fea-
tures:

1. the POS tag

2. the lemma

3. the word (i.e., the original text)

4. the NER tag

5. the KB tag (S: dataset, M: measure, D: dimen-
sion, A: attribute, E: entity, L: literal, O: none)

6. the aggregation tag (S: sum, A: average, M: max,

N: min, O: none)

A generalized-token is defined as a 6-tuple, where
the i-th element represents the possible set of val-
ues for the i-th feature of the actual tokens (the fea-
tures are assumed to follow the order in which they
are listed above). For instance, the generalized-token
WP |WDT, _,_,_, 'E matches against actual tokens
that have WP or WDT as POS tag, any lemma, word, and
NER tag (_), and the token must not be annotated as
entity (! E). The features that are not explicitly speci-
fied in the generalized-token (in this case the aggrega-
tion tag), are allowed to take any value (i.e., _ is im-
plicitly assumed).

A generalized-token can be followed by a # sym-
bol and by a string that represents a label name, that
can be used to get the actual token/s that matched the
generalized-token. The generalized-tokens can be used
to build more complex regular expressions. Fig. 5 re-
ports all the 7 templates currently used by QA’, with
the corresponding regular expression.

We describe in detail one of them, namely number
4, which is the most complex:

{_}* welwpT {_, ., , ,0,0}x _,_,, ,0,!0#1 {_,_,_, _M[s#2}x {_}*
—— —~— —
1 2 3 4 5 6

Each of the 6 generalized-tokens of the expression
above must match subsequent chunks of the whole
question. A question, seen as a sequence of tokens,
matches the expression above if it consists of contigu-
ous sub-sequences of tokens with the following prop-
erties:

1. any sequence of tokens ({__} *);

2. atoken with the POS tag WP or WDT;

3. any sequence of tokens, whatever their POS tag,
lemma, word, and NER are (_), without any spe-
cific KB annotation and without any specific ag-
gregation function (0);

4. atoken with any POS tag, any lemma, any word,
and any NER, without any specific KB annota-
tion (O) and with a specific aggregation function
(!0). This token is assigned the label 7 (#1);

5. any sequence of tokens with any POS tag, any
lemma, any word, and any NER, with a KB an-
notation that can be a measure (M) or a dataset
(S). The type of tag for the aggregation function
is not specified, which means it can be anything
(in practical cases, it will be none). These tokens
are assigned the label 2 (#2);

6. any sequence of tokens ({__} *).

This expression can be matched against several
questions, such as: “What is the total aid to the Anti
Corruption Commission in the Maldives in 2015?”. In
general, questions matching this expression ask for the
computation of an aggregation function, which is rep-
resented by the token with label / computed over a
measure, which is represented by the token with label
2. This expression also considers the possibility that
the measure is implicitly denoted by the name of the
dataset (this can happen, for instance, when the dataset
is about a specific measure of a set of observations - ex-
penditures of the town of Cary), or that the measure is
not explicitly mentioned. In this case, we assume that a
default measure is defined for each dataset. The default
measure is obvious for datasets with one only measure.
In case of multiple measures, our system needs to man-
ually define the default measure for the dataset. This
operation is performed just once, when a new dataset
is added to the whole KB.

The questions of this kind can be translated into
a SPARQL query with the following structure (tem-
plate):

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

RegEx

Template

Matching Query

{_}* _Ihow _Imany {_I_/_I_IOIO}* {_I_/_/_/A/D#l}+ {_}*

select <groupbyvar> count (distinct ?ans) where {
?obs gb:dataSet <dataset>
?0bs <property##1> ?ans
<constraints>
}
<groupby>
How many programs were done under the class of General Government in the expenditure of the
Town of Cary?

RegEx

Template

Matching Query

{_}* _,how _,much/high {_}+*

select <groupbyvar> sum(?measure)
?0bs gb:dataSet <dataset>
?0bs <measure> ?measure
<constraints>
}
<groupby>
How much was spent on public safety by the Town of Cary in 2010?

where {

RegEx

Template

Matching Query

,when {}~*

select distinct ?7ans where {
?0bs gb:dataSet <dataset>
?0bs <http://linkedspending.aksw.org/ontology/refDate> ?ans
<constraints>
}
When was the upgrade of the Parks-Baba Park paid?

RegEx

Template

Matching Query

{_}* WP/WDT {_/_/_/_IO/O}* _/_/_I_/O/ !O#l {_I_/_/_/M/S#Z}* {_}*

select <groupbyvar> <aggrFunct##1> (?measure)
?0bs gb:dataSet <dataset>
?0bs <measure##2> ?measure
<constraints>
}
<groupby>
What was the highest single expenditure amount proposed by the Maldives Broadcasting Corpora-
tion?

where {

RegEx

Template

Matching Query

{_}» wP|WDT {_,_,_,_,0,0}* {_,_, ,_,A|D#1}+ {_}*

select distinct ?ans where {
?obs gb:dataSet <dataset>
?0bs <measure> ?measure
?obs <property##1> ?ans
<constraints>

}

<orderbysummeasure>

Which class achieved the highest revenue for the Town of Cary?

RegEx

{_}* WP|WDT {_,_, ,_,0,0}* {_,_, , ,M|S#2}+ {_}*

select <groupbyvar> sum(?measure) where {
?0bs gb:dataSet <dataset>

?0bs <measure##2> ?measure

Template :
<constraints>
}
<groupby>
Matching Query | What was the frontex staff budget in 2005?
RegEx _,havel/be _,_,there {_}=*
ask {
?0bs gb:dataSet <dataset>
Template .
<constrailnts>
}
Matching Query | Has there been a big lottery fund grant to Stanbury Court Social Club?

Fig. 5. Pattern/Templates used by QA® and an example of matching query for each template

8 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

select <groupbyvar> <aggrFunct##1> (?measure)

where {
?0bs gb:dataSet <dataset>
?0bs <measure##2> ?measure
<constraints>

}

<groupby>

where <aggrFunct##1> has to be replaced with
the actual aggregation function, which can be derived
using the token annotated with label /, <dataset>
must be replaced with the URI of the dataset found in
the previous step, <measure###2> must be replaced
with the actual measure, using tokens labeled with 2
(or with the default measure, if no token has been la-
beled). Finally, <constraint>, <groupbyvar>
and <groupby> must be replaced with the actual
variable/clauses (possibly empty), that are derived us-
ing the KB tagging, as described in the following.

We remark that this strategy for deriving the SPARQL
template is quite general and the definition of new tem-
plates is quite simple. Although capturing all the natu-
ral language questions is not possible through a finite
set of patterns (for instance, none of the 7 patterns can
match the QALD query “Top 3 IW Council Spending
service areas?”’), as we show in Section 4 we empiri-
cally found that few expressions are enough to cover
most of the questions posed in a typical form.

3.3. Filling the query template using the annotations

The input to this step is the output of the previ-
ous two steps, i.e., the SPARQL query template, the
dataset to be used, and the tokens with the annota-
tions based on the KB tags. In particular, given the
SPARQL template, some portions of the template must
be replaced in order to obtain the final query, by using
the result of the previous KB tagging. For instance, as
stated above, <dataset> is replaced with the URI
of the dataset found in the first step, <measure##p>
(where p is a label identifier) is replaced with the actual
measure described by tokens with label p (or with the
default measure), <aggregationFunction##qg>
has to be replaced with the actual aggregation function,
which can be derived using the token annotated with
label g. The most interesting part is the construction
of the constraints and the group-by clauses. In order to
construct the constraints, we observe that

— if a literal is tagged, then it must be connected to
the observation through an attribute, which is also
reported in the annotation;

— if an entity is tagged, then it must be connected to
the observation through a dimension. The dimen-
sion could be explicitly tagged in the question, but
can also be derived by maintaining an index that
maps every entity e to the dimensions which can
take e as value;

The substring <constraints> of the template can
be thus replaced with a SPARQL fragment represent-
ing the RDF triple pattern obtained as described above.

Regarding the group-by variable and clause, we ob-
serve that a question requiring their use has to con-
tain an attribute or dimension which is not bound to a
value (literal or entity, respectively). Therefore, we can
try to find those tokens that are tagged with a dimen-
sion/attribute X to which no value is associated. We
then replace <groupbyvar> with a variable iden-
tifier, say ?groupbyvar, and ?observation is
connected to ?groupbyvar using the URI of X, and
the <groupby> placeholder is replaced with group
by ?groupbyvar. If no such attribute/dimension X
can be found, both <groupbyvar> and <groupby>
are replaced with the empty string.

4. Experimental results

We implemented the backend of QA® [4] using
Python and Java® and a web interface is available
at http://ga3.1link/. A screenshot of the sys-
tem is available in Fig. 6, where the question For
which account type of Whiteacre was spent the most?
is posed to QA’ and the results of each interme-
diate step are shown. The system finds the correct
dataset (city-of-whiteacre-spending), exe-
cutes a group-by query against the SPARQL endpoint
and finally provides capital-outlay-transfer as the an-
swer (which turns out to be correct).

The online system allows the user to freely type
questions, but it also provides her with a quick selec-
tion of the questions of the training and test sets of the
task 3 of QALD-6 challenge [31], for which the exper-
imental outcomes are described next.

3The Python code implementing the initial tagging step is avail-
able at https://github.com/atzori/ga3tagger, the
Java code implementing the following template-related steps can
be found at https://github.com/gmmazzeo/ga3, the code
of the demo web application is available at https://github.
com/gmmazzeo/ga3demo.

M. Atzori et al. / QA®: a Natural Language Approach to Question Answering over RDF Data Cubes 9

QA?3: Statistical Question Answering over RDF Cubes

SCALABLE ANALYTICS INSTITUTE

‘For which account type of whiteacre was spent the most? H Submit ‘

H Step 1 ‘ Step 2 Step 3 Answer

Dataset: city-of-whiteacre-spending

Annotations:
Chunk Subject Property Value
account type <http://linkedspending.aksw.org/ontology/city-of-whiteacre-spending-accounttype> <http://www.w3.0rg/2000/01/rdf-schema#comment> "Account Type"

Step 1 ‘ Step 2 ‘ Step 3 Answer

Regex: {_}* WPIWDT {_,_,_,_,0,03* {_,_,_,_ AID#1}+ {_}*

Sparql:

select distinct ?ans where {

?0bs gb:dataSet <dataset> .
20bs <measure> ?measure .
?obs <property##1> ?ans .

<constraints>

}

<orderbysummeasure>

Step 1 Step 2 ‘ Step 3 ‘ Answer

Spargl:

select distinct ?ans where {

?0bs gb:dataset <http://linkedspending.aksw.org/instance/city-of-whiteacre-spending> .

20bs <http://linkedspending.aksw.org/ontology/city-of-whiteacre-spending-amount> ?measure .
?obs <http://linkedspending.aksw.org/ontology/city-of-whiteacre-spending-accounttype> ?ans .
3

group by ?ans

order by desc(sum(xsd:decimal(?measure))) limit 1

Step 1 Step 2 Step 3 ‘ Answer ‘

<https://openspending.org/city-of-whiteacre-spending/accounttype/capital-outlay-transfer>

Fig. 6. Screenshot of the QA3 web interface, showing all the steps followed by the system and the final answer for an example question taken
from QALD-6

Question Set | N | Correct DS | Correct tags | Correct queries | Recall | Precision | F1-score
Training } 100 } 81 } 56 } 47 } 0.49 } 0.48 } 0.48

Test 50 42 31 27 0.57 0.56 0.56

Fig. 7. Overall results obtained by current setting of QA3 (using multiple candidate datasets) on QALD-6 training set and test

System Processed | Recall | Precision F1 F1 Global
| | | (over processed questions) (overall)
SPARKLIS (used by an expert) 50 0.94 0.96 0.95 0.95
SPARKLIS (used by a beginner) 50 0.76 0.88 0.82 0.82
QAZ3 (our system, initial tuning) 44 0.62 0.59 0.60 0.53
CubeQA 49 0.41 0.49 0.45 0.44

Fig. 8. Comparison against other QA systems, as reported by the QALD-6 independent competition

10 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

Fig. 7 reports the number of total questions (col-
umn “N”), and the results obtained by QA® [4] over
the two sets of questions, as computed by the QALD
challenge, that is, averaging precision and recall for
each answer, where some answers may be partially
correct (e.g., those returning lists of results). Besides
the average recall, precision and F1-score computed
over all the questions, it is interesting to analyze the ac-
curacy of the internal steps of QA. In particular, for the
training set, over 100 available questions, the correct
dataset (column “Correct DS”) is found for 81 ques-
tions, the correct set of tags is found for 56 questions,
and the correct query is generated for 47 questions.
QA performed even better on the test set*: over the
50 available questions, the correct dataset was found
for 42 questions, the correct set of annotations for 31
questions and the correct query for 27 questions. Fur-
thermore, Table 1 shows recall and precision for each
query, ordered by question id assigned in the QALD6
test set. Questions that QA® refuses to process due to
low confidence score are marked with a “-” symbol
in the recall and precision columns, but they are both
counted as 0 in the overall recall, precision and F1-
score in Fig. 7. Clearly, the 27 correct answers are
those with both values equal to 1 and are shown in
bold. We believe the results are extremely encouraging
because, despite the small number of patterns (only the
seven described in Fig. 5), the system was able to pro-
vide the correct answer in the majority (27/50 = 54%)
of the test questions.

A direct comparison against the other systems de-
scribed in Section 5 has been independently performed
by the QALD 6 Challenge [31], as reported in Fig. 8.
The best performer in this comparison is SPARKLIS?,
a system that does not accept natural language ques-
tions. Instead, as explained in the next section it uses a
faceted search approach, and its performance is, there-
fore, dependant on the level of expertise the user has
(values for expert and beginner are shown).

To the best of our knowledge, the only two sys-
tems that answer free natural language questions over
RDF cubes are CubeQA [17], described in the next
section, and our QA’. Compared to the state-of-the-
art CubeQA, we get a remarkable improvement of
0.62/0.41 = 51% in recall, 20% in precision. This is

“#Note that these results are not the official ones: they are slightly
different since we did some minor improvements on the prototype
after the challenge

SIn fact, it is a special version of the SPARKLIS system tailored
to statistical questions, as described in the related work section.

in part given by the ability of QA to self-evaluate the
confidence of a computed answer (thanks to the score
measure of the tagger), and also by the good expres-
sivity of the template/pattern system.

We also remark that F1 and F1 Global, i.e., the F1
measure computed over all questions (not only those
for which the system provides an answer) are respec-
tively 33% and 20% higher than those of CubeQA.
These results show that QA® provides a sensible im-
provement over the state of the art. Thanks to the flex-
ibility of the architecture, system settings and tuning
may produce results biased on precision with respect to
recall or vice versa, e.g. a larger number of candidates
to keep or higher thresholds for their scores may lead
to higher recall, while giving up answering a question
in presence of low scores or ambiguity choosing the
template would improve precision.

5. Related Work

From a general point of view, querying RDF data
through user-friendly interfaces is an active area of re-
search, with quite different approaches. To the best of
our knowledge most of the proposed work can be cate-
gorized into two main approaches: /) based on ad-hoc
user interfaces, and 2) question answering systems, ei-
ther accepting (free) natural language or constrained
natural language. Among question answering systems,
it is possible to distinguish those focusing on general
RDF data, with the majority of them using the DBpe-
dia ontology, and those called Statistical Question An-
swering systems, aiming at querying a large number of
datasets containing RDF data cubes.

Our work falls into the Statistical Question Answer-
ing category, since QA’ queries RDF data cubes by al-
lowing users to write the query the way they like, while
disambiguation and understanding are accomplished
by the system.

In the following we discuss existing work on query-
ing RDF data using the taxonomy discussed so far: /)
based on ad-hoc user interfaces, 2) question answer-
ing systems accepting natural language or CNL and 3)
statistical question answering systems, specifically ad-
dressing RDF data cubes.

5.1. Work on Interfaces to Query Linked Data

A number of very different interfaces to query RDF
data in a user-friendly way have been proposed.

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

Table 1

Per-question accuracy of QA3 (see Fig. 7 for overall accuracy)

question

recall

precision

How much was spent on public safety by the Town of Cary in 2010?

How many programs were done under the class of General Government in the expenditure of the Town of Cary?
How much did the Town of Cary earn in 2010?

Which class achieved the highest revenue for the Town of Cary?

For which account type of whiteacre was spent the most?

How much interest did the debt service of the city of Whiteacre spend?

Which expenses had the highest total amount of proposed expenditures for the Maldives?
What was the highest single expenditure amount proposed by the Maldives Broadcasting Corporation?
Which Ugandan output had the highest budget in 2014?

What was the average Uganda health budget amount in Namutumba District?

How many suppliers did the Newcastle city council use for education?

How many directorates does the Newcastle city council have?

Which suppliers did the Waltham Forest Council utilize for recycling?

On the Waltham Forest Council, how much money was given to the Forest Recycling Project?
How many narratives are there for Cheshire West and Chester council spending in the category of Marketing?
What are the top 3 expenditure categories in Cheshire West and Chester council spending?
Which priorities does the insurance fund have for the City of Redacre?

How many divisions have safety priority in the City of Redacre spending?

What was the total Wandsworth spending in 2013 from the housing department?

How much money does Wandsworth spendt on general internal repairs?

Top 3 IW Council Spending service areas?

Under which directorate does the IW Council service area have the highest revenue?

Which departments of the city of Springfield had a higher budget in 2004 then in 2005?
What is the highest single budget amount in the city of Springfield for public safety?

Which of the Californian cities received the highest amount of money?

Under which caption did Livermore receive the highest amount of money in 2011?

What is the average Washington DC teacher salary?

Which position has the highest average salary in Washington DC?

How many big lottery found grants were given in the South West in 2012?

Has there been a big lottery fund grant to Stanbury Court Social Club?

On which expenses in Gloucestershire was spent more than 10000000 pound in total?

How much money did Cheltenham Borough Homes receive?

How much did the department for work and pensions pay for Research into Infrastructure?

What are the geographic regions in the UK Country Regional Analysis from the scottish executive and its departments for forests?

How much cost the implementation of Midwifery Education in Nangarhar?

How much was spent on food security by Cordaid in Afghanistan?

What was the total expenditure on Materials and Supplies of the City of Toronto in 2010?
How much did Ireland charities pay in total governance costs?

What was the frontex staff budget in 2005?

What was the smallest amount for industrial and commerecial facilities in the Dublin City Council Expenditure Budget of 2013?

Which country received the highest financial crisis aid?

How much was charity spending was expended for charitable activities in Haiti?

What is the amount given by the Metropolitan Police Department to Cybernational?

What was the highest amount under the sub-account for layout and construction of buildingsin Cameroon in 2009?
When did Canada get Nominet Trust funding for the last time?

Which admin was reponsible for the most total running expenses in Armenia in 2009?

How much is the total amount of statuatory transfers in Nigerias proposed budget of 2013?

How much did the New York City Council Members give in 2015 for the Manhattan youth?

What was the amount of the smallest community grant in the Fingal County Council expenditure budget?

When was the upgrade of the Parks-Baba Park paid?

P O e e e e e e e e

.333333

' _ O e e O O o L= == e T e T = e T N =]

— - O

_ O = O = = O O

—_ O e e e e e e e e

.333333

—_ O e e O O e o _ O e O O e e e e O e e e O

=)

-0 = O = O o O

12 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

Exploratory browsing allows users to navigate thro-
ugh the triples of the RDF graph by starting from an
entity (node) and then clicking on a property (edge),
thus moving to another entity. Although the users do
not need to know beforehand the exact names of prop-
erties, this approach can be effectively used only for
exploring the graph in the proximity of the initial en-
tity. Furthermore, this approach is not suitable for ag-
gregate queries, which are the real first-class citizens
in the world of RDF data cubes.

Faceted search supports a top-down search of RDF
graph, by starting with the whole dataset as poten-
tial results, and enabling the user to progressively
restrict the results by defining some constraints on
the properties of the current result set [14,10,9,12].
This approach was recently applied to the RDF data
cubes [23], following the long tradition of graphical
user interfaces for OLAP analysis, based on charts rep-
resenting different kinds of aggregation of the under-
lying data.

Another user-friendly system for querying RDF
data is SWiPE [5,3,33], which makes the infobox of
WikiPedia pages editable as if it was a fillable form.
The user can type the constraints using the value fields
of the infobox, according to the By-Example Struc-
tured Query (BEStQ) paradigm — a QBE-inspired in-
terface to query DBpedia or similar RDF data. While
this paradigm is very effective for finding lists of en-
tities with specific properties and/or temporal con-
straints [33] starting from a Wikipedia page, its gener-
alization to the RDF data cubes is not trivial.

5.2. Work on Question Answering over Linked Data

Natural language interfaces are the most challeng-
ing solutions to the problem of querying RDF data.
These systems generate a SPARQL query from any
user question expressed in natural language. As we
stated in the introduction, the current state-of-the-art
system is Xser [32], that works in two steps. In the
first step, phrases are extracted from the question us-
ing a structured perceptron that can identify variables,
entities, classes, and relation phrases. By means of
a semantic parser, the predicate-argument structure
of phrases is derived, thus obtaining the structure of
the query intention. In the second step, the semantic
phrases are mapped against the elements of the knowl-
edge base (specifically, DBpedia) by using Wikipedi-
aMiner [26] for entities, and an ad-hoc lexicon that
maps classes and relation phrases.

Another recent QA system is AskCO [2] that com-
putes the answer of a natural language question by
finding a source code in a RDF dataset called CodeOn-
tology [1] that, if executed, returns the expected an-
SWer.

The difficulty of the QA task can be reduced by
using a controlled natural language (CNL), ie., a
language constrained by an ad-hoc grammar that
can be easily interpreted by machines, yet natural
enough to be easily understood by non-technical users.
Some of the CNL-based systems that participated in
past QALD challenges are Squall2spargl [11] and
GFmed [22].

Squall2spargl [11], is a CNL system that trans-
lates queries written using its SQUALL language into
SPARQL. The translation is based on about 100 rules
of a Montague grammar. The chunks of the SQUALL
sentence must be annotated by the user, and written
in a form that enables the direct mapping to elements
of the knowledge base. The language enables users to
both query and update the knowledge base, and uses
all the SPARQL features. Therefore, its Squall2sparql
interface to RDF seems to push the CNL idea to its ex-
treme, inasmuch as it achieves the greatest expressive
power, but the need to manually annotate the chunks of
the sentences severely limits its usability — a fact rec-
ognized by the author who proposes the use of a meta-
level interface to guide the user in writing annotated
questions.

GFMed [22] is a CNL system specialized for the
biomedical domain. It is based on the Grammatical
Framework [29], which enables the definition of gram-
mars by means of an abstract syntax and one or more
concrete syntaxes. The abstract syntax defines the con-
cepts that can be expressed as non-terminal symbols
and the rules for their composition. The concrete gram-
mar defines how the trees specified through the ab-
stract syntax are linearized into sentences of a specific
language (e.g., English, SPARQL, etc.). The possibil-
ity of defining more concrete syntaxes allows GF to
serve as a powerful tool for translating sentences from
one language to another. The GFMed system consists
of a GF program that defines a grammar allowing
to pose questions over the knowledge bases such as
DrugBank, Diseasome and SIDER. The GF program
is completed with a post-processing procedure for han-
dling literals, that can not be defined using the con-
crete syntax. GFMed proved to be very accurate on the
biomedical questions of QALD-4. The main limitation
of this approach is the need to write the grammar rules
for all the concepts of the underlying the dataset, which

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes 13

can be a very hard task for large ontologies such as
DBpedia.

Therefore, while the accuracy of both systems is
very high, the former suffers from usability issues,
since the user needs to type non-natural phrases in the
question, and the latter has scalability problems, since
the number of rules of its grammar depends on the size
of the knowledge base.

Authors in [24] also proposed CANalLl, a system
that overcomes the above issues, yet providing high
accuracy. CANaLI relieves the usability issues derived
from the use of a CNL by means of an interactive in-
terface having no scalability issues, since it combines
a restricted set of rules, which do not depend on the
knowledge base, with the use of an index, queried at
run-time to find the tokens that are consistent with the
grammar of the CNL and the semantics of the knowl-
edge base.

None of the previously proposed systems, either
based on full or controlled natural language, has been
specialized for question answering over RDF data
cubes. As also discussed next and in Section 6, RDF
data cubes pose specific problems not arising in gen-
eral question answering, therefore it is not known how
to adapt the above systems to handle statistical ques-
tion answering.

5.3. Work on Statistical Question Answering over
RDF Data Cubes

Question answering over RDF cubes is a brand new
challenge, which raises issues different from those of
question answering on a “general” knowledge base
[16]. In fact, questions in this context are likely to
be very specific, i.e., oriented towards extracting sta-
tistical information. Thus, a system called to inter-
pret these questions must be as accurate as possible
in interpreting specific features of the typical OLAP
queries, such as different kinds of aggregation or con-
straints on the dimensions. Furthermore, questions on
statistical data are more sensitive to misinterpretations.
For instance, while a partial interpretation of a gen-
eral question might also yield an acceptable answer
(maybe with non-perfect precision), an aggregation
query missing a constraint is likely to yield a totally
WIong answer.

Although datasets, benchmarks and problem defini-
tion have been proposed only recently, there are al-
ready two other existing works that focused on Statis-
tical Question Answering over Linked Data. The first
system is called CubeQA [17], and reached an aver-

age 0.4 F-measure at Task3 of QALD-6 challenge, as
described in the previous section. The system has a
lightweight template module that matches the kind of
question (what, how much, when, etc.) against a table
that provides the expected result type (countable, un-
countable, date, etc.). This improves the results pro-
vided by the main step, consisting of parsing the query
and creating a tree. Elements of the tree are matched
against a pre-computed index that allows to find the
most probable dataset and dimensions and generate the
corresponding SPARQL query.

In contrast, our approach is extremely general in the
first steps, based on entity and property recognition
within the query. We do not create a tree, trying in-
stead to tag as many numbers and words (either single
or multiple words) in the question as possible. We do
this for each possible dataset, using an in-memory in-
dex. We then rank solutions according to a score, and
the one with higher rank is chosen. Rank increases ac-
cording to the portion of the question that has been in-
terpreted/understood (tagged); also, ranking decreases
on the number and size of recognized entities (multi-
ple word tagging is preferred). We then use an origi-
nal template system, with an ad-hoc language, that ex-
ploits NLP to express SPARQL templates based on the
grammar structure of the query. We also propose par-
tial templates, that (if matched) establish a portion of
the SPARQL query (e.g. a new triple pattern, the use of
group by over a given attribute, or the use of a specific
aggregate function). The matching templates are then
used together to generate the final SPARQL query. An
interesting fact related to our approach is that each step
we run provides insights on how well it has been per-
formed. For instance, if a large portion of the question
is not tagged, it means that most of it was not under-
stood and, therefore, chances of obtaining the right an-
swer in the following steps are low. In these cases, we
can maximize precision over recall, not providing an
answer. The same optimization can be applied for the
template-based mechanism, since some templates are
mutually exclusive (e.g. either SUM or COUNT can
be used as a final aggregate function). Furthermore, the
template mechanism is very simple and it easily allows
new patterns to be input in order to answer more ad-
vanced questions. These techniques result in a sensible
increment of the precision and recall of our QA® over
CubeQA, as certified by the QALD-6.

A very different approach is presented in the work
by Sébastien Ferré [10,9]. Based on the adaptation [12]
of the general purpose Faceted Search system called
SPARKLIS [10,9], the system allows users to incre-

14 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

mentally add new constraints. In particular, disam-
biguation and most of the semantically difficult tasks
are not done automatically but left to the user. Al-
though SPARKLIS takes care of also generating a nat-
ural language question that helps users to verify that
the input constraints are leading to what she is will-
ing to search for, this system cannot be considered a
Natural Language approach to Question Answering.
One peculiarity of the SPARKLIS system is therefore
that achieved precision and recall strongly depend on
the user who interacts with the system. According to
the QALD-6, the system has been tested by two users
with different skill level, and in both cases SPARKLIS
achieved a higher F-measure than both CubeQA and
our QA’.

6. Discussion

In this section we discuss the lessons we learned
from implementing a system tailored for the specific
task of statistical question answering.

6.1. Analytical vs. flat model

As previous work already noticed [16,19], there
are good reasons why an analytical-aware representa-
tion of the data should be published instead of a flat
one. In DBpedia, especially if we focus on the Yago
categories, information needed to answer the ques-
tion “What is the 2014 public transportation budget of
Frankfurt?” may be found in triples like the following:

:Frankfurt :publicTransportBudget2014Eur
"5.6E7"""xsd:decimal

Unfortunately, this representation may not be useful
for statistical reasoning or analytics, e.g. “In which
year Frankfurt had the higher public transportation
budget” or “What is the average public transportation
budget in Germany”’, because some data needed to fil-
ter or to aggregate is “hidden” within the property
name.

The adopted solution in literature is an ad-hoc form
of reification where a specific OLAP ontology is used
[7]. This data model must be taken into account by
any question answering system, as the matching be-
tween the question and the data follow a different path.
In particular, answers need to be derived from statisti-
cal observations, selecting the appropriate dimensions
among many, and values often need to be further pro-
cessed, e.g., by applying aggregation.

This inherent structure of data naturally poses a lim-
itation to the form of reasonable questions that a QA
system working in this domain should handle. As a
consequence, a solution like QA’, based on a simplified
view of the natural language, has proven to provide
good results. The approach presented in this paper is
driven by a highly constrained and regular nature of the
model underlying statistical observations and therefore
it cannot be easily generalized to KBs with a more flat
and general schema like DBpedia.

6.2. Handling multiple datasets

One of the most important decisions to take while
designing a statistical QA system is how to handle the
multitude of datasets. Questions in task 3 of QALD-
6 testbed all refer to one dataset per query. In fact,
more complex queries (such as comparisons among
countries or cities) could be answered by two differ-
ent subqueries, each using one dataset only. Point-
ing to the right dataset is of paramount importance
because the result will be definitely wrong other-
wise. We learned that the first phases of the system,
that recognize references to properties and entities
within the question, are very important to exclude
a vast number of datasets unrelated to the question.
Still, given the similarities among some datasets con-
tents (e.g., between town_of_cary_revenues
and town_of_cary_expenditures) the search
for the right dataset will contain more than one solu-
tion in the first phases of the QA system. Later steps,
which actually try to match tagged elements with ex-
isting patters and/or generating the SPARQL query, are
useful to further disambiguate. Therefore, in our expe-
rience finding the right dataset is something that may
involve the whole system, until the last step of gener-
ating the results. In fact, getting no results may suggest
a wrong interpretation of the question and a different
interpretation leading to another SPARQL query could
be then assumed in order to improve the recall.

6.3. Scalability

In terms of time performance, our implementation
scales linearly with the number of datasets. With in-
memory indexes it is acceptable for the 50 datasets
used at QALD, but both time and memory resources
required for, e.g., thousands of datasets, can be de-
manding. In any case, QA® can be adapted to scale
to tens of thousands of datasets by substituting the
forall D € datasets loops in Algorithm 1 and the

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes 15

many indexes I; with a single trie (prefix tree) with
keys from all the datasets. In this case, the structure can
stay offline and, for each n-gram, multiple taggings for
different datasets can be done by a single access to the
trie. Moreover, each of the first two steps of QA® (tag-
ging the question and finding the best template) can be
run in parallel, by sharding the datasets across differ-
ent machines. The third step (filling the SPARQL tem-
plate) could then be based on the overall best-matching
SPARQL template among the templates resulting the
best in each shard. However, we did not focus thor-
oughly on these optimization aspects of our implemen-
tation because they were beyond the scope of this pa-
per.

6.4. Precision-recall trade off

Every step in QA’ is associated with an internal
score that represents our confidence in that specific de-
cision/interpretation. For instance, a small percentage
of tagged tokens, more datasets matching the question,
or finding more than one template for a given ques-
tion, they are all cases that can be weighted to nega-
tively affect the score. Going further with low scores
leads to higher recall but potentially lower precision,
and the converse is also true. The system can be there-
fore tailored for a specific application and/or coupled
with a user interface that interacts with the user asking
for more (potentially wrong) results. In order to im-
prove recall, another improvement would be to “guess”
correct references to constraints, properties and mea-
sures required by a template but missing, by exploiting
tagged entities/observations. This can be done, e.g., by
ranking features associated to each entity [8].

6.5. Insight into the internal scores

QA already provides the user with information
about the results of the three processing steps (see Fig.
6), including the potential failures. This helps the ad-
vanced user getting an idea on how reliable the final
answer, when generated, is. Showing a failure rather
than an empty answer has usually some advantages, in
particular when the expected answer is represented by
a set. Although QA® uses some internal scores in the
process of obtaining the final SPARQL query, they are
not currently surfaced to the user. Having some scores
associated with each step may help the user to get an
idea about the quality of the answer. However, simply
outputting the internal scores currently in use might be
confusing for the user, since the score are meaning-

ful only a relative basis. For instance, we choose the
database among a list of candidates because it has the
highest score computed as coverage of the NL ques-
tion in input with the elements of the KB. This cannot
be easily recast in terms of an absolute probability that
formally justifies the selection of the database chosen
by our system. Nevertheless, users will find the relative
scores provided by the system useful. In particular, the
current feedback provided in the “Step 17 tab of Fig. 6,
that is, the list of words/phrases recognized and inter-
preted within the input question, can shed much light
and show to the user whether the important parts of
her question were recognized and taken into account
by the system.

An interesting approach, which might be investi-
gated in future work, is based on the re-generation of
the natural language question associated with the (pos-
sibly wrong) SPARQL query computed by QA®, show-
ing the NL question the system is actually answer-
ing [28].

6.6. Expressiveness of the patterns

Perhaps the most important lesson we learned is
that having detailed patterns is very important (if the
question contains “average of ...”, this must be taken
into account) but also that specific patterns may sup-
port only few questions. One naive approach may be
to generate all possible patterns and generate its natu-
ral language representation, then trying the best match-
ing with the current question. The exponential explo-
sion in the search space needs to be addressed, perhaps
with original compact representations. As described in
the paper, we instead developed small, possibly over-
lapping patterns that may occur together in the same
question. These can be seen as “features” in the ques-
tion, each associated with a fragment of SPARQL. The
combination of the features found in the question leads
to the complete SPARQL query, unless the features
cannot combined together (in this case another alterna-
tive is taken).

We believe that having a good, comprehensive set
of these features, that is, question patterns associ-
ated with SPARQL fragments, may lead to high pre-
cision and recall. A possible path to further reduce
the search space may be to exploit results in learning
connections between semantic representations and nat-
ural language expressions of those semantics [21,27,
13,30]. Our future work is to extend and improve our
manually-crafted set of patterns using machine learn-
ing techniques. In particular, the QALD-6 testbed,

16 M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

containing both the natural language questions and the
SPARQL queries, can be used as input to statistical
learners that can learn, e.g., that “average of ...” can
be associated to the SPARQL fragment AVG (.. .),
leading to new automatically-learned patterns.

7. Conclusions

In this paper we have presented QA’, a system sup-
porting statistical question answering over RDF data
cubes. The system combines the syntactical tags ob-
tained using the Stanford tokenizer and POS tagger
with semantic tags derived by QA® from the available
knowledge base. An extensible set of regular expres-
sions, defined over the tokens, is used to detect the
query template to be used. The template is then filled in
by using the previously found KB tags. We remark that
this approach is effective in the context of RDF data
cubes because the meaningful questions naturally tend
to follow structured patterns, while most of the effec-
tiveness would be lost in a more general context (e.g.,
questions posed on DBpedia KB), where the variabil-
ity of the structure of meaningful question is much
higher. The preliminary results are encouraging, and
we are currently working on improving all the three
steps of the translation process used by QA. In partic-
ular, since the wrong annotations often do not enable
all the placeholders in the query template to be filled
in, the performances are likely to be improved by con-
sidering additional datasets and tagging results, when-
ever the choice of one dataset does not yield a valid
SPARQL query. This is likely to provide a correct an-
swer to some of the questions for which the correct
dataset is assigned the same quality measure as other
wrong datasets, and even to some questions for which
a wrong dataset is initially detected as the best candi-
date. Low scores in the first step must be appropriately
weighted with the higher scores obtained in the later
steps.

The tagging system could be also improved by
allowing an approximate matching. This possibility,
however, is not obvious since while the approximate
matching will improve the recall of the tagging, it
could also worsen the precision. A more sophisticated
handling of synonyms, taking care of a fuzzy semantic
relativity could also improve the answers of questions
expressed with different terms with respect to the one
found in the dataset.

Finally, we are also working on improving the set
and internal language of SPARQL templates, in order

to enable the use of more advanced SPARQL features
(es., the HAVING clause, the sub-queries, etc.).

Acknowledgements

This research was supported in part by a 2015
Google Faculty Research Award, NIH 1 U54GM
114833-01 (BD2K) and Sardegna Ricerche (project
OKgraph, CRP 120).

References

[1] Mattia Atzeni and Maurizio Atzori. CodeOntology: RDF-
ization of source code. In The Semantic Web - ISWC
2017 - 16th International Semantic Web Conference, Vi-
enna, Austria, October 21-25, 2017, Proceedings, Part II,
pages 20-28, 2017. https://dx.doi.org/10.1007/
978-3-319-68204-4_2.

Mattia Atzeni and Maurizio Atzori. What is the cube root of
277 Question answering over CodeOntology. In The Semantic
Web - ISWC 2018 - 17th International Semantic Web Confer-
ence, Monterey (CA), United States, October 8-12, 2018, Pro-
ceedings, 2018.

Maurizio Atzori, Shi Gao, Giuseppe M. Mazzeo, and Carlo
Zaniolo. Answering end-user questions, queries and searches
on wikipedia and its history. /EEE Data Engineering Bulletin,
39(3):85-96, 2016. Available online at http://sites.
computer.org/debull/Al6sept/p85.pdf.
Maurizio Atzori, Giuseppe M. Mazzeo, and Carlo Zaniolo.
QA3 demo website. http://ga3.link/.

Maurizio Atzori and Carlo Zaniolo. =~ SWiPE: searching
wikipedia by example. In Alain Mille, Fabien L. Gandon,
Jacques Misselis, Michael Rabinovich, and Steffen Staab, ed-
itors, Proceedings of the 21st World Wide Web Conference,
WWW 2012, Lyon, France, April 16-20, 2012 (Companion
Volume), pages 309-312. ACM, 2012. http://doi.acm.
org/10.1145/2187980.2188036.

[6] SDMX community. Statistical Data and Metadata eXchange.
https://sdmx.org/. Standard ISO 17369:2013.

Richard Cyganiak and Dave Reynolds. The RDF Data Cube
Vocabulary (W3C Recommendation). https://www.w3.
org/TR/vocab-data-cube/, January 2014.

Andrea Dessi and Maurizio Atzori. A machine-learning ap-
proach to ranking RDF properties. Future Generation Com-
puter Systems, 54:366-377, 2016. http://dx.doi.org/
10.1016/7j.future.2015.04.018.

Sébastien Ferré. Expressive and scalable query-based faceted
search over SPARQL endpoints. In Peter Mika, Tania Tudo-
rache, Abraham Bernstein, Chris Welty, Craig A. Knoblock,
Denny Vrandecic, Paul T. Groth, Natasha F. Noy, Krzysztof
Janowicz, and Carole A. Goble, editors, The Semantic Web
- ISWC 2014 - 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings,
Part 11, volume 8797 of Lecture Notes in Computer Science,
pages 438-453. Springer, 2014. http://dx.doi.org/
10.1007/978-3-319-11915-1_28.

[2

—

3

—

[4

=

[5

—

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes 17

Sébastien Ferré. SPARKLIS: a SPARQL endpoint explorer for
expressive question answering. In Matthew Horridge, Marco
Rospocher, and Jacco van Ossenbruggen, editors, Proceed-
ings of the ISWC 2014 Posters & Demonstrations Track a
track within the 13th International Semantic Web Conference,
ISWC 2014, Riva del Garda, Italy, October 21, 2014., volume
1272 of CEUR Workshop Proceedings, pages 45-48. CEUR-
WS.org, 2014. Available online at http://ceur-ws.
org/Vol-1272/paper_39.pdf.

Sébastien Ferré. SQUALL: the expressiveness of SPARQL
1.1 made available as a controlled natural language. Data &
Knowledge Engineering, 94:163-188, 2014. http://dx.
doi.org/10.1016/j.datak.2014.07.010.
Sébastien Ferré. Sparklis: An expressive query builder for
spargl endpoints with guidance in natural language. Seman-
tic Web, 7(1):95-104, 2016. http://dx.doi.org/10.
3233/SW-150172.

Aldo Gangemi, Valentina Presutti, Diego Reforgiato Recupero,
Andrea Giovanni Nuzzolese, Francesco Draicchio, and Misael
Mongiovi. Semantic web machine reading with FRED. Se-
mantic Web, 8(6):873-893,2017. https://doi.org/10.
3233/SW-160240.

Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Chris-
tian Herta, Scott Robinson, Michaela Biirgle, Holger Diiwiger,
and Ulrich Scheel. Faceted wikipedia search. In Busi-
ness Information Systems, 13th International Conference, BIS
2010, Berlin, Germany, May 3-5, 2010. Proceedings, pages
1-11. Springer, 2010. https://doi.org/10.1007/
978-3-642-12814-1_1.

Konrad Hoffner. LinkedSpending project.
linkedspending.aksw.org/.

Konrad Hoffner and Jens Lehmann. Towards question answer-
ing on statistical linked data. In Proceedings of the 10th Inter-
national Conference on Semantic Systems, SEMANTICS 2014,
Leipzig, Germany, September 4-5, 2014, pages 61-64, 2014.
https://doi.org/10.1145/2660517.2660521.
Konrad Hoffner, Jens Lehmann, and Ricardo Usbeck. CubeQA
- question answering on RDF data cubes. In Paul T. Groth,
Elena Simperl, Alasdair J. G. Gray, Marta Sabou, Markus
Krétzsch, Freddy Lécué, Fabian Flock, and Yolanda Gil, edi-
tors, The Semantic Web - ISWC 2016 - 15th International Se-
mantic Web Conference, Kobe, Japan, October 17-21, 2016,
Proceedings, Part I, volume 9981 of Lecture Notes in Com-
puter Science, pages 325-340, 2016. http://dx.doi.
org/10.1007/978-3-319-46523-4_20.

Konrad Hoffner, Michael Martin, and Jens Lehmann. Linked-
spending: Openspending becomes linked open data. Seman-
tic Web, 7(1):95-104, 2016. http://dx.doi.org/10.
3233/SW-150172.

Konrad Hoffner, Sebastian Walter, Edgard Marx, Ricardo Us-
beck, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Sur-
vey on challenges of question answering in the semantic web.
Semantic Web, 8(6):895-920, 2017. https://doi.org/
10.3233/SW-160247.

Dan Klein and Christopher D. Manning. Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics - Volume 1, ACL
’03, pages 423-430, Stroudsburg, PA, USA, 2003. Associa-
tion for Computational Linguistics. https://doi.org/
10.3115/1075096.1075150.

http://

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Michael Levison, Greg Lessard, Craig Thomas, and Matthew
Donald. The Semantic Representation of Natural Language.
Bloomsbury Publishing, 2013. ISBN 1441162534.

Anca Marginean. GFMed: Question answering over biomed-
ical linked data with grammatical framework. In Linda Cap-
pellato, Nicola Ferro, Martin Halvey, and Wessel Kraaij, ed-
itors, Working Notes for CLEF 2014 Conference, Sheffield,
UK, September 15-18, 2014., volume 1180 of CEUR Work-
shop Proceedings, pages 1224-1235. CEUR-WS.org, 2014.
Available online at http://ceur-ws.org/Vol-1180/
CLEF2014wn-QA-Marginean2014.pdf.

Michael Martin, Konrad Abicht, Claus Stadler, Axel-
Cyrille Ngonga Ngomo, Tommaso Soru, and Soren Auer.
Cubeviz: Exploration and visualization of statistical linked
data. In Aldo Gangemi, Stefano Leonardi, and Alessandro Pan-
conesi, editors, Proceedings of the 24th International Confer-
ence on World Wide Web Companion, WWW 2015, Florence,
Italy, May 18-22, 2015 - Companion Volume, pages 219—
222. ACM, 2015. http://doi.acm.org/10.1145/
2740908.2742848.

Giuseppe M. Mazzeo and Carlo Zaniolo. Answering con-
trolled natural language questions on RDF knowledge bases. In
Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie
Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefani-
dis, editors, Proceedings of the 19th International Conference
on Extending Database Technology, EDBT 2016, Bordeaux,
France, March 15-16, 2016, Bordeaux, France, March 15-16,
2016., pages 608-611. OpenProceedings.org, 2016. https:
//doi.org/10.5441/002/edbt.2016.60.

John P. McCrae. The Linking Open Data cloud diagram.
http://lod-cloud.net/.

David Milne and Ian H. Witten. An open-source toolkit
for mining wikipedia. Artificial Intelligence, 194:222—
239, January 2013. http://dx.doi.org/10.1016/7.
artint.2012.06.007.

Srini Narayanan and Sanda Harabagiu. Question answering
based on semantic structures. In Proceedings of the 20th In-
ternational Conference on Computational Linguistics, COL-
ING 04, Stroudsburg, PA, USA, 2004. Association for Com-
putational Linguistics. https://doi.org/10.3115/
1220355.1220455.

Axel-Cyrille Ngonga Ngomo, Lorenz Bithmann, Christina
Unger, Jens Lehmann, and Daniel Gerber. Sorry, i don’t
speak SPARQL.: translating SPARQL queries into natural lan-
guage. In Daniel Schwabe, Virgilio A. F. Almeida, Hart-
mut Glaser, Ricardo A. Baeza-Yates, and Sue B. Moon, edi-
tors, 22nd International World Wide Web Conference, WWW
’13, Rio de Janeiro, Brazil, May 13-17, 2013, pages 977-
988. ACM, 2013. http://doi.acm.org/10.1145/
2488388.2488473.

Aarne Ranta. Grammatical Framework: Programming with
Multilingual Grammars. CSLI Publications, Stanford, 2011.
ISBN 1-57586-626-9.

Daniil Sorokin and Iryna Gurevych. End-to-end represen-
tation learning for question answering with weak supervi-
sion. In Semantic Web Challenges: 4th SemWebEval Chal-
lenge at ESWC 2017, volume 769 of Communications in
Computer and Information Science, pages 70-83. Springer,
Cham, October 2017. https://doi.org/10.1007/
978-3-319-69146-6_7.

18

M. Atzori et al. / QA3 : a Natural Language Approach to Question Answering over RDF Data Cubes

[31] Christina Unger, Axel-Cyrille Ngonga Ngomo, and Elena

Cabrio. 6th open challenge on question answering over linked
data (QALD-6). In Harald Sack, Stefan Dietze, Anna Tor-
dai, and Christoph Lange, editors, Semantic Web Challenges
- Third SemWebEval Challenge at ESWC 2016, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Revised Selected Pa-
pers, volume 641 of Communications in Computer and In-
formation Science, pages 171-177. Springer, 2016. https:
//doi.org/10.1007/978-3-319-46565-4_13.

[32] Kun Xu, Yansong Feng, Songfang Huang, and Dongyan Zhao.

Question answering via phrasal semantic parsing. In Exper-

[33]

imental IR Meets Multilinguality, Multimodality, and Interac-
tion - 6th International Conference of the CLEF Association,
CLEF 2015, Toulouse, France, September 8-11, 2015, Pro-
ceedings, pages 414426, 2015. https://doi.org/10.
1007/978-3-319-24027-5_43.

Carlo Zaniolo, Shi Gao, Maurizio Atzori, Muhao Chen, and Ji-
aqi Gu. User-friendly temporal queries on historical knowledge
bases. Information and Computation, 259(3):444-459, 2018.
https://doi.org/10.1016/5.ic.2017.08.012.

