
Undefined 0 (2018) 1–0 1
IOS Press

Combining RDF and SPARQL with
CP-theories to reason about preferences in a
Linked Data setting
Vito Walter Anelli a, Renato De Leone b, Tommaso Di Noia a, Thomas Lukasiewicz c, Jessica Rosati a,b,∗

a DEI, Polytechnic University of Bari, Italy
E-mail: {vitowalter.anelli, tommaso.dinoia, jessica.rosati}@poliba.it
b School of Science and Technology, University of Camerino, Italy
E-mail: {renato.deleone, jessica.rosati}@unicam.it
c Department of Computer Science, University of Oxford, UK
E-mail: thomas.lukasiewicz@cs.ox.ac.uk

Abstract. Preference representation and reasoning play a central role in supporting users with complex and multi-factorial
decision processes. In fact, user tastes can be used to filter information and data in a personalized way, thus maximizing their
expected utility. Over the years, many frameworks and languages have been proposed to deal with user preferences. Among them,
one of the most prominent formalism to represent and reason with (qualitative) conditional preferences (CPs) are conditional
preference theories (CP-theories). In this paper, we show how to combine them with Semantic Web technologies in order to
encode in a standard SPARQL 1.1 query the semantics of a set of CP statements representing user preferences by means of
RDF triples that refer to a “preference” OWL ontology. In particular, here we focus on context-uniform conditional (cuc) acyclic
CP-theories [44]. The framework that we propose allows a standard SPARQL client to query Linked Data datasets, and to order
the results of such queries relative to a set of user preferences.

Keywords: preferences, ceteris paribus, CP-theories, CP-nets, Linked Data, preference queries, SPARQL, DBpedia

1 Introduction

Dealing with user preferences is an important as-
pect of every application designed to provide person-
alized information to the end-user. The original inter-
est in preferences can be found in decision theory, as
a way to support complex, multifactorial decision pro-
cesses [21], and nowadays every personalized system
needs a preference model to capture what the user likes
or dislikes. Once the user model has been represented,
it is then exploited to filter information coming from
a data source, e.g., a database, in order to provide a
ranked list of results matching the order encoded in the
preferences of the user.

*Corresponding author

Query languages usually let us specify the informa-
tion that we want to be returned (hard constraints),
where the result set contains elements with no specific
order with reference to user preferences. It contains all
those resources that exactly match the constraints rep-
resented by the query. As a matter of fact, if just one
of the requirements representing the query is not ful-
filled, the result set can be empty. At the same time,
returning huge and unordered sets of answers could be
useless and even counter-productive. A possible way
to bypass these issues is to allow the language to rep-
resent both hard constraints—used to return only rele-
vant results—and soft ones, i.e., preferences—to rank
the results by fulfilling a user’s tastes. Approaches to
preference representation can be either quantitative or
qualitative [12]. The former are based on a total order-

0000-0000/18/$00.00 c© 2018 – IOS Press and the authors. All rights reserved

2

ing of the outcomes, given by a scoring function, while
the latter enable the representation of partial orders,
since preferences are treated as independent dimen-
sions. From a user perspective, a qualitative approach
is more natural than the quantitative one [37]. Indeed,
in the first case, the user has just to provide pairwise
qualitative comparisons, while in the second case, she
has to assign a value to many alternatives, which very
often are represented in a multi-attribute setting. Re-
garding the Linked (Open) Data world, the notion of
qualitative preferences in SPARQL queries was intro-
duced in [40] by Siberski et al., whose preference-
based querying language extends SPARQL through the
introduction of solution modifiers (the PREFERRING
clause). Their query formulation retrieves only items
that are the most preferred ones, or equivalently un-
dominated. The work [27] builds on the earlier ap-
proach of [40], but adds preferences at the level of
filters, rather than as a solution modifier. The Pref-
SPARQL syntax of [27] needs no additional solution
modifier to express qualitative preferences, as it lever-
ages the expressive power of SPARQL 1.1. However,
the approaches proposed in [40] and [27] both have
an important limitation: they are not able to provide
an order of all the available outcomes that reflects
user preferences. That is, they return only the undom-
inated (a.k.a. Pareto-optimal) results, i.e., those out-
comes best satisfying user preferences. Unfortunately,
the size of the resulting answer set could be too small
to be of practical use. This fosters moving beyond
the Pareto-optimal set identification to a top-k sce-
nario [37], where firstly available outcomes are or-
dered, even if with the ties implied by a qualitative ap-
proach, from best (most preferred) to worst (less pre-
ferred) according to a given user’s preferences, and
then the first k results are returned.

In this paper, the focus is on model-based prefe-
rence reasoning, which relies on specific assumptions
about the structure of the preference relation [23]. The
simplest assumption that can be made is that the tar-
get ranking of a set of resources, described in terms
of multiple attributes, can be represented as a lexico-
graphical order [13]. Lexicographical preference mod-
els define orders of importance on the attributes that
describe the objects of a domain. As an example, con-
sider the choice of a movie. Typically, the most im-
portant attribute that one considers is the genre of the
movie (e.g., drama, superhero, etc.). Then, among the
movies of the preferred genre, the choice can rely on
the movie’s actor (e.g., Tom Hanks, Christian Bale,
etc.). The assumption of a lexicographical order re-

stricts significantly the hypothesis space, but induces
a bias rarely justified in practical applications. In fact,
preferences on individual attributes are generally not
independent of each other. With reference to the movie
domain, Tom Hanks may be preferred to Christian
Bale, if the movie genre is drama, while Christian Bale
may be preferred in case of a superhero film. CP-nets
[3] offer a language to express preferences on the val-
ues of single attributes, and, at the same time, allow to
model dependencies of this type. A CP-net is a quali-
tative graphical representation that reflects conditional
dependence and independence of preferences under a
ceteris paribus (all else being equal) interpretation. It
is a compact representation of a complex preference
relation (partial order), where each node refers to a
single attribute and is associated with a function that
assigns a preference relation on the values of that at-
tribute to each combination of the values of the par-
ent attributes. More precisely, CP-nets require that the
user specifies (i) for any attribute A of interest, which
other attributes can impact her preferences for values
of A (the parents of A), and (ii) for each instantia-
tion of the parent attributes, the preference ordering
over values of A. Points (i) and (ii) could make CP-
nets a rather rigid formalism, compared to the expres-
sive needs of a user. Furthermore, some statements that
are very natural for the user to assess cannot be repre-
sented within a CP-net. Conditional preference theo-
ries (or CP-theories) [44] are a more general and flexi-
ble formalism for qualitative preferences that allows to
go beyond the expressiveness limitations of CP-nets.

In our previous work [39], we focused on the well-
known CP-net graphical language and have addressed
the problem of preference representation and reason-
ing with Linked Data from different perspectives. We
have proposed a vocabulary to represent statements
formulated according to the ceteris paribus seman-
tics and have shown how to encode a CP-net by
means of this vocabulary. Inspired by [27], we have
also explained how to embed such a compact prefe-
rence model into a SPARQL 1.1 query in order to ac-
cess semantic data in a personalized way. The present
work extends the leading motivation and the approach
of our previous paper [39], but embraces the more
general and flexible formalism of CP-theories. We
point out that the approach proposed here only deals
with context-uniform conditional (cuc) acyclic CP-
theories [44], which are a special type of CP-theories
exposing nice polynomial computational properties
while comparing outcomes.

3

This paper heavily extends the approach presented
in [39] in many points. First of all, here we deal
with the much more expressive CP-theories instead
of CP-nets. A new extended vocabulary as well as a
completely new algorithm to encode CP-theories in
SPARQL is also proposed. Moreover, an implemen-
tation of the overall framework is presented together
with experimental evaluations targeted at assessing the
users’ experience in representing their preferences as
CP-theories and the performance of the tool. The main
contributions of this work can be summarized as fol-
lows:

– presentation of RDF vocabularies to represent
qualitative preference statements over Linked
Data, built on top of the vocabulary proposed
in [39], but adjusted for more general preference
statements;

– an encoding into RDF triples of the qualitative
preferential information represented by a CP-
theory and the exploitation of theoretical results
of [43] to compute a partial order over items for
cuc-acyclic cases;

– a procedure to translate conditional preference
statements into a SPARQL 1.1 query able to re-
trieve a ranked list of resources whose order re-
flects the user preferences;

– an application framework that meets a user’s
needs while representing her preferences as a CP-
theory encoded in RDF and that eventually allows
a SPARQL-enabled software agent to retrieve a
ranked list of resources according to the users’s
tastes;

– An experimental evaluation to verify the effec-
tiveness of the proposed approach.

The rest of this paper is structured as follows. Sec-
tion 2 presents the motivating scenario that fostered the
overall approach. The semantics of CP-theories and a
recap on some relevant results and theorems is pro-
vided in Section 3. In Section 4, we propose an RDF
vocabulary to represent a CP-theory with the preferen-
tial statements of a user, and then we show how to em-
bed the RDF version of the CP-theory into a SPARQL
query able to retrieve a ranked list of results ordered
according to user’s preferences. Section 5 describes the
tool that supports the user both in the formulation of
her preferences under the CP-theories semantics and
in retrieving the resources of interest ordered accord-
ing to her preferences. The results on a user study are
reported in Section 6, where we also measure the per-
formance of the implemented system on a synthetic

dataset. Section 7 provides an overview of related work
about preference reasoning and enabling query lan-
guages with preferences. Conclusions close the paper.

2 Motivating scenario

The leading scenario behind the framework that we
propose here is that of a distributed system where a
user may pose a query to a SPARQL endpoint and have
the returned results ordered with respect to a set of
personal preferences on a specific knowledge domain.
For instance, a user might be willing to get a list of
books to read by querying DBpedia and then have it
ranked according to a set of preferences hosted on their
own Web page. A possible implementation of the ap-
proach that we propose is depicted in Fig. 1,1 where the
main building blocks required to implement the whole
framework are shown:

– a reference model to encode and reason with pref-
erences (CP-theory in our case);

– an ontological vocabulary to represent prefer-
ences by adopting Web languages;

– a tool able to handle and manage preferences
as well as to encode them in a set of SPARQL
queries.

In order to implement the whole framework, we pro-
pose the following deployment and interaction steps.

Deploy.
– Model user preferences. We adopt CP-

theories [43] as reference model to repre-
sent user preferences. As we will see in Sec-
tion 3, they are a formalism to represent and
reason with sets of qualitative preferences.2

– Encode preferences in RDF by means of a
preference ontology. We developed an OWL
ontology to represent CP-theory statements
encoding user preferences (see Section 4).

– Publish user preferences publicly on the
Web. The aim is to foster a principled adop-
tion of user preferences by systems inter-
ested in providing a personalized access to

1For ease of presentation, in this paper, we use DBpedia as the
main dataset to query. The approach can be adapted to any Linked
Data dataset.

2The interest here is not whether such preferences are automat-
ically learned from data or manually modeled and set by a human
agent.

4

Fig. 1. A graphical representation of the proposed approach. The Deploy and Interact steps only rely on the adoption of standard technologies
and languages.

data available in the Linked Data cloud.
User preferences can be encoded and pub-
lished in an RDF file.

Interact.

– Use SPARQL to get user preferences. A pre-
ference handler loads3 the preference model
of the user encoded in RDF by means of a
general purpose SPARQL query engine.

– The preference handler formulates SPARQL
1.1 queries able to retrieve and order re-
sources by taking into account user prefer-
ences. Standard SPARQL queries are formu-
lated in order to rank the result set with ref-
erence to the preferences expressed by the
user.

A strong requirement that we had in mind while de-
veloping our solution was to use only standard Web
technologies and languages to implement the overall
framework. Indeed, we selected RDF to model user

3See SPARQL 1.1 Update specification at https://www.w3.
org/TR/sparql11-update/#load.

preferences and the power of SPARQL 1.1 to perform
preference-based reasoning in order to rank the re-
sults of a query. In fact, as we will see in Section 4.2,
advanced features of the last version of the SPARQL
query language can be employed to perform prefe-
rence reasoning over a model based on CP-theories. In
Section 2, all the details needed to implement the De-
ploy and Interact steps in a pure Linked Data setting
will be provided.

3 CP-theories

Utility functions can be considered as the ideal tool
for representing and reasoning with preferences, but
the total order that they allow to represent does not
always reflect the actual user model. Partial orders
among preferences are a more natural way to represent
a user’s tastes. Qualitative statements, e.g., “given u, I
prefer xi over x′i”, permit a system to encode partial
orders among user preferences, thus granting the rep-
resentation of a more realistic user model. Let us con-
sider the following example. The previous example is
a typical conditional statement where the core notion

5

of a CP-statement is explicitly represented. We have
that when a particular condition u is true, a user prefers
to enjoy items where also xi is true, rather than items
where x′i is true, given that xi and x′i cannot be true at
the same time.

Example 1 (Books)
“Giorgio has just finished his exams and wants to re-
lax with a book. Giorgio can read both English and
French, but he would like to improve his French to en-
rich his curriculum and so he prefers to read French
books. Giorgio prefers reading crime books over au-
tobiographical ones for French books, since he be-
lieves that crime plots are more captivating and there-
fore more useful while learning a foreign language.
The reverse order holds for English books. Giorgio is a
good reader and, therefore, given an English book, he
prefers those being part of a saga. The literary genre
and the presence of a subsequent work have not the
same importance to Giorgio: in case of English books,
he considers the choice on the genre more important
than the one dependant on sequels, while the opposite
happens for French books. Finally, for books charac-
terized by a sequel, Giorgio regards positively the pres-
ence of a cinematographic version”. �

By looking at Example 1, we find it quite hard (even
impossible) to directly represent Giorgio’s preferences
by means of a score assigned to his preferential state-
ments. In fact, Giorgio’s preferences can be better ex-
pressed as qualitative (pairwise) comparisons.

Relevant frameworks to represent and reason with
qualitative preferences are built according to the ce-
teris paribus semantics [28] and specifically consist of
conditional preference networks (or CP-nets) [3] and
a formalism along similar lines to CP-nets, but with a
richer language of preference statements, namely, con-
ditional preference theories (or CP-theories) [44].

Syntax. Formally, given a set of variables V , a CP-
theory Γ is a set of preference statements ϕ of the gen-
eral form:

uϕ : xϕ > x
′

ϕ [Wϕ],

where uϕ is an assignment to a set of variables
Uϕ ⊂ V , xϕ and x

′

ϕ are different assignments to
some variable Xϕ /∈ Uϕ, and Wϕ is some subset of
V − Uϕ − {Xϕ}.

Semantics. The interpretation of ϕ is that, given uϕ,
xϕ is strictly preferred to x

′

ϕ, all else being equal, but
irrespective of the values of variables in Wϕ.

ϕ1 > : CF > CUK [∅]
ϕ2 CUK : LGA > LGC [SW]

ϕ3 CF : SWNo > SWY es[LG]

ϕ4 CUK : SWY es > SWNo[∅]
ϕ5 CF : LGC > LGA[∅]
ϕ6 SWY es : FY es > FNo[∅]
ϕ7 SWNo : FNo > FY es[∅]

Table 1
The CP-theory ΓC−LG−SW−F.

That is, ϕ compactly states that for all assignments
w, w

′
to Wϕ and assignments t to Tϕ = V − Uϕ −

{Xϕ} −Wϕ, tuϕxϕw is preferred to tuϕx
′

ϕw
′
.

In what follows, we will use the word outcome to
indicate a complete assignment to all the variables in
V and denote the set of all outcomes as O. For the
statement ϕ, we denote by ϕ∗ the set of pairs of out-
comes (tuϕxϕw, tuϕx

′

ϕw
′
), where t is an assignment

to Tϕ, andw,w
′

are assignments toWϕ. Further defin-
ing Γ∗ = ∪ϕ∈Γϕ

∗, it is then natural to define for the
CP-theory Γ a strict partial order >Γ, induced by Γ on
the set of outcomes O, as the transitive closure of Γ∗.
The CP-theory formalism allows to express the usual
CP-net ceteris paribus statements by simply consid-
ering Wϕ = ∅ and identifying Uϕ with Pa(X), the
parents of a variable X , that is, variables which the
preferences on X depend on. However, as anticipated
in Section 1, under the stricter CP-net formalism, for
each variable X , a parent set Pa(X) must be defined
and instantiated when the preference order over val-
ues of X is established. This is not required in CP-
theories, where you can find more statements related
to the same variable X , but with different sets U . In
addition, CP-theories allow stronger conditional prefe-
rence statements than CP-nets, which are natural for
users to express. For example, they represent a formal-
ism even more general than TCP-nets [4], an enhance-
ment of CP-nets where (conditional) relative impor-
tance between variables can be expressed. TCP-nets
can be represented through statements with W con-
taining at most one variable. Moreover, there are state-
ments, such as I prefer xi over x

′

i irrespective of the
values of all other variables, that cannot be expressed
in CP-nets or TCP-nets, but correspond in the new for-
malism of CP-theories to> : x > x

′
[V −{X}], where

> is the assignment to an empty set of variables.

Example 2 (Books cont’d)
The overall profile of Giorgio may be modelled by
means of the CP-theory ΓC−LG−SW−F, that is, the

6

set of statements given in Table 1. There, a set of bi-
nary variables V = {Country, LiteraryGenre, Sub-
sequentWork, FilmV ersion} (abbreviated as C,
LG, SW, and F, respectively) is considered. Their do-
mains are given by:

– dom(Country) = {CF , CUK} (for France and
United Kingdom),

– dom(LiteraryGenre) = {LGC , LGA} (forCri-
me fiction and Autobiographical novel),

– dom(SubsequentWork) = {SWY es, SWNo}
(indicating if a book has a sequel or not),

– dom(FilmV ersion) = {FY es, FNo} (indicating
whether there is a cinematographic version of the
book or not). �

For a CP-theory Γ, the preference ranking over out-
comes >Γ introduced above, can be equivalently in-
duced under the worsening swap semantics. Hereafter,
we use the notation o(Xi) = xi to indicate that the
variable Xi is assigned the value xi in o, and analo-
gously o({Xj , . . . , Xj+k}) = {xj , . . . , xj+k} to state
that Xj = xj , . . . , Xj+k = xj+k in o.

Given two outcomes o and o
′

of O, there is a wors-
ening swap from o to o

′
, if there exist a variable

Xi ∈ V − {Xj , . . . , Xj+k} −W,xi, x′i ∈ dom(Xi)
and an assignment xj , . . . , xj+k to the variables set
{Xj , . . . , Xj+k} such that:

(i) o(Xi) = xi and o′(Xi) = x′i,
(ii) o({Xj , . . . , Xj+k}) = o′({Xj , . . . , Xj+k}) =
{xj , . . . , xj+k},

(iii) o(V −{Xi}− {Xj , . . . , Xj+k}−W) = o′(V −
{Xi} − {Xj , . . . , Xj+k} −W), and

(iv) xj . . . xj+k : xi > x′i[W] ∈ Γ.

The preference relation >Γ over O is therefore the
transitive closure of worsening swaps.

A CP-theory Γ is consistent, if it has a model, i.e., if
there exists a strict total order > that satisfies Γ, which
is equivalent to>⊇ Γ∗, that is,> extends>Γ. In [43],
it is proved that the irreflexivity of >Γ (or equivalently
the acyclicity of Γ∗) is a necessary and sufficient con-
dition for consistency.

The consistency of a CP-theory implies that there
are no cycles generated by >Γ. Avoiding cycles is of
paramount importance, as they introduce conflicting
information while ordering the outcomes in O. Let us
consider the ordering represented in Figure 2, where an
edge from oi to oj represents oi >Γ oj . As we cannot
establish what is the correct ordering of the outcomes

due to the cycle created by o2 and o3, we could even
have situations where we cannot compute the most
preferred (undominated) outcome. For example, sup-
pose in Figure 2, we do not have o1. What would then
be the best solution for the user in this case?

Fig. 2. An example of cycle among outcomes.

A necessary condition for consistency is local con-
sistency. Consider a CP-theory Γ, a variable X ∈ V ,
and an assignment a to a set of variables A ⊆ V . An
ordered pair (x, x

′
) of X values is validated by a, if

there exists a statement ϕ of the form u : x > x
′
[W]

in Γ, such that a extends u, that is, a projected to Uϕ
gives u.

The local ordering �Xa (Γ) (abbreviated as �Xa)
on X values is defined as the transitive closure of the
set of pairs (x, x

′
) validated by a. Γ is locally consis-

tent, if �Xα is irreflexive for all variables X and out-
comes α. Local consistency is a necessary condition
for consistency, since if Γ is not locally consistent, then
there exist an outcome α, a variableX , and a sequence
x1, . . . , xk of values of X with associated statements
ui : xi > xi+1[Wi] ∈ Γ such that α extends ui and
α(X) = x1 = xk.

This gives a worsening swapping sequence from α
to α (only involving changing variable X), thus im-
plying that >Γ is not irreflexive, or equivalently that Γ
is not consistent. In general, deciding whether a CP-
theory is locally consistent is coNP-complete, but it
can be shown that if the size of the parent sets and the
size of the domain sets are bounded by a constant, then
deciding local consistency is polynomial [44]. More-
over, for CP-nets and TCP-nets, local consistency is
always guaranteed [44].

Given a CP-theory Γ, there are several kinds of di-
rected graphs that can be defined on the set of variables
V . For S, T ⊂ V , we indicate with S → T the set
of edges {(X,Y) : X ∈ S, Y ∈ T}, omitting the set
brackets, if S or T is a singleton set, e.g., abbreviating
S → {Y } with S → Y .

The dependency graph H(Γ) consists of edges
Uϕ → Xϕ for all ϕ in Γ, that is, all the pairs of the
form (Y,Xϕ), with ϕ ∈ Γ and Y ∈ Uϕ. That is, the

7

edge (Y,X) belongs to H(Γ) iff there is some condi-
tional preference statement ϕ ∈ Γ that makes the pref-
erences for X conditional on Y . Relative importance
is not encoded in H(Γ).

On the other side, we define G(Γ) to contain Uϕ →
Xϕ and Xϕ → Wϕ for all ϕ in Γ, i.e., G(Γ) =
H(Γ) ∪ {Xϕ → Wϕ | ϕ ∈ Γ}. G(Γ) contains both
dependency and relative importance information: it is
H(Γ) with the addition of edges (X,Z), if there is any
statements ϕ representing a preference on values of X
irrespective of the value of Z (then, X is more impor-
tant than Z, with importance meant as in the TCP-net
formalism [4]).

A CP-theory Γ is fully acyclic, if G(Γ) is acyclic.
For fully acyclic CP-theories, consistency and local
consistency are equivalent [44].

For a CP-theory Γ and assignment a to a set of
variables A ⊆ V , we can define another directed
graph Ja(Γ) on V made of the set of edges Uϕ →
{Xϕ}∪Wϕ for allϕ ∈ Γ and also the set {Xϕ} →Wϕ

for all ϕ ∈ Γ such that Uϕ ⊂ A and a extends uϕ.
A CP-theory Γ is context-uniformly conditionally

acyclic (or cuc-acyclic), if it is locally consistent, and
for each outcome o ∈ O, Jo(Γ) is acyclic. It can be
proved that a cuc-acyclic CP-theory is always consis-
tent [43]. The condition of cuc-acyclicity is weaker
than the full acyclic one, and it requires only H(Γ) to
be acyclic [44] instead of G(Γ).

Cuc-acyclicity implies a less expressive power in
terms of preferences that the user may express, but, as
we will see in the following, it grants a nicer compu-
tational complexity when ranking a set of outcomes
(along with guaranteeing always consistency, while
deciding the consistency of general CP-nets and CP-
theories is PSPACE-complete [24]).

Example 3
To better clarify the expressive limits of cuc-acyclic
CP-theories, we consider the following CP-theory Γ̂
whose H(Γ̂) is shown in Figure 3.

(1) Crime Fiction : Agatha Christie > Andrea Camilleri [∅]
(2) Isaac Asimov : Science Fiction > Crime Fiction [∅]

Due to the interrelation between the two preferences,
H(Γ̂) is cyclic, and so Γ̂ cannot be cuc-acyclic.

Although there might be cases where cuc-acyclicity
is a strong limitation in the representation of user pref-
erences, it represents a limited subset of all possible
CP-theories that can be used to model a user profile. �

In what follows, we show two results, both proved in
[44], which determine a strict partial order extending

Fig. 3. The graph H(Γ̂) representing preferences in Example 3.

>Γ. The approaches proposed to compare outcomes
are strongly related to the ordering queries defined in
[3] and already discussed in [39] for CP-nets, and can
be seen as a generalization of Corollary 4 and Theorem
5 of [3]. The first result is applicable for a fully acyclic
CP-theory Γ. It proposes to compare two outcomes by
looking (using the appropriate local ordering) at their
value on each of the most important variables on which
they differ, where importance is defined according to
the graph G(Γ).

In Theorem 1, we denote with ∆(α, β) the set of
variables of V on which outcomes α and β differ,
i.e., ∆(α, β) = {Y ∈ V |α(Y) 6= β(Y)}. If α 6=
β, we build Θ(α, β) as the set of G

′
-maximal ele-

ments of ∆(α, β), being G
′

the transitive closure of
G(Γ). Θ(α, β) is therefore the set of variables Y ∈
∆(α, β) such that there exists no Z ∈ ∆(α, β) with
(Z, Y) ∈ G′

.

Theorem 1
Let Γ be a locally consistent and fully acyclic CP-
theory, and let the binary relation �p(Γ) on O be de-
fined as follows, for any pair of outcomes α and β:
α �p(Γ) β iff α 6= β and α(Y) �Yα β(Y) for all
Y ∈ Θ(α, β). Then, �p(Γ) is a strict partial order ex-
tending >Γ, and the comparison between any pair of
outcomes requires polynomial time.

The second result deals with cuc-acyclic CP-theories
[44]. In Theorem 2, ∆(α, β) is still used to denote
the set of different variables in outcomes α and β.
If α 6= β, Θ

′
(α, β) is defined as the set of .α-

undominated elements of ∆(α, β), being .α the tran-
sitive closure of Jα(Γ): Y ∈ Θ

′
(α, β) iff there exists

no Z in Θ
′
(α, β) with (Z, Y) ∈ .α.

Theorem 2
Let Γ be a cuc-acyclic CP-theory, and let the binary
relation �Γ on O be defined as follows, for any pair
of outcomes α and β: α �Γ β iff α 6= β and
α(Y) �Yα β(Y) for all Y ∈ Θ

′
(α, β). Then, �Γ is

8

a strict partial order extending >Γ, and the compari-
son between any pair of outcomes requires polynomial
time.

Theorem 2 proposes a more general approach to
generate a strict partial order onO, which although re-
quiring a pretty strong condition on the CP-theory, i.e.,
cuc-acyclicity, does not need full acyclicity. In particu-
lar, if Γ is fully acyclic, and α and β are two outcomes
to compare, then Jα(Γ) ⊆ G(Γ) and so .α ⊆ G

′
.

Therefore, Θ
′
(α, β) ⊇ Θ(α, β). This implies that if

α �Γ β then α �p(Γ) β, so that �Γ is a closer ap-
proximation of >Γ than �p(Γ).

Section 4.2 will ground on this more general Theo-
rem 2 to formulate a SPARQL query able to rank out-
comes according to user preferences encoded in a CP-
theory model.

Example 4 (Books cont’d)
Relative to the CP-theory ΓC−LG−SW−F with Gior-
gio’s preferences (see Table 1), the use of Theorem 2
produces the following sound ranking solution:

〈
CFLGCSWNoFNo,(
CFLGCSWNoFY es, CFLGASWNoFNo

)
,

CFLGASWNoFY es, CFLGCSWY esFY es,(
CFLGCSWY esFNo, CFLGASWY esFY es

)
,

CFLGASWY esFNo, CUKLGASWY esFY es,

CUKLGASWY esFNo, CUKLGASWNoFNo,

CUKLGASWNoFY es, CUKLGCSWY esFY es,

CUKLGCSWY esFNo, CUKLGCSWNoFNo,

CUKLGCSWNoFY es

〉
,

where outcomes within round parentheses are not
comparable.

As an example, we may consider the outcome
CFLGCSWNoFNowhich is favoured in the compar-
isons made according to the order�Γ over every other
outcome. In fact, the set

Θ
′
(CFLGCSWNoFNo, CFLGCSWNoFY es)

coincides with the set of distinct variables in the com-
pared outcomes, namely,

∆(CFLGCSWNoFNo, CFLGCSWNoFY es),

being both equal to {F}, and the preference ϕ7 can be
used to locally order the first outcome over the second
one. Analogously,

Θ
′
(CFLGCSWNoFNo, CFLGASWNoFNo)

is equal to

∆(CFLGCSWNoFNo, CFLGASWNoFNo)

= {LG},
and the preference ϕ5 can be exploited. The set

Θ
′
(CFLGCSWNoFNo, CFLGASWNoFY es)

coincides with

∆(CFLGCSWNoFNo, CFLGASWNoFY es

= {LG,F},
and the preferences ϕ5 and ϕ7 can be exploited for the
variables LG and F , respectively. While

∆(CFLGCSWNoFNo, CFLGCSWY esFY es)

= {SW,F},
it holds that

Θ
′
(CFLGCSWNoFNo, CFLGCSWY esFY es)

is composed of the only variable SW , and the prefe-
rence ϕ3 can be used for this comparison. The prefe-
rence ϕ3 can also be used when dealing with

Θ
′
(CFLGCSWNoFNo, CFLGCSWY esFNo),

which coincides with the set

∆(CFLGCSWNoFNo, CFLGCSWY esFNo)

= {SW}.
As for Giorgio, SubsequentWork takes priority over
LiteraryGenre for French books, according to ϕ3, and
takes priority over FilmVersion, because of the prefe-
rence ϕ6 (or ϕ7), it follows that the set of distinct vari-
ables

∆(CFLGCSWNoFNo, CFLGASWY esFY es)

has three elements {LG,SW, F}, while

Θ
′
(CFLGCSWNoFNo, CFLGASWY esFY es)

= {SW},
and the preference ϕ3 can be used in this case. For the
last comparison involving France, the preference ϕ3 is
still determinant, as

∆(CFLGCSWNoFNo, CFLGASWY esFNo)

= {LG,SW},

9

but Θ
′
(CFLGCSWNo FNo, CFLGA SWY esFNo) =

{SW}. When comparing the outcome CFLGCSWNo

FNo with any outcome o′ in which CUK appears,
Θ

′
contains only the undominated variable Country,

and the preference ϕ1 can be used to advantage
CFLGCSWNoFNo over o′. �

4 CP-theories and Linked Open Data

As we stated in Section 1, the target of this work
is twofold. On the one hand, we want to supply the
user with a vocabulary to represent qualitative state-
ments formulated in terms of ceteris paribus seman-
tics. On the other hand, we aim to provide an encod-
ing of user preferences that can be used in a top-k
query answering scenario. In this section, we start by
proposing a first ontology that allows a system to rep-
resent preferential statements according to CP-theories
in a very straightforward way and an extended version
to manage the directed graph Jo(Γ) on V introduced
in Section 3 and exploited in Theorem 2. Note that
RDF triples encoding the directed graph can be auto-
matically derived from the original preferential state-
ments. In Section 5, we provide a description of an
implemented tool to infer the RDF version of the di-
rected graph, starting from a set of conditional prefer-
ences. We deal with the complementary target in Sec-
tion 4.2, where we show how to employ a user profile
represented as an instantiation of the extended ontol-
ogy to encode the corresponding preferences in a stan-
dard SPARQL query able to retrieve and rank resources
in a personalized way.

Figure 4 shows the ontology that we modeled to
express user profiles in terms of CP-theory state-
ments4. The main idea behind the modeling of the on-
tology is that we may express preferences on prop-
erties of items that the user is looking for, e.g.,
dbo:literaryGenre, dbo:country, dbo:
subsequentWork, or potentially dbo:filmVer-
sion. Hereafter, the ontology in Figure 4 will be re-
ferred to as the lite ontology. The aim of the lite ontol-
ogy is that of creating an ontological vocabulary pro-
viding all the elements to syntactically represent con-
ditional preference statements in a theory Γ. By means
of this ontology, it is possible to encode whatever pre-
ference ϕ in its general form uϕ : xϕ > x

′

ϕ [Wϕ].

4The corresponding OWL file is available at http:
//sisinflab.poliba.it/semanticweb/lod/
ontologies/cpt_light.owl

Fig. 4. A graphical representation of the lite version of the ontology
proposed to represent conditional statements.

The ontology is composed by four main classes and
nine properties. The class Value represents possible
values of a variable. If we look at the book Good-
Knyght! in Example 5, we see that the “actual values”
for which the user expresses a preference are com-
posed by both a property (e.g., dbo:country) and
its related object (e.g., db:United Kingdom). This
is the reason why the class Value is the domain of the
two properties attribute and value. The former
mapping the property, the latter mapping the object.
Condition is used to express the conditional part uϕ
of a preference statement uϕ : xϕ > x

′

ϕ [Wϕ], which
is also the condition for the relative importance [4] of
the variable Xϕ over variables in Wϕ in case Wϕ 6= ∅.
It is the domain of the property contains, whose
range is Value. The class Preference represents
the whole conditional statement ϕ. The properties hav-
ing Preference as domain reflect the structure of
the preferential statement “given a Condition,
I prefer a Value over another Value, option-
ally irrespectiveOf some other variables”. The
class Variable is used to model the variables of a
CP-theory, and it is domain of variableDomain,
whose range is Value. Finally, we have the bound
property needed to explicitly state if the value as-
sociated to an attribute is an actual value (as for
dbo:country and dbo:literaryGenre) or if it
represents the situation that we (do not) have a triple
involving the attribute, as for dbo:subsequent-
Work or dbo:filmVersion. Here, we adopted the
modeling choice of representing directly the condi-
tions generated by the combination for the values of
variables in Uϕ instead of relating the variables them-

10

selves. As an example, in case we have “Given an En-
glish book that is part of a saga, I prefer. . . ”, with
reference to the previous example, the corresponding
encoding will be5

cpl:combined-cond a cpl:Condition ;
cpl:contains cpl:c1 ;
cpl:contains cpl:s1 .

Here, cpl:combined-cond represents uϕ as a
whole, while cpl:c1 and cpl:s1 represent the val-
ues x1 and x2 composing uϕ = x1x2.
We will see how this modeling choice will be useful
when embedding the CP-theory into a SPARQL query.

Notice that such classes and predicates are sufficient
for the user to express the CP-theory with her pref-
erential statements, and to facilitate the user experi-
ence even further, we built a user-friendly tool, where
preferences related to a specific domain (e.g., books or
movies) can be added. The aforementioned tool will be
extensively described in Section 5.

Example 5 (Books cont’d)
With respect to Giorgio’s preference “given an English
book, he prefers those being part of a saga”, if we
look in DBpedia, we may find, for instance, the book
GoodKnyght!. Indeed, we have:

@prefix db: <http://dbpedia.org/resource/>
@prefix dbo: <http://dbpedia.org/ontology/>

db:GoodKnyght! a dbo:Book ;
dbo:country db:United_Kingdom ;
dbo:subsequentWork db:Whizzard! .

From the previous RDF statements, we see that Gior-
gio’s preference refers to values of objects in a triple
with reference to a specific predicate. Indeed, given
a set of resources of type dbo:Book such that the
value for dbo:country is db:United Kingdom,
he prefers those with an associated triple whose predi-
cate is dbo:subsequentWork. In order to be fully
compliant with the Linked Data technological stack,
we need a vocabulary/ontology that allows users to
represent their preferences on different attributes of re-
sources that they might be interested in. Hence, with
reference to the ontology in Fig. 4, we have the follow-
ing RDF triples modeling the preference introduced at
the beginning of this example.

5Here, we use the prefix cpl to denote <http:
//sisinflab.poliba.it/semanticweb/lod/
ontologies/cpt_light.owl#>

@prefix cpl: <http://sisinflab.poliba.it/
semanticweb/lod/ontologies/cpt_light.owl#>

@prefix db: <http://dbpedia.org/resource/>
@prefix dbo: <http://dbpedia.org/ontology/>

Variables
cpl:country a cpl:Variable;
cpl:bound true;
cpl:variableDomain cpl:c1,cpl:c2.

cpl:subsequentWork a cpl:Variable;
cpl:bound false;
cpl:variableDomain cpl:s1, cpl:s2.

Values allowed for each variable
cpl:c1 a cpl:Value;
cpl:attribute dbo:country;
cpl:value db:United_Kingdom.

cpl:c2 a cpl:Value;
cpl:attribute dbo:country;
cpl:value db:France.

cpl:s1 a cpl:Value;
cpl:attribute dbo:subsequentWork;
cpl:value cpl:subsequentWorkYes.

cpl:s2 a cpl:Value;
cpl:attribute dbo:subsequentWork;
cpl:value cpl:subsequentWorkNo.

Condition
cpl:cond a cpl:Condition;
cpl:contains cpl:c1.

Preference
cpl:pref a cpl:Preference;
cpl:given cpl:cond;
cpl:prefer cpl:s1;
cpl:over cpl:s2.

�

Once we have defined and modeled Γ in RDF, in or-
der to compare two outcomes α and β as in Theorem 2,
we may build the RDF version of the directed graph .α
on V (see Section 3).

To this aim, the lite ontology is extended as shown
in Figure 56 to what we call the full ontology. Hence,
starting from a set of preferences represented via the

6The corresponding OWL file is available at http:
//sisinflab.poliba.it/semanticweb/lod/
ontologies/cpt_full.owl

11

Fig. 5. A graphical representation of the full ontology proposed to
represent conditional statements.

lite ontology, we derive its full version such that, once
instantiated with an outcome α, it represents .α. The
derivation step is performed by adding new statements
via the following relations:

moreImportantThan has Variable both as do-
main and as range, and it is used to model the
transitive closure of dependency and (uncondi-
tional) relative importance information, i.e., for
the transitive closure of edges Uϕ → {Xϕ}∪Wϕ,
and, if Uϕ = ∅, for {Xϕ} →Wϕ, for any ϕ.

conditionallyMoreImportantThan takes into
account conditional relative importance informa-
tion. Its range is an instance of the new class
InstanceOfRelativeImportance, which
is used to represent a pair (uϕ, Z), Z ∈ Wϕ, for
a statement ϕ with Uϕ 6= ∅. In fact, the class
InstanceOfRelativeImportance is the
domain of the property hasCondition, whose
range is the Condition instance representing
uϕ, and of the hasLessImportantVariable
property, whose range is the Variable in-
stance for Z. In the following, we say “X is
conditionallyMoreImportantThan Y
under the Condition C” when X is linked via
conditionallyMoreImportantThan to
an instance of the class InstanceOfRelative-
Importance, which, in turn, is linked by has-
Condition to a Condition C and by has-
LessImportantVariable to a Variable Y .

Both properties must act as transitive relations. There-
fore, we add more statements to the original prefer-
ences by means of the following rules involving the
transitive closure of property moreImportantThan

and then, for pairs of variables (Y, Z) not linked by it,
the transitive closure of property conditionally-
MoreImportantThan.

– if variable Y is moreImportantThan a vari-
able X and at the same time variable X is
conditionallyMoreImportantThan a va-
riableZ, under a conditionC not involving values
of Y , then we add the RDF statements represent-
ing that “Y is conditionallyMoreImpor-
tantThan Z under the condition C”;

– if Y is conditionallyMoreImportantThan

a variable X under a condition C, X is at the
same time moreImportantThan a variableZ,
and the condition C does not involve any value
of Z, then the additional fact we add is “Y is
conditionallyMoreImportantThan Z
under the condition C”;

– if Y is conditionallyMoreImportantThan

a variable X under a condition C, and X is
conditionallyMoreImportantThan a va-
riable Z under a condition C ′, then the addi-
tional fact added to the knowledge base is “Y is
conditionallyMoreImportantThan Z
under the condition C ′′”, where C ′′ = C ∧ C ′ is
the condition joining C and C ′, but only if C∧C ′
does not contains values of Y , Z or two different
values of any other variable.

According to the properties just introduced, given a
pair of outcomes (α, β), if there exist no variableX

′ ∈
∆(α, β) that is moreImportantThan X and no
variableX

′′∈ ∆(α, β) that is conditionallyMore-
ImportantThan (u, X), with α extending u, then a
variable X is in Θ

′
(α, β).

Example 6 (Books cont’d)
The full encoding corresponding to ΓC−LG−SW−F for
Giorgio’s preferences in Table 1, is represented in List-
ing 17. �

@prefix cpt: <http://sisinflab.poliba.it/semanticweb/
lod/ontologies/cpt_full.owl#>

@prefix db: <http://dbpedia.org/resource/>
@prefix dbo: <http://dbpedia.org/ontology/>

cpt:country1 a cpt:Value;
cpt:attribute dbo:country;
cpt:value db:United_Kingdom.

cpt:country2 a cpt:Value;
cpt:attribute dbo:country;

7For conciseness, the prefix cpt is always assumed in the
following for <http://sisinflab.poliba.it/
semanticweb/lod/ontologies/cpt_full.owl#
>.

12

cpt:value db:France.
cpt:genre1 a cpt:Value;

cpt:attribute dbo:literaryGenre ;
cpt:value db:Crime_fiction.

cpt:genre2 a cpt:Value;
cpt:attribute dbo:literaryGenre ;
cpt:value db:Autobiographical_novel.

cpt:sw1 a cpt:Value;
cpt:attribute dbo:subsequentWork;
cpt:value cpt:subsequentWorkYes.

cpt:sw2 a cpt:Value;
cpt:attribute dbo:subsequentWork;
cpt:value cpt:subsequentWorkNo.

cpt:film1 a cpt:Value;
cpt:attribute dbo:filmVersion;
cpt:value cpt:filmVersionYes.

cpt:film2 a cpt:Value;
cpt:attribute dbo:filmVersion;
cpt:value cpt:filmVersionNo.

cpt:conditionC1 a cpt:Condition;
cpt:contains cpt:country1.

cpt:conditionC2 a cpt:Condition;
cpt:contains cpt:country2.

cpt:conditionSW1 a cpt:Condition;
cpt:contains cpt:sw1.

cpt:conditionSW2 a cpt:Condition;
cpt:contains cpt:sw2.

cpt:country a cpt:Variable;
cpt:bound true;
cpt:variableDomain cpt:country1,cpt:country2;
cpt:moreImportantThan cpt:literaryGenre;
cpt:moreImportantThan cpt:subsequentWork;
cpt:moreImportantThan cpt:filmVersion.

cpt:literaryGenre a cpt:Variable;
cpt:bound true;
cpt:variableDomain cpt:genre1,cpt:genre2;
cpt:conditionallyMoreImportantThan

cpt:instanceOfRelativeImportance1;
cpt:conditionallyMoreImportantThan

cpt:instanceOfRelativeImportance3.
cpt:subsequentWork a cpt:Variable;

cpt:bound false;
cpt:variableDomain cpt:sw1, cpt:sw2;
cpt:moreImportantThan cpt:filmVersion;
cpt:conditionallyMoreImportantThan

cpt:instanceOfRelativeImportance2.
cpt:filmVersion a cpt:Variable;

cpt:bound false;
cpt:variableDomain cpt:film1, cpt:film2.

cpt:instanceOfRelativeImportance1
a cpt:instanceOfRelativeImportance;
cpt:hasCondition cpt:conditionC1;
cpt:hasLessImportantVariable cpt:subsequentWork.

cpt:instanceOfRelativeImportance2
a cpt:instanceOfRelativeImportance;
cpt:hasCondition cpt:conditionC2;
cpt:hasLessImportantVariable cpt:literaryGenre.

cpt:instanceOfRelativeImportance3
a cpt:instanceOfRelativeImportance;
cpt:hasCondition cpt:conditionC1;
cpt:hasLessImportantVariable cpt:filmVersion.

cpt:preference1 a cpt:Preference;
cpt:prefer cpt:country2;
cpt:over cpt:country1.

cpt:preference2 a cpt:Preference;
cpt:given cpt:conditionC1;
cpt:prefer cpt:genre2;
cpt:over cpt:genre1;
cpt:irrespectiveOf cpt:subsequentWork.

cpt:preference3 a cpt:Preference;
cpt:given cpt:conditionC2;
cpt:prefer cpt:sw2;
cpt:over cpt:sw1;
cpt:irrespectiveOf cpt:literaryGenre.

cpt:preference4 a cpt:Preference;
cpt:given cpt:conditionC1;
cpt:prefer cpt:sw1;
cpt:over cpt:sw2.

cpt:preference5 a cpt:Preference;
cpt:given cpt:conditionC2;
cpt:prefer cpt:genre1;
cpt:over cpt:genre2.

cpt:preference6 a cpt:Preference;
cpt:given cpt:conditionSW1;
cpt:prefer cpt:film1;
cpt:over cpt:film2.

cpt:preference7 a cpt:Preference;
cpt:given cpt:conditionSW2;
cpt:prefer cpt:film2;
cpt:over cpt:film1.

Listing 1: The RDF version of the CP-theory
ΓC−LG−SW−F in Table 1, according to the full ontology.

In Section 4.2, we will see how to pose a SPARQL
query against the full version of Γ in order to compute
�Γ, thus retrieving a ranked list of semantic resources
ordered according to a user’s preferences.

4.1 The special case of CP-nets

Before moving to the description of how to encode a
CP-theory in a SPARQL query for personalized results
ranking, we point out that the ontological model just
described subsumes the vocabulary introduced in [39]
to represent CP-nets models. There, we proposed how
to model the information encoded in a CP-net through
an ontology and how to formulate the query able to
order outcomes accordingly in a consistent way. On
the other hand, we know that CP-nets are a special and
simple case of CP-theories and, therefore, we want to
show how the new ontology in Figure 5 can deal with
a CP-net.

The theoretical result exploited in [39] (namely
Corollary 4 of [3]) orders an outcome o over another
one o′, consistently with a CP-net N , if there exists a
variable X such that o and o′ assign the same values to
all ancestors of X in N and given the assignment pro-
vided by o (and o′) to the parents of X , i.e., Pa(X), o
assigns a more preferred value to X than that assigned
by o′ (according to the conditional preference table of
X). The sufficient condition of Corollary 4 of [3] may
be reformulated asking for a variableX such that there
does not exist any variable moreImportantThan
X different in o and o′, and, given the assignment pro-
vided by o (and o′) to Pa(X), o assigns a more pre-
ferred value to X than that assigned by o′. The pred-
icate moreImportantThan, in fact, covers depen-
dency information and, when applied to a CP-net, al-
lows to define a set of variables coincident with the
ancestor set. Moreover, for a CP-net, the predicate
given for any instance of Preference ordering
the values of a variable may be used to define the par-
ent set of that variable. The ontological model pro-
posed in [39] for CP-nets is hence subsumed by the

13

full ontology of Figure 5. On the other hand, if one
wants to represent a CP-net according to the full ontol-
ogy, one has to consider that the dependency informa-
tion is the only kind of information required for CP-
nets, because there is no relative importance encoded.
This implies that the RDF version of the CP-net, in
terms of the full ontology, would not contain any predi-
cate conditionallyMoreImportantThan and
irrespectiveOf or any instance of the class
InstanceOfRelativeImportance.

4.2 Ordering SPARQL results via CP-theories

In the following, we assume that users are looking
for the best k items satisfying some requirements and
that the choice for the best ones is led by their pref-
erences, formulated according to a CP-theory Γ, on a
set of variables V = {X1,...,Xn}. Hence, we aim at
solving a top-k query answering problem, where the
ordering criterion is encoded in Γ. In the presented ap-
proach, we concentrate on cuc-acyclic CP-theories, to
preserve the nice computational properties introduced
in Section 3 and exploit the algorithmic approach sug-
gested by Theorem 2.

The ultimate goal of our proposal can be summa-
rized by the following query formulated in a meta-
language on top of SPARQL:

SELECT ?item
WHERE {

?item satisfies user requirements
}
ORDER BY Γ
LIMIT k

Here, user requirements are represented by a SPARQL
graph pattern where at least one triple has ?item
as subject. In the following, we use the notation
R(?item) to denote the user requirements associated
with the variable ?item.

Example 7 (Books cont’d)
“Giorgio really wants to relax, and so he is looking
only for books with more than 300 pages”. In this case,
Giorgio’s requirementsR(?item) are represented by:

?item a dbo:Book.
?item dbo:numberOfPages ?page.
FILTER(?page>300). �

The computation of an answer to the previous query,
goes through the exploitation of the full version of Γ.
The overall approach is composed of two main steps.

Step 1. Here, we compute a representation of α and β,
starting from each ϕ ∈ Γ and, by exploiting The-
orem 2, an ordering based on�Γ for all possible
outcomes is eventually returned. The representa-
tion of α and β as URIs goes through a string con-
catenation (we use the GROUP_CONCAT aggre-
gate function of SPARQL).

Step 2. This step deals with ranking the items match-
ing R(?item) according to �Γ as computed in
the previous step.

Both steps are detailed in the following.

Ordering the Outcomes (Step 1). From Theorem 2
in Section 3, we know how to build a strict partial or-
der on a set of outcomes O extending >Γ by compar-
ing outcomes via �Γ. By means of the same meta-
language that we used before, the ordering of out-
comes can be done via the following query. There, we
see the outcomes are ordered according to a counter
representing the number of outcomes that they are able
to�Γ-dominate.

SELECT ?outcome-Dominating

(COUNT(?outcome-dominated) AS ?counter)

WHERE {

FILTER { ?outcome-Dominating�Γ ?outcome-dominated }

}

GROUP BY ?outcome-Dominating

ORDER BY DESC(?counter)

In order to compute values for the two variables
?outcome-Dominating and ?counter, the pre-
vious query should act on one pair (α, β) per time by
checking if α�Γ β.

The preference-based reasoning is performed exclu-
sively by means of the SPARQL 1.1 query Ordering-
Query whose generation is detailed in Algorithm 1 of
Appendix A. The algorithm takes as input the full ver-
sion of Γ and computes a query able to return a list of
outcomes ordered according to ?counter. In partic-
ular, the query returns for each outcome, a numerical
score representing its position in the ranking imposed
by�Γ.

For a better clarification, the reasoning procedure
under the comparison between the pair (α, β) is sum-
marized in the following:

1. The query computes the set Θ
′
(α, β) by consid-

ering the variablesX in the set ∆(α, β) for which
there do not exist: (i) a variable X

′ ∈ ∆(α, β)
linked toX by property cpt:moreImportant-

14

Than and (ii) a variable X
′′ ∈ ∆(α, β) which

is cpt:conditionallyMoreImportant-
Than than X under a condition extended by α.

2. It then counts the number of variablesX from the
set Θ

′
(α, β) that let to state α(X) �Xα β(X) and

compares it to the cardinality of Θ
′
(α, β);

3. If the numerical values coincide, which means
that for each variable X in Θ

′
(α, β), α(X) �Xα

β(X) holds, then the query concludes that α�Γ

β.

In order to get all the information needed to check
α(X) �Xα β(X) from the full version of Γ, Order-
ingQuery embeds Query 1 and Query 2 reported in
the following. They return a set of quadruples 〈?V,
?ConcatenatedParent, ?Prefer, ?Over〉, with
?ConcatenatedParent optionally not instanti-
ated, able to locally order α over β with respect to
variable ?V.

Given a variable Xi ∈ V with dom(Xi) =
{xi1, xi2, ..., xin}, we use the following notation rela-
tive to the corresponding instances cpt :xi1, cpt :xi2,...,
cpt :xin of the class cpt :Value:

– value(xij) is the object of the triple cpt :xij
cpt :value object;

– attribute(xij) denotes the object of the triple
cpt :xij cpt :attribute object;

– we call representative string of xij the con-
catenation of the two strings represented by
attribute(xij) and value(xij) respectively. The
combination of attribute(xij) and value(xij) is
used to represent xij , as they uniquely identify a
value in the domain of a variable. Indeed, in case
we used only value(xij), ambiguous situations
could arise when it is used in combination with
different attributes.

Finally, for an instance cpt :c of the class cp:Condi-
tion, we call conditional values of cpt :c all the ob-
jects of the triples cpt :c cpt :contains object.

Query 1
SELECT ?V1
(concat(str(?attrPrefer),str(?valuePrefer)) as ?Prefer)2
(concat(str(?attrPrefer),str(?valueOver)) as ?Over)3
WHERE4
{5
?preference cpt:prefer ?p;6

cpt:over ?o.7
FILTER NOT EXISTS {?preference cpt:given ?condition.}8
?V cpt:variableDomain ?p.9
?p cpt:attribute ?attrPrefer;10

cpt:value ?valuePrefer.11
?o cpt:value ?valueOver.12
}13

Query 1 processes elements ϕ of Γ with uϕ = >.
Within the query, they are represented by the vari-
able ?preference. The selection is made possi-
ble by the FILTER NOT EXISTS on the pattern
{?preference cpt:given ?condition.}
(line 8). Considering that the objects of properties
cpt:prefer and cpt:over must be distinct val-
ues of the same variable, the query firstly extracts the
variable that the preference acts on, i.e., ?V (line 1 and
line 9). Then, it computes the representative strings,
?Prefer and ?Over (lines 2–3) for the objects ?p
and ?o of the two triples involving cpt:prefer and
cpt:over (lines 10–12).

Query 2

SELECT DISTINCT ?V ?ConcatenatedParent ?Prefer ?Over WHERE{1
SELECT ?condition ?V2
(GROUP CONCAT(concat(str(?attr),str(?value)); separator="")3
as ?ConcatenatedParent)4
(concat(str(?attrPrefer),str(?valuePrefer)) as ?Prefer)5
(concat(str(?attrPrefer),str(?valueOver)) as ?Over)6

WHERE7
{8
?preference cpt:given ?condition;9

cpt:prefer ?p;10
cpt:over ?o.11

?V cpt:variableDomain ?p.12
?p cpt:attribute ?attrPrefer;13

cpt:value ?valuePrefer.14
?o cpt:value ?valueOver.15
?condition cpt:contains ?c.16
?c cpt:attribute ?attr;17

cpt:value ?value.18
}19
GROUP BY ?condition ?V ?attrPrefer ?valuePrefer ?valueOver20
}21

Differently from the previous query, Query 2 is used
to process statements ϕ belonging to Γ with uϕ 6= >.
The selection is made via the pattern {?preference
cpt:given ?condition.} (line 9). Let us con-
sider first the nested subquery in lines 2–20. For
each instance of class Preference, such query ex-
tracts the variable ?V that the preference is about
(lines 2 and 12) and considers the cpt:given con-
dition ?condition (line 9), extracting its corre-
sponding conditional values (line 16). The representa-
tive strings of such conditional values are then com-
puted (lines 17–18) and concatenated at lines 3–4
in ?ConcatenatedParent, grouping by condi-
tion. The variables ?Prefer and ?Over are de-
fined similarly to Query 1. The external query is
just used to restrict the result set to variables ?V,
?ConcatenatedParent, ?Prefer, ?Over.

Ordering the Items (Step 2). Given the information
on outcomes returned by the OrderingQuery at the pre-
vious step, on both values of variables and position in
the ranking, an external RDF dataset, e.g., DBpedia,

15

may be queried, asking for items satisfying the hard
constraints (R(?item)) imposed by the user and such
that, when limiting the attention on variables in V , they
match the description of an outcome. Items are then
ordered according to the ranking over corresponding
outcomes.

We are well aware that the one we propose is just a
possible rewriting of a CP-theory in a SPARQL query
and other encodings are possible, ever more efficient
from a computational perspective. Moreover, we may
see that the performance of the overall approach de-
creases when the size of variable domains grows and,
in its current version, the approach is not able to han-
dle continuous domains as for distance and time. Nev-
ertheless, we believe that the proposed approach is a
good starting point to reason with preferences in a pure
Linked Data environment, as it is a straight imple-
mentation of theoretical results coming form previous
works [44].

4.3 Instantiation of the framework

The procedure to retrieve items ordered according
to user’s preferences is made up of four phases:

– the loading of user’s preferences;
– an insert to add information about outcomes;
– the execution of a federated query;
– the (optional) dropping of user’s preferences.

First of all, the user’s preferences file representing
the full version of Γ is loaded in the SPARQL server
through a LOAD operation and becomes the user’s
graph of preferences Guser.

Example 8 (Book cont’d)
If the path to the RDF file encoding Giorgio’s prefer-
ences (see Listing 1) is generally denoted as path to
ttl file, the load operation is executed as follows:
prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

LOAD path to ttl file INTO GRAPH g:Giorgio preferences

�

The OrderingQuery able to order the outcomes ac-
cording to �Γ is then executed. The information re-
turned by the OrderingQuery is used to integrate the
graph of user preferences Guser with additional triples
on outcomes. Specifically, we add information about
the score of an outcome and its description. Hence, the
following triples are defined for each outcome:

– a triple satisfying the pattern

?URIOutcome cpt:hasScore ?score

– a set of triples instantiating the pattern

?URIOutcome cpt:hasValueForX
?ValueForX

for every variable X of Γ.

Such information are added to Guser through an
INSERT query.

Example 9 (Book cont’d)
For the CP-theory ΓC−LG−SW−F with Giorgio’s pref-
erences, the INSERT operation would behave as fol-
lows:

prefix cpt:<http://sisinflab.poliba.it/semanticweb/
lod/ontologies/cpt full.owl#>

prefix dbo:<http://dbpedia.org/ontology/>
prefix db:<http://dbpedia.org/resource/>
prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

INSERT { GRAPH g:Giorgio preferences
{?URIOutcome cpt:hasScore ?counter .
?URIOutcome cpt:hasValueForCountry ?country_D;

cpt:hasValueForLiteraryGenre ?genre_D;
cpt:hasValueForSubsequentWork ?subwork_D;
cpt:hasValueForFilmVersion ?filmVersion_D.

}
}
where { GRAPH g:Giorgio preferences {

OrderingQuery

}
}

Here, OrderingQuery denotes the ordering query over
outcomes returned by Algorithm 1 in Appendix A. The
output of Algorithm 1 applied to Listing 1 is available
in Appendix B. �

The next step is the execution of a federated query,
composed by two subqueries. The first subquery re-
trieves the items satisfying the requirements imposed
by the user, i.e., R(?item), and for each item it looks
for the values of variables in Γ. The retrieval of val-
ues grounds on the VALUES construct for variables
that are cpt:bound true and on the combination
of BIND, IF and EXISTS otherwise. The second sub-
query on the user’s preferences graph Guser, retrieving
for each outcome its score and the variables values. A
matching between items and outcomes is hence per-
formed through such values and the items are finally
ordered according to the position in the ranking of the
relative outcome.

The main reason behind the federation of two (or
more) endpoints is that: while the graph containing the
RDF version of the user’s preferences is encoded in
the corresponding document (available at Preference

16

URI in Fig. 1), all the information about the items that
we want to retrieve and rank is encoded in a separate
dataset, e.g., DBpedia. The main assumption here is
that the user’s preferences are expressed with respect
to a reference dataset/vocabulary, which can queried
via a SPARQL endpoint.

Example 10 (Book cont’d)
Suppose that Giorgio is interested in the top-5 list of
books matching his hard constraints (see Example 7),
ordered according to his preferences encoded in the
CP-theory ΓC−LG−SW−F of Table 1. The federated
query to carry out the searching task would be as fol-
lows:

prefix cpt:<http://sisinflab.poliba.it/semanticweb/
lod/ontologies/cpt full.owl#>

prefix dbo:<http://dbpedia.org/ontology/>
prefix db:<http://dbpedia.org/resource/>
prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

SELECT ?item_D ?score WHERE {
{SERVICE <http://dbpedia.org/sparql> {

SELECT DISTINCT ?item_D ?genre_D ?country_D
?subwork_D?filmVersion_D WHERE{

?item_D a dbo:Book;
dbo:numberOfPages ?page_D.

FILTER(?page_D>300).
?item_D dbo:literaryGenre ?genre_D;

dbo:country ?country_D.
VALUES (?genre_D) {
(db:Crime_fiction)
(db:Autobiographical_novel)
}
VALUES (?country_D) {
(db:France)
(db:United_Kingdom)
}
BIND(IF(EXISTS{?item_D dbo:subsequentWork ?object},

cpt:subsequentWorkYes, cpt:subsequentWorkNo
AS ?subwork_D).

BIND(IF(EXISTS{?item_D dbo:filmVersion ?object},
cpt:filmVersionYes,cpt:filmVersionNo)
AS ?filmVersion_D).

}
}
}
{graph g:Giorgio preferences {

SELECT ?score ?genre_D ?country_D ?subwork_D
?filmVersion_D WHERE{

?s cpt:hasScore ?score;
cpt:hasValueForCountry ?country_D;
cpt:hasValueForLiteraryGenre ?genre_D;
cpt:hasValueForSubsequentWork ?subwork_D;
cpt:hasValueForFilmVersion ?filmVersion_D.

}
}
}
}
ORDER BY DESC(?score)
LIMIT 5

�

Finally, the graph with the user’s preferences Guser
can be optionally eliminated with a DROP operation.

Please note that all SPARQL queries are executed in
a simple entailment between RDF graphs on the full
version of Γ as well as on the external dataset for the

federated query. Hence, all the queries are executed
under the RDF Entailment Regime of SPARQL.

Example 11 (Book cont’d)
The graph related to Giorgio’s preferences may be
dropped as follows:

prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>

DROP GRAPH g:Giorgio preferences

�

5 Application

We now describe a tool8 implementing the frame-
work described in previous sections and aimed at sup-
porting the end-user in retrieving a list of semantic re-
sources ordered according to her preferences formu-
lated under the CP-theory formalism. The tool just
asks for preferential statements formulated under the
CP-theory formalism, i.e., “given uϕ, xϕ is strictly pre-
ferred to x′ϕ, all else being equal, but irrespective of
the values of variables in Wϕ”. With reference to the
ontologies introduced in Section 4, this means that for
this preliminary step of preference definition, the inter-
ested user only has to deal with classes and properties
of the lite ontology of Figure 4. In particular, after the
selection of the domain of interest, the user inserts her
preferences as depicted in Figure 6. The interface man-
ages both instances of variables cpt:bound true
and cpt:bound false, as introduced in Section 4.
In the former case, the variable which the preference is
“about” and the couple of values separated by the word
“over” must be introduced; in the latter case, the user
has to specify whether the presence or the absence of a
variable is preferred. Optionally, she can insert a “Con-
dition” under which the above order holds and make
explicit, in the “Irrespective” section, the set of vari-
ables for the (conditional) relative importance. She can
insert as much preferences as she wants with the “add
Another Preference” button or complete the insertion
procedure with the “Insert Preferences” button.

When this second button is pressed, the tool takes
care that the user has defined the transitive closure of
those preferential statements related to multiple val-
ues of a variable. More specifically, if ϕ1 = uϕ1

:
x > x̂ [Wϕ1] and ϕ2 = uϕ2 : x̂ > x̄ [Wϕ2] have

8The tool is available at http://cptheorysparql.
cloudapp.net:10002/

17

Fig. 6. Preferences Insertion.

been inserted, with x, x̂, x̄ ∈ dom(X), and uϕ1
and

uϕ2
do not contain two different values of the same

variable, then the rule ϕ3 = uϕ3 : x > x̄ [Wϕ3] is
added, if missing (where uϕ3 is the condition join-
ing uϕ1

and uϕ2
, and Wϕ3

is the intersection of sets
Wϕ1

and Wϕ2
). As an example in the movie domain,

one may state that (ϕ1) the actor Hugh Grant is pre-
ferred over Colin Firth for comedy films irrespec-
tive of the country of production and that (ϕ2) Colin
Firth is preferred over Joaquin Phoenix for movies di-
rected by Woody Allen. In this case, the additional
fact to add would be that (ϕ3) Hugh Grant is preferred
over Joaquin Phoenix for comedy movies directed by
Woody Allen ceteris paribus and with no relative im-
portance specification, since the intersection of sets
Wϕ1

and Wϕ2
is empty. The tool then exploits the

lite version of Γ to generate its full version by manag-
ing the transitive closure of moreImportantThan
and conditionallyMoreImportantThan, as
described in Section 4 9.

The tool also helps the user to understand if her CP-
theory is cuc-acyclic or not. It returns an error mes-
sage to the user if the CP-theory is not locally consis-
tent or the directed graph Juϕ

(Γ) on V , for any uϕ in-
troduced by the user in her preferential statements, is
cyclic. Otherwise, it returns the encoding that can be
used to query the DBpedia dataset.

As an alternative to the manual insertion of pref-
erences, the user can decide to upload a file of pref-
erences written according to the lite ontology, using
the specific top right button. The transitivity and cuc-

9The rules that allow the system to manage the definition and
the transitive closure of both properties moreImportantThan
and conditionallyMoreImportantThan have been
implemented in Prolog and are available at http:
//sisinflab.poliba.it/semanticweb/lod/
ontologies/rules.pl.

(a) (b)

Fig. 7. The buttons to display the Full RDF File (a) or to formulate a
preference-based query (b).

acyclicity checking and the introduction of the addi-
tional class and properties of the full ontology is per-
formed in this case as well.

At this point, a file with the full version of Γ is avail-
able and can be visualized by pushing the button in
Figure 7 (a) or exploited directly to formulate a query
against DBpedia through the button in Figure 7 (b).

More specifically, when the button of Figure 7 (b)
is pressed, an interface as the one depicted in Figure
8 appears. The interface mimics the query presented
at the beginning of Section 4.2. There, the users may
insert their own requirements R(?item) and specify
the number k of results to use in the LIMIT modifier,
which by default is set to 10. The URL displayed after
the ORDER BY clause represents the location of the
RDF file containing the full version of Γ.

The query returns the top-k list of items belonging
to the domain of interest (e.g., books as in Figure 8),
satisfying R(?item) and ordered according to user’s
preferences.

Example 12 (Book cont’d)
Introducing Giorgio’s preferences, contained in the
CP-theory of Table 1, in the proposed tool would pro-
duce the top-5 list of results shown in Table 2. The re-
sults refer to the release of DBpedia 2015-0410 (also
known as: 2015 A).

By looking in DBpedia, one can observe an exact
matching with the expected order shown in Example
4, according to the following triples:

10http://wiki.dbpedia.org/
dbpedia-data-set-2015-04

18

Fig. 8. The interface to build the query.

@prefix db: <http://dbpedia.org/resource/>
@prefix dbo: <http://dbpedia.org/ontology/>

db:An_Uncertain_Place dbo:country db:France ;
dbo:literayGenre db:Crime_fiction .

db:Requiem_for_a_Fish dbo:country db:France ;
dbo:literayGenre db:Crime_fiction .

db:Blood_Red_Rivers dbo:country db:France ;
dbo:literayGenre db:Crime_fiction .

db:Tropic_of_Capricorn_(novel) dbo:country db:France ;
dbo:literayGenre
db:Autobiographical_novel .

db:Have_Mercy_on_Us_All dbo:country db:France ;
dbo:literayGenre db:Crime_fiction ;
dbo:subsequentWork
db:Wash_This_Blood_Clean_from_My_Hand.

�

?item D ?score

db:An Uncertain Place 15

db:Requiem for a Fish 15

db:Blood Red Rivers 15

db:Tropic of Capricorn (novel) 13

db:Have Mercy on Us All 9
Table 2

The top-5 list of items retrieved for preferences in the CP-theory of
Table 1.

6 Experiments

In order to asses the effectiveness of the presented
approach and the implemented tool, we set up two dif-
ferent experiments.

The first experiment consisted of 20 real users us-
ing the tool to express their preferences. After the test,
users were asked to fill up a questionnaire (reported
in Table 5). The dataset adopted consisted of a subset
of DBpedia 2015-04 related to the four popular do-
mains of: Movies, Food, Music and Books. The statis-

Classes Instances Properties 1 hop resources
dbo:Book 31172 36 12964

dbo:Film 90063 31 82922

dbo:Food 6003 21 2367

dbo:Song 7195 27 2220

Total 134433 115 100473
Table 3

Dataset Statistics

tics of the dataset used for experiments are detailed in
Table 3.

It is worth noticing that CP-statements can also be
automatically extracted from users data [35,36,31,34].
Nevertheless, we set up the previous experiment to
have a hint on the average number of CP-statements ϕ
needed to model a user profile as well as on what is,
from a user perspective, the most tricky version of ϕ to
represent among:

– > : xϕ > x̂ϕ[∅],
– uϕ : xϕ > x̂ϕ[∅],
– uϕ : xϕ > x̂ϕ[Wϕ].

The second experiment consisted of simulating 168
users using the platform and expressing an overall
number of 6720 preferences and 6720 queries to re-
trieve the resources ranked by taking into their prefer-
ences. The aim of this experiment was that of evaluat-
ing the response time of the overall system in retriev-
ing a list of resources based on a set of user prefer-
ences.

6.1 Test on Real Users

In order to test the capability of a user to exploit
the platform and even to test if human users unaware
of CP-theories were able to express their preferences,
we selected 20 users that did not know anything about
CP-theories and, after a 5 minutes tutorial, we asked
them to express their preferences by using our tool.
We asked them to insert as many preferences as they
wanted for each domain on the platform, and we then
asked them to fill up a post-experience questionnaire in
order to acquire some feedback about the experience.
The motivation of this experiment is twofold: the first
information that we wanted to collect was the number
of preferences that a user is prone to explicitely ex-
press. The result for this evaluation is shown in Table
4. The users provided an overall number of 322 prefer-
ences. The average numbers per user are quite similar
among the different domains (between 4 and 6) with
a little higher propensity to express preferences over

19

books w.r.t. songs. The similar average values, and the
similar standard deviations, suggest that there exists a
commonality in the number of expressed preferences
over a specific domain.

The second relevant information that we wanted to
collect is how much the CP-theories expressiveness
may fit a “natural” way of expressing preferences by a
human being. To this aim, we submitted a small ques-
tionnaire with 10 questions whose relative answers in
aggregate form are shown in Table 5 and Fig. 9. All the
questions but Q.2 needed to express a value in a 5-star
rating scale, with 1 being the worst answer and 5 the
best one.

Users felt that representing preferences was not a
trivial operation (3.2 corresponds to the lowest value
of the overall questionnaire), but this perceived diffi-
culty is clearly dependent on the type of preference (it
is worth to notice that for every specific kind of prefe-
rence, the score is higher than the overall score).

Thanks to the survey, we can list in an increasing
order of difficulty the different kinds of preferences:

– “About a property, I prefer a Value over another
Value” corresponding to > : xϕ > x̂ϕ[∅].

– “Given a condition, I prefer a Value over another
Value” corresponding to uϕ : xϕ > x̂ϕ[∅].

– “About a property, I prefer a Value over another
Value irrespectively to a property” corresponding
to uϕ : xϕ > x̂ϕ[Wϕ].

Moreover, if we look at the pie chart in Fig. 9, it
emerges that the most difficult part of the process was
to detect the properties (variables V) on which the
preferences should be expressed. Another information
that we wanted to collect was if the possible difficulty
in expressing preferences is stable or it progressively
vanishes as the number of expressed preferences in-
creases. Questions 7, 8 and 9 show that the first prefe-
rence was quite hard to express, but, as the experience
goes on, it becomes much easier reaching an average
value of 4.1.

The last relevant information that we wanted to col-
lect is how much the expressiveness of CP-theories
can correspond to a perceived “natural” way to express
preferences. Also in this case, the result is interesting,
because CP-theories are perceived as a quite good way
of expressing preferences with a high value of 3.8.

6.2 Test on Simulated Users

In order to closely simulate the behavior of a real
user, we designed a tool able to perform the classi-

Total Min Max Mean Std Dev
dbo:Book 109 1 11 5.7368 2.1562

dbo:Film 78 1 17 4.5882 3.8900

dbo:Food 75 1 12 4.1667 2.6844

dbo:Song 60 1 12 3.5294 2.6485
Table 4

User Experiments Statistics

Fig. 9. Pie chart depicting the results of the second question of the
survey.

cal operations of expressing a preference and asking
the system for an ordered list of relevant resources.
For each domain of interest, the simulated users ran-
domly extract (with a uniform distribution) a property
that they might be interested in, and then randomly se-
lect the other components of the preference (e.g., in
case of a simple preference, > : x > x̂[∅], they se-
lect either the more liked resource x and the less liked
one x̂). The composed preference is then sent to the
server to be processed and stored. The system checks
if the preference produced a cycle, eventually warn-
ing the user (in case of a cycle, a new preference is
produced). Once the preference is correctly inserted,
the simulated user performs a query to the system to
retrieve an ordered list of the 100 most relevant re-
sources. The system continues, inserting a new prefe-
rence for the same domain, and asking the system for
a new list. The process ends when 10 preferences are
inserted for each domain and the 10 related queries
accomplished. Based on the previous experiment, we
considered 10 as a representative number of prefer-
ences per user. Fig. 10 shows the average execution
time for an increasing number of preferences related

20

Q.N. Questions Min Max Mean St Dev
Q.1 How easy has been to represent your preferences? 1 5 3.1667 1.1100

Q.2 Which among these did you consider the hardest? See Fig. 9

Q.3 How easy is to represent a preference like
“About a property I prefer a Value over another Value”?

1 5 4.1667 1.3048

Q.4 How easy is to represent a preference like
“I prefer a resource that has a certain property”?

2 5 3.5556 1.0966

Q.5 How easy is to represent a preference like
“Given a condition I prefer a Value over another Value”?

2 5 3.8889 0.9852

Q.6 How easy is to represent a preference like
“About a property I prefer a Value over another Value irrespectively to a property”?

2 5 3.6111 1.2005

Q.7 How easy was to represent the first preference? 1 5 3.2222 1.3492

Q.8 After the first preference how easy was to represent the next two ones? 2 5 3.9444 0.9852

Q.9 After the first three preferences how easy was to represent the next ones? 1 5 4.1111 1.2783

Q.10 How much this way of expressing preferences is similar to your own? 1 5 3.7778 1.1448
Table 5

User Survey Statistics

to the simulated users.11 The SPARQL engine adopted
for the experimental evaluation is Jena Fuseki v. 2.3.1
running on a Linux server (kernel v. 4.4.0-28-generic)
with an Intel Xeon @ 2.30GHz CPU and 8 GB RAM,
while the local version of DBpedia had been loaded in
a Virtuoso Server (v. 07.20.3212), running on a Linux
server (kernel v. 4.2.0-23-generic) with an Intel Xeon
@ 2.40 GHz CPU and 56 GB RAM.

Fig. 10. Average execution time for increasing number of prefer-
ences (1 to 10) in the four domains of: Song, Book, Film and Food.

The results show that queries based on a number
of preferences lower than six take approximately less
than one second to return results to the user. This is

11For those interested in a more fine-grained view of the data,
a report of the execution times is publicly available at https:
//github.com/sisinflab/CP-theories-SPARQL/
blob/master/evaluation/evaluationResults.tsv

even more interesting if we consider results of the pre-
vious experiments, where we saw that users tend to
express an average number of preferences between 4
and 6.

7 Related works

The ability to infer, model, and reason with user
preferences has been recognized as a prominent re-
search direction in many fields, especially artificial in-
telligence (AI) [18,38]. Preferences are generally clas-
sified as quantitative, if they make use of a scoring
function to assess an order over the available resources,
resulting in a total order, or qualitative, if they are
treated independently, resulting in incomparable re-
sources and a partial preference order. Much work
has focused on qualitative approaches, since these are
closer to how people express their preferences; among
the earliest logic-based approaches is von Wright’s
[42]. Following the overview over qualitative multi-
attribute preference reasoning approaches provided by
[37], in AI, there are, in particular, (i) methods adopt-
ing graphical structures to represent and reason about
preferences, e.g., CP-nets [3] and TCP-nets [4]; (ii)
methods that extend constraints satisfaction problems
and incorporate soft constraints, as in the approxi-
mation of CP-nets with soft constraints described in
[17,16]; and (iii) methods that use specific logic-based
languages to represent qualitative preferences and de-
rive utility functions, exploiting, e.g., machine learning
techniques, such as support vector machines [14,15].

Conceptually close in spirit to the present paper
is in particular [10], where ontological knowledge

21

expressed via existential rules in Datalog± is com-
bined with CP-theories to represent qualitative condi-
tional preferences along with domain knowledge, and
to perform preference-based answering of conjunctive
queries. Another related work [9] combines Datalog
with CP-theories, but only considers atomic queries.
The present paper, in contrast, focuses on SPARQL
queries in a more restricted ontological context and
conditional preferences specified via cuc-acyclic CP-
theories. There is also a large body of work on han-
dling preferences in logic programming, e.g., asprin
[6], which is a framework for handling preferences
among the stable models of a logic program. Similarly,
the qualitative choice logic [5] is a propositional logic
for representing a preference relation among models,
which allows to specify alternative, ranked options for
problem solutions. The above two and similar works
on handling preferences in logic programming are fun-
damentally different from the present paper, as they are
about preferences for ordering models of a logic pro-
gram, rather than preferences for ordering the answers
to a query subject to all models of a knowledge base.

Databases are another research area where prefer-
ences have been investigated. In a relational database
management system, for example, the top-k (or rank-
ing) queries represent a quantitative approach, since
they return the k best matches according to a numerical
score. In [33], a formalism supporting ranking queries
for a relational database is presented. With reference
to the qualitative approach instead, skyline queries [2]
extend the notion of best matching to contexts, where
multiple independent scores have to be taken into ac-
count. The result of a skyline query is a set of ob-
jects that are no worse than any other across all di-
mensions of a set of independent Boolean or numer-
ical preferences [2]. Within the database community,
both Chomicki [7,8] and independently Kießling and
colleagues [29,30] formalized the first examples of
preference-based querying languages, that is, exten-
sions of SQL that support the specification of quanti-
tative and qualitative queries.

The notion of preference is of primary importance
also in the Linked Open Data context. The provision
of means to enable users to look for data sources (e.g.,
SPARQL endpoints) and data content that is tailored
to their individual preferences is one of the target of
the original project by Tim Berners-Lee et al. Even
the motivating example proposed in the introductory
article about the Semantic Web [1] can be interpreted
as a preference-based search, as extensively discussed
in [40]. Based on this insight, in [40], the authors

add preference-based querying capabilities to the most
known Semantic Web query language, SPARQL. How-
ever, when the paper was published, it was not possible
to specify multiple (independent) preference dimen-
sions in SPARQL, and consequently the authors had
to introduce the PREFERRING solution modifier. For
example, the following query provides a preference-
enabled SPARQL query for a user who is searching
for an appointment, preferring excellent therapist, ap-
pointments out of the rush hour and later appointments
over earlier ones, if both are equal with respect to the
rush hour constraint.

1 SELECT ?appointment WHERE {
2 ?terapist :rated ?rating;
3 :offers ?appointment.
4 ?appointment :starts ?start;
5 :ends ?end.
6 PREFERRING (?rating = excellent AND
7 ?end < 1600 || ?start > 1800
8 CASCADE HIGHEST(?start))
9 }

At line 6, the PREFERRING clause behaves as a so-
lution modifier, and the AND keyword separates inde-
pendent preference dimensions. The CASCADE key-
word at line 8 allows to give higher priority to the left-
hand preference over the right-hand one. In their paper,
the authors state that within the same SPARQL query,
the use of a LIMIT k statement in combination with
PREFERRING ones could inform the query evaluator
to go deeper in the retrieval of skyline solutions, thus
allowing the system to return a set of results ordered
by user preferences.

A mapping operation between an OWL ontology,
called OWLPref, and the SPARQL Preference syntax
of [40] has been proposed by [32]. OWLPref allows
for representing in a declarative, domain-independent
and machine-interpretable way several kinds of pref-
erences, namely, SimplePreference, CompositePrefer-
ence (which makes compositions of the former), and
ConditionalPreference (which models preferences that
vary according to the context, thanks to a property
OnCondition). However, considering the unavailabil-
ity of conditional preferences in the SPARQL Prefe-
rence syntax of [40], the use of ConditionalPreference
in OWLPref seems of marginal utility.

The PrefSPARQL syntax of [27] keeps the goal of
identifying the Pareto-optimal set, but introduces pref-
erences at the level of filters. It still uses the AND to
separate independent dimensions and to build what the
authors call MultidimesionalPref. Each “dimension”
is either a conditional preference (IF-THEN-ELSE)
or an atomic preference, which in turn can be a sim-

22

ple expression or can involve more complex constructs
[27]. Besides the support for conditional preferences
and the substitution of CASCADE with PRIOR TO,
the main innovative point of [27] with respect to [40]
is perhaps that the proposed preference-enabled query
can be completely rewritten using SPARQL 1.1 char-
acteristics. In particular, [27] uses the FILTER NOT
EXISTS. The translation of the previous query ac-
cording to the PrefSPARQL query rewriting is given
below.

1 SELECT ?appointmentA WHERE {
2 ?terapistA :rated ?ratingA;
3 :offers ?appointmentA.
4 ?appointmentA :starts ?startA;
5 :ends ?endA.
6 BIND ((?ratingA = :excellent) AS ?Pref1A)
7 BIND ((?endA < 16 || ?startA > 18:00) AS ?Pref2A)
8 BIND ((?startA) AS ?Pref3A)
9 FILTER NOT EXISTS {

10 ?terapistB :rated ?ratingB;
11 :offers ?appointmentB.
12 ?appointmentB :starts ?startB;
13 :ends ?endB.
14 BIND ((?ratingB = :excellent) AS ?Pref1B)
15 BIND ((?endB < 1600 || ?startB > 1800) AS ?Pref2B)
16 BIND ((?startB) AS ?Pref3B)
17 FILTER (
18 ((?Pref1B > ?Pref1A) &&
19 !((?Pref2B < ?Pref2A) ||
20 (?Pref3B < ?Pref3A && ?Pref2B = ?Pref2A)))
21 ||
22 (!(?Pref1B < ?Pref1A) &&
23 ((?Pref2B > ?Pref2A) ||
24 (?Pref3B > ?Pref3A && ?Pref2B = ?Pref2A))))}
25 }

The query looks for appointments ?appointmentA
satisfying a certain pattern expressed in lines 2–5.
The research is carried out checking that there is
no ?appointmentB that verifies the same pat-
tern (lines 10–13) and dominates ?appointmentA
in any preference dimension. The example refers
to only two independent preference dimensions and
the situations when ?appointmentB dominates
?appointmentA are represented in the branches of
|| symbol at line 21, that is, lines 18–20 and lines 22–
24. For the sake of completeness, ?appointmentB
would dominate ?appointmentA if it was better in
one dimension (line 18 or line 23–24) and no worse
in the other one (line 19–20 or line 22). The PRIOR
TO preference relation is encoded in lines 19–20 and
23–24 through the || operator.

Although PrefSPARQL allows the user to encode
conditional preferences in a SPARQL 1.1 query, it dif-
fers from the approach that we presented here in at
least three main aspects: (i) in PrefSPARQL, the fo-
cus is on computing the most preferred solution (un-
dominated outcome), given a set of conditional pref-
erences, while we provide a list of results ordered by

user preferences; (ii) they deal with conditional pref-
erences in the form uϕ : xϕ > x

′

ϕ, while our ap-
proach is able to manage CP-statements in the form
uϕ : xϕ > x

′

ϕ [Wϕ], which result to be much more
expressive for finite and discrete domains even in their
cuc-acyclic version that we consider here; (iii) we pro-
vide an ontological vocabulary and a procedure to au-
tomatically encode preferences in a SPARQL query.
However, thanks to its more agile structure, differently
from our approach, PrefSPARQL allows the user to
express preferences on variables with continuous do-
mains as well as the usage of comparison operators.

In [41], the authors present SPREFQL, an exten-
sion of the SPARQL language that allows for append-
ing a “PREFER” clause, which expresses soft prefer-
ences over the query results obtained by the main body
of the query. The main ideas behind the approach are
to associate relations of tuples with preference formu-
las, and to select the relations’ most preferred tuples
via a so-called winnow operator. Consequently, the ap-
proach does not allow for expressing conditional ce-
teris paribus preferences as in CP-theories.

As a general remark, previous SPARQL-related
works on preference reasoning have been mainly de-
voted to preference representation and the retrieval of
undominated outcomes. In principle, one may encode
each of them in a procedural approach able to compute
the first level of undominated solutions, then the sec-
ond one and so one. At each iteration step, the proce-
dure should be able to filter out the results coming from
the “higher levels” of results computed in the previous
steps.

Less closely related are approaches to preference-
based query answering over graph databases. In partic-
ular, [22] presents regular languages for graph queries,
where answers are partially ordered via a partial or-
der on the strings of the languages. In the same vein,
[25] introduces preferential regular path queries for en-
hanced querying of semi-structured databases. Query
symbols are annotated with preference weights for
scaling up or down the importance of matching a sym-
bol against a database edge label. The paper stud-
ies (progressive) query answering, (certain) query an-
swering in LAV data-integration systems, and query
containment and equivalence. A similar approach in
[20] introduces a graph query language that enables to
declaratively express preferences. None of the above
approaches to preference-based query answering over
graph databases (which are intuitively based on (poten-
tially recursive) pattern-recognition-style regular ex-
pressions), however, allows for expressing conditional

23

ceteris paribus preferences as in CP-theories. Less
closely related are also information retrieval systems
based on manipulating fuzzy truth values (which may
also be interpreted as quantitative preferences), such as
the fuzzy multimedia retrieval system in [19].

8 Conclusion and future work

In this paper, we have shown how user preferences
can be taken into account while querying Linked Open
Data datasets. Having realized that the Pareto-optimal
set identification is not enough, we moved beyond
it, proposing an approach to retrieve a ranked list
of semantic resources, ordered according to a user’s
soft constraints. We focused on qualitative preferences,
which are closer to how a user makes decisions, es-
pecially in a multi-attribute context, and integrated the
partial order implied by a qualitative approach into a
top-k scenario, that is, returning to the user, who is for-
mulating qualitative preferential statements, a ranked
list of resources, optionally limited in its size, ordered
according to her preferences. Among qualitative ap-
proaches to preference reasoning, we relied on CP-
theories, a general and well-known formalism based
on the ceteris paribus semantics. We proposed an on-
tological vocabulary to model CP-theories by means
of RDF statements under the ceteris paribus semantics.
Then, we presented an algorithm able to build a stan-
dard SPARQL 1.1 query encoding the CP-theory and
able to retrieve a ranked set of resources satisfying the
corresponding preferential constraints. To our knowl-
edge, this is the first attempt to encode the semantics
of a CP-theory into a SPARQL query and, along with
[39], the first approach that lets SPARQL to retrieve a
ranked list of resources ordered according to a user’s
preferences.

We intend the proposed approach as a starting point
for many future directions to reason with preferences
in a pure Linked Data setting. More efficient encod-
ings for the proposed queries could be investigated,
able to mitigate some performance problems, related,
for example, to the increase in the size of variables
domains. Moreover, in its current version, the algo-
rithm first computes the complete partial order of the
outcomes, and then it matches them with items satis-
fying the users’ hard requirements. As the computa-
tion of the partial order is computationally expensive,
an improvement could surely be to compute and order
only those outcomes matching the users’ requirements,
thus reducing the number of comparisons needed to

return query results to the user. As a future direction
of our research, we are also working on approaches
proposed for automated CP-nets and CP-theories elic-
itation [11,26]. Another interesting topic for future re-
search is to explore how our present work can be ex-
tended by integrating approaches to preference-based
query answering over graph databases, such as the
ones in [22,25,20], as well as how to deal with vari-
ables having continuous domains.

Acknowledgments

The authors wish to thank Francesco Paolo Albano
for his unvaluable help in the implementation of the
full framework and for his continuous support in its
maintenance and further development.

This work was supported by The Alan Turing Insti-
tute under the UK EPSRC grant EP/N510129/1, and
by the EPSRC grants EP/R013667/1, EP/L012138/1,
and EP/M025268/1.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.
Sci. Am., 284(5):34–43, 2001.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline oper-
ator. In Proc. of ICDE 2001, pages 421–430. IEEE Computer
Society, 2001.

[3] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and
D. Poole. CP-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements. J. Artif. In-
tell. Res., 21:135–191, 2004.

[4] R. I. Brafman and C. Domshlak. Introducing variable impor-
tance tradeoffs into CP-nets. In Proc. of UAI 2002, pages 69–
76. Morgan Kaufmann, 2002.

[5] G. Brewka, S. Benferhat, and D. L. Berre. Qualitative choice
logic. Artif. Intell., 157(1/2):203–237, 2004.

[6] G. Brewka, J. P. Delgrande, J. Romero, and T. Schaub. asprin:
Customizing answer set preferences without a headache. In
Proc. of AAAI 2015, pages 1467–1474. AAAI Press, 2015.

[7] J. Chomicki. Preference formulas in relational queries. ACM
Trans. Database Syst., 28(4):427–466, 2003.

[8] J. Chomicki. Logical foundations of preference queries. IEEE
Data Eng. Bull., 34(2):3–10, 2011.

[9] C. Cornelio, A. Loreggia, and V. A. Saraswat. Logical condi-
tional preference theories. In Proc. of MPREF 2015, 2015.

[10] T. Di Noia, T. Lukasiewicz, M. V. Martı́nez, G. I. Simari, and
O. Tifrea-Marciuska. Combining existential rules with the
power of CP-theories. In Proc. of IJCAI 2015, pages 2918–
2925. AAAI Press, 2015.

[11] Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris paribus
preference elicitation with predictive guarantees. In Proc. of
IJCAI 2009, pages 1890–1895, 2009.

[12] C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade. Prefer-
ences in AI: An overview. Artif. Intell., 175:1037–1052, 2011.

24

[13] C. Domshlak, E. Hüllermeier, S. Kaci, H. Prade, F. Yaman,
T. J. Walsh, M. L. Littman, and M. desJardins. Representing,
processing, and learning preferences: Theoretical and practical
challenges democratic approximation of lexicographic prefe-
rence models. Artif. Intell., 175(7):1290–1307, 2011.

[14] C. Domshlak and T. Joachims. Efficient and non-parametric
reasoning over user preferences. User Model. User-Adapt. In-
teract., 17(1/2):41–69, 2007.

[15] C. Domshlak and T. Joachims. Unstructuring user pref-
erences: Efficient non-parametric utility revelation. CoRR,
abs/1207.1390, 2012.

[16] C. Domshlak, S. Prestwich, F. Rossi, K. Venable, and T. Walsh.
Hard and soft constraints for reasoning about qualitative con-
ditional preferences. J. Heuristics, 12(4/5):263–285, 2006.

[17] C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh. Reasoning
about soft constraints and conditional preferences: Complexity
results and approximation techniques. In Proc. of IJCAI 2003,
pages 215–220. Morgan Kaufmann, 2003.

[18] J. Doyle. Prospects for preferences. Comput. Intell.,
20(2):111–136, 2004.

[19] R. Fagin. Combining fuzzy information from multiple systems.
J. Comput. Syst. Sci., 58(1):83–99, 1999.

[20] V. Fionda and G. Pirrò. Querying graphs with preferences. In
Proc. of CIKM 2013, pages 929–938. ACM Press, 2013.

[21] P. C. Fishburn. Utility theory for decision making. Publications
in operations research. J. Wiley, 1970.

[22] S. Flesca and S. Greco. Partially ordered regular languages for
graph queries. J. Comput. Syst. Sci., 70(1):1–25, 2005.

[23] J. Fürnkranz and E. Hüllermeier. Preference Learning.
Springer, 1st edition, 2010.

[24] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson. The
computational complexity of dominance and consistency in
CP-nets. J. Artif. Intell. Res., 33:403–432, 2008.

[25] G. Grahne, A. Thomo, and W. W. Wadge. Preferential regular
path queries. Fundam. Inform., 89(2-3):259–288, 2008.

[26] J. T. Guerin, T. E. Allen, and J. Goldsmith. Learning CP-net
preferences online from user queries. In P. Perny, M. Pirlot,
and A. Tsoukiàs, editors, Algorithmic Decision Theory, pages
208–220. Springer, 2013.

[27] M. Gueroussova, A. Polleres, and S. A. McIlraith. SPARQL
with qualitative and quantitative preferences. In Proc. of Or-
dRing 2013, volume 1059 of CEUR Workshop Proceedings,
pages 2–8. CEUR-WS.org, 2013.

[28] S. O. Hansson. What is ceteris paribus preference? J. Philos.
Logic, 25(3):307–332, 1996.

[29] W. Kießling. Foundations of preferences in database systems.
In Proc. of VLDB 2002, pages 311–322. VLDB Endowment,
2002.

[30] W. Kießling, M. Endres, and F. Wenzel. The Preference SQL
system—An overview. IEEE Data Eng. Bull., 34(2):11–18,
2011.

[31] F. Koriche and B. Zanuttini. Learning conditional preference
networks. Artif. Intell., 174(11):685–703, 2010.

[32] A. Leonardo and F. Vasco. OWLPref: Uma representação
declarativa de preferências para web semântica. Anais do
XXVII Congresso da SBC, pages 1411–1420, 2007.

[33] C. Li, M. A. Soliman, K. C.-C. Chang, and I. F. Ilyas.
RankSQL: Supporting ranking queries in relational database
management systems. In Proc. of VLDB 2005, pages 1342–
1345. VLDB Endowment, 2005.

[34] J. Liu, Y. Xiong, C. Wu, Z. Yao, and W. Liu. Learning condi-

tional preference networks from inconsistent examples. IEEE
T. Knowl. Data En., 26(2):376–390, 2014.

[35] J. Liu, Z. Yao, Y. Xiong, W. Liu, and C. Wu. Learning condi-
tional preference network from noisy samples using hypothesis
testing. Knowl.-Based Syst., 40:7–16, 2013.

[36] W. Liu, C. Wu, B. Feng, and J. Liu. Conditional preference
in recommender systems. Expert Syst. Appl., 42(2):774–788,
2015.

[37] I. Nunes, S. Miles, M. Luck, and C. J. P. de Lucena. An in-
troduction to reasoning over qualitative multi-attribute prefer-
ences. Knowl. Eng. Rev., 30:342–372, 5 2015.

[38] G. Pigozzi, A. Tsoukiàs, and P. Viappiani. Preferences in ar-
tificial intelligence. Ann. Math. Artif. Intell., 77(3/4):361–401,
2016.

[39] J. Rosati, T. Di Noia, T. Lukasiewicz, R. De Leone, and
A. Maurino. Preference queries with ceteris paribus semantics
for Linked Data. In OTM Conferences, volume 9415 of LNCS,
pages 423–442. Springer, 2015.

[40] W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic
web with preferences. In Proc. of ISWC 2006, pages 612–624.
Springer, 2006.

[41] A. Troumpoukis, S. Konstantopoulos, and A. Charalambidis.
An extension of SPARQL for expressing qualitative prefer-
ences. In Proc. of ISWC 2017, Part I, volume 10587 of LNCS,
pages 711–727. Springer, 2017.

[42] G. H. Von Wright. The Logic of Preference. Edinburgh Uni-
versity Press, 1963.

[43] N. Wilson. Extending CP-nets with stronger conditional prefe-
rence statements. In Proc. of AAAI, pages 735–741, 2004.

[44] N. Wilson. Computational techniques for a simple theory of
conditional preferences. Artif. Intell., 175:1053–1091, 2011.

Appendix

Appendix A Query formulation algorithm for
CP-theories

Algorithm 1 has the user’s preferences graph Guser
as input, that is, the RDF version of the user’s CP-
theory Γ in terms of the full ontology and returns the
SPARQL query able to order outcomes according to
�Γ, a strict partial order extending >Γ (see Theo-
rem 2). Line 5 computes, for each outcome o, the val-
ues (of variables in V) that it is composed of, through
the string Outcome D values built with the for cycle
of lines 2–4. The string Outcome D values contains
just the names of variables in V with a suffix D. Line
5 computes also the number of outcomes o′ that o dom-
inates according to �Γ, referred to as ?counter.
The counting is made possible by the combination of
the COUNT in line 5 and the GROUP BY in line 26.
The ?counter variable is then used by the ORDER
BY in line 27 to rank the result set. It is worth to no-
tice that line 5 asks for URI(?outcome D) and not
just for ?outcome D, since this entity will be em-

25

Algorithm 1
1: procedure GENERATEORDERINGQUERYFORCP-

THEORIES(Guser)
2: for all Xi ∈ V do
3: Outcome D values+=?Xi D
4: end for
5: OrderingQuery = SELECT (URI(?outcome D)

AS ?URIOutcome) Outcome D values
(COUNT(DISTINCT ?outcome d) AS
?counter) WHERE{ ;

6: OrderingQuery += {SELECT
DISTINCT ?outcome D ?outcome d

Outcome D values (count(DISTINCT
?V) AS ?counterVundominated)

(sum((?counterBind)) AS
?counterV) WHERE{ ;

7: OrderingQuery += {SELECT
DISTINCT ?outcome D ?outcome d ?V

Outcome D values WHERE{ ;
8: for y ∈ {D, d} do
9: for all Xi ∈ V do

10: OrderingQuery += VALUES(?Xi y)
{(value(xi1)) (value(xi2))} ;

11: end for
12: OrderingQuery += BIND(CONCAT(STR(;
13: for i = 1, . . . , |W | − 1 do
14: OrderingQuery += attribute(Xi)),

STR(?Xi y), ;
15: end for
16: OrderingQuery += STR(attribute(X|W |)),

STR(?X|W | y)) AS ?outcome y). ;
17: end for
18: OrderingQuery +=

FILTER(?outcome D!=?outcome d). ;
19: OrderingQuery += ?V a cpt:Variable.

?V cpt:variableDomain ?variable1.
?variable1 cpt:value ?value1.
?V cpt:variableDomain ?variable2.
?variable2 cpt:value ?value2.

FILTER (!(?value1=?value2)&&
contains(?outcome D,str(?value1))&&
contains(?outcome d,str(?value2))).

;
20: OrderingQuery += FILTER NOT EXISTS{

?V2 cpt:moreImportantThan ?V.
?V2 cpt:variableDomain ?vd1.
?vd1 cpt:value ?v1.
?V2 cpt:variableDomain ?vd2.
?vd2 cpt:value ?v2.
FILTER((!(?v1=?v2))&&
contains(?outcome D,str(?v1)) &&
contains(?outcome d,str(?v2))). }

;

21: OrderingQuery += FILTER NOT EXISTS{ ?V3
cpt:conditionallyMoreImportantThan
?instanceOfRelativeImportance.

?instanceOfRelativeImportance
cpt:hasCondition ?C.

?instanceOfRelativeImportance
cpt:hasLessImportantVariable ?V.

?V3 cpt:variableDomain ?vd13.
?vd13 cpt:value ?v13.

?V3 cpt:variableDomain ?vd23.
?vd23 cpt:value ?v23.

{Select distinct ?C
(GROUP CONCAT(CONCAT(str(?attr),str(?value))

; separator ="") as ?Concatenated)
where{ ?C cpt:contains ?c.
?c cpt:attribute ?attr;

cpt:value ?value. }
GROUP BY ?C }

FILTER(CONTAINS(?outcome D,?Concatenated)).
FILTER(!(?v13=?v23)&&
contains(?outcome D,str(?v13)) &&
contains(?outcome d,str(?v23))). } }}
;

22: OrderingQuery += {SELECT DISTINCT ?V
?ConcatenatedParent

?Prefer ?Over WHERE{ {Query 1} UNION
{Query 2} }} ;

23: OrderingQuery += BIND(IF(((
!BOUND(?ConcatenatedParent) &&
contains(?outcome D,?Prefer)&&
contains(?outcome d,?Over))

|| (BOUND(?ConcatenatedParent)
&& ?ConcatenatedParent!="" &&
contains(?outcome D,?ConcatenatedParent)
&& contains(?outcome D,?Prefer) &&
contains(?outcome d,?Over)))

,1,0) as ?counterBind) ;
24: OrderingQuery += } GROUP BY ?outcome D

Outcome D values
?outcome d } ;

25: OrderingQuery +=
FILTER(?counterV=?counterVundominated)}
;

26: OrderingQuery += GROUP BY ?outcome D
Outcome D values ;

27: OrderingQuery += ORDER BY DESC
(?counter) ;

28: return OrderingQuery
29: end procedure

ployed as the subject of triples at the beginning of Step
2 described in Section 4.2. Given a pair of outcomes
(o, o′), lines 6 to 24 are used to identify the set of
variables Θ

′
(o, o′) and among them the set of vari-

26

ables {X ∈ Θ
′
(o, o′): o(X) �Xo o′(X)}. The first

nested subquery (lines 7 to 21) considers one pair of
outcomes at a time, ?outcome D and ?outcome d,
where D and d stand respectively for Dominating and
dominated. The for loop of lines 8–17 allows to con-
sider first ?outcome D and then ?outcome d. For
each of them, the nested loop of lines 9–11 introduces
the values corresponding to the variables in V . For
each variable Xi ∈ V , Algorithm 1 looks for values
?Xi y filtering only elements of the set {value(xi1),
value(xi2)} in the binary case, or {value(xi1), . . . ,
value(xin)} elsewhere, through the VALUES assign-
ment at line 10. The algorithm requires that a list
W of variables is defined from the set of variables
V of Γ: the variables that refer to each instance of
Condition must appear in the same order in W , op-
tionally allowing some recurrence. At lines 12-16, the
outcome is explicitly built by concatenating, accord-
ing to the order imposed by W, the values extracted
for various ?Xi y together with attribute(Xi), for all
members of W . Line 18 is added to verify that the pair
of outcomes to compare is made of distinct elements.

At line 19, the patterns and the FILTER are used
to identify the variables ?V with different values
?value1 and ?value2 in the outcomes ?out-
come D and ?outcome d, namely the variables in
the set ∆(?outcome D,?outcome d). As imposed
by the couple of FILTER NOT EXISTS of lines 20
and 21, these variables ?V are such that:

– there does not exist any variable ?V2 in the set
∆(?outcome D,?outcome d) that is more-
ImportantThan ?V;

– there does not exist any variable ?V3 in the set
∆(?outcome D,?outcome d) that is condi-
tionallyMoreImportantThan ?V under a
Condition extended by ?outcome D.

In particular, the nested subquery appearing within the
FILTER NOT EXISTS of line 21 extracts only the
instances of Condition extended by ?outcome D,
building the representative strings of the conditional
values, concatenating them in ?Concatenated and
checking the inclusion of the string ?Concatenated
in ?outcome D through FILTER and CONTAINS.
The pair of FILTER NOT EXISTS of lines 20 and
21 allows therefore to identify the set of variables
Θ

′
(?outcome D, ?outcome d).
The UNION of Query 1 and Query 2 is added at

line 22. It returns a set of quadruples of the general
form 〈?V, ?ConcatenatedParent, ?Prefer,
?Over〉, able to order an outcome over another

one, locally with respect to ?V. For each variable
?V within the set Θ

′
(?outcome D, ?outcome d),

the IF of line 23 verifies if one of the quadruples
on variable ?V can be used to order ?outcome D
over ?outcome d locally with respect to ?V. In
particular, for quadruples with a missing value for
?ConcatenatedParent, it is sufficient to verify
if ?outcome D contains the better value of a prefe-
rence, i.e., ?Prefer, and ?outcome d contains the
relative worse value ?Over. Instead, for quadruples
with a bound value for ?ConcatenatedParent,
it must happens that ?outcome D contains the value
of ?ConcatenatedParent, as well as ?Prefer
and ?outcome d contain the value of ?Over. If
one of the || (or) conditions happens, the BIND in-
stantiate the value of ?counterBind to 1, other-
wise to 0. The ?counterBind value is summed
up across all instantiation of ?V in Θ

′
(?outcome D,

?outcome d), and it resolves into ?counterV at
line 6. The same line computes also the cardinality of
Θ

′
(?outcome D, ?outcome d), namely, the value

?counterVundominated. The FILTER at line 25
verifies if the pair of values ?counterVundomi-
nated and ?counterV coincides, that is, if ?out-
come D(X) �X?outcome D ?outcome d(X) for all
variables X in Θ

′
(?outcome D, ?outcome d). In

conclusion, if the FILTER of line 25 returns true
then ?outcome D dominates ?outcome d with
respect to �Γ, and its ?counter value is incre-
mented of a unit. Only distinct dominated outcomes
are counted, through the solution modifier DISTINCT
at line 5.

If we consider the query in Appendix B resulting
from the running example on Giorgio’s preferences,
we see that the variables involved in CP-statements as
well as the corresponding values are encoded in the
initial part of the query (line 9-50) and in the GROUP
BY statement (line 130). The remaining of the query
is quite standard and does not depend on the underly-
ing CP-theory Γ. As for the initial part of the query,
it contains a number of 2 · |V | VALUES statements,
where we assign all the allowed values to variables in
V and a BIND statement used to compose the strings
representing all possible outcomes. We emphasize that
the whole query is automatically generated by Algo-
rithm 1, starting from the full version of Γ, and then
the process is completely transparent to the user.

27

Appendix B Ordering Query for the Book Example

prefix cpt:<http://sisinflab.poliba.it/semanticweb/lod/ontologies/cpt full.owl#>1
prefix dbpedia-owl:<http://dbpedia.org/ontology/>2
prefix dbpedia:<http://dbpedia.org/resource/>3
prefix g:<http://sisinflab.poliba.it/semanticweb/graphs/>4
SELECT (URI(?outcome_D) AS ?URIOutcome) ?genre_D ?country_D ?subwork_D5

?filmVersion_D (COUNT(DISTINCT ?outcome_d) AS ?counter)6
WHERE7
{8
{ SELECT DISTINCT ?outcome_D ?outcome_d ?genre_D ?country_D ?subwork_D9

?filmVersion_D (COUNT(DISTINCT ?V) AS ?counterVundominated)10
(SUM((?counterBind))AS ?counterV)11
WHERE12
{13
{SELECT DISTINCT ?outcome_D ?outcome_d ?V ?genre_D ?country_D ?subwork_D14

?filmVersion_D15
WHERE16
{17
VALUES (?genre_D) {18

(dbpedia:Crime_fiction) (dbpedia:Autobiographical_novel)19
}20
VALUES (?country_D) {21
(dbpedia:France) (dbpedia:United_Kingdom)22
}23
VALUES (?subwork_D) {24
(cpt:subsequentWorkYes) (cpt:subsequentWorkNo)25

}26
VALUES (?filmVersion_D) {27
(cpt:filmVersionYes) (cpt:filmVersionNo)28

}29
BIND (CONCAT(STR(dbpedia-owl:country),STR(?country_D),30

STR(dbpedia-owl:literaryGenre),STR(?genre_D),31
STR(dbpedia-owl:subsequentWork),STR(?subwork_D),32
STR(dbpedia-owl:filmVersion),STR(?filmVersion_D)) AS ?outcome_D).33

VALUES (?genre_d) {34
(dbpedia:Crime_fiction) (dbpedia:Autobiographical_novel)35

}36
VALUES (?country_d) {37

(dbpedia:France) (dbpedia:United_Kingdom)38
}39
VALUES (?subwork_d) {40

(cpt:subsequentWorkYes) (cpt:subsequentWorkNo)41
}42
VALUES (?filmVersion_d) {43

(cpt:filmVersionYes) (cpt:filmVersionNo)44
}45
BIND (CONCAT(STR(dbpedia-owl:country),STR(?country_d),46

STR(dbpedia-owl::literaryGenre),STR(?genre_d),47
STR(dbpedia-owl:subsequentWork),STR(?subwork_d),48
STR(dbpedia-owl:filmVersion),STR(?filmVersion_d)) AS ?outcome_d).49

FILTER(?outcome_D!=?outcome_d).50
51

?V a cpt:Variable.52
?V cpt:variableDomain ?variable1. ?variable1 cpt:value ?value1.53
?V cpt:variableDomain ?variable2. ?variable2 cpt:value ?value2.54
FILTER (!(?value1=?value2)&& CONTAINS(?outcome_D,STR(?value1))55

&& CONTAINS(?outcome_d,STR(?value2))).56
FILTER NOT EXISTS{57
?V2 cpt:moreImportantThan ?V.58
?V2 cpt:variableDomain ?vd1. ?vd1 cpt:value ?v1.59
?V2 cpt:variableDomain ?vd2. ?vd2 cpt:value ?v2.60
FILTER((!(?v1=?v2))&& CONTAINS(?outcome_D,STR(?v1)) &&61

CONTAINS(?outcome_d,STR(?v2))).62
}63
FILTER NOT EXISTS{64
?V3 cpt:conditionallyMoreImportantThan ?instanceOfRelativeImportance.65
?instanceOfRelativeImportance cpt:hasCondition ?C.66
?instanceOfRelativeImportance cpt:hasLessImportantVariable ?V.67
?V3 cpt:variableDomain ?vd13. ?vd13 cpt:value ?v13.68
?V3 cpt:variableDomain ?vd23. ?vd23 cpt:value ?v23.69
{ SELECT DISTINCT ?C70

(GROUP_CONCAT(CONCAT(STR(?attr),STR(?value));separator ="")71
AS ?Concatenated) WHERE{72

?C cpt:contains ?c.73

28

?c cpt:attribute ?attr; cpt:value ?value.74
}75
GROUP BY ?C76

}77
FILTER(CONTAINS(?outcome_D,?Concatenated)).78
FILTER(!(?v13=?v23)&& CONTAINS(?outcome_D,STR(?v13)) &&79

CONTAINS(?outcome_d,STR(?v23))).80
}81

}82
}83
{ SELECT DISTINCT ?V ?ConcatenatedParent ?Prefer ?Over {84
{ SELECT ?V85

(CONCAT(STR(?attrPrefer),STR(?valuePrefer)) AS ?Prefer)86
(CONCAT(STR(?attrPrefer),STR(?valueOver)) AS ?Over) WHERE87

{?preference cpt:prefer ?p;88
cpt:over ?o.89

FILTER NOT EXISTS{?preference cpt:given ?condition.}90
?V cpt:variableDomain ?p.91
?p cpt:attribute ?attrPrefer;92

cpt:value ?valuePrefer.93
?o cpt:value ?valueOver.94

}95
}96
UNION97
{ SELECT DISTINCT ?V ?ConcatenatedParent ?Prefer ?Over WHERE98
{99

SELECT DISTINCT ?condition ?V100
(CONCAT(STR(?attrPrefer),STR(?valuePrefer)) AS ?Prefer)101
(CONCAT(STR(?attrPrefer),STR(?valueOver)) AS ?Over)102
(GROUP_CONCAT(CONCAT(STR(?attr),STR(?value));separator ="")103

AS ?ConcatenatedParent) WHERE104
{ ?preference cpt:given ?condition.105

?preference cpt:prefer ?p;106
cpt:over ?o.107

?V cpt:variableDomain ?p.108
?p cpt:attribute ?attrPrefer;109

cpt:value ?valuePrefer.110
?o cpt:value ?valueOver.111
?condition cpt:contains ?c.112
?c cpt:attribute ?attr;113

cpt:value ?value.114
}115
GROUP BY ?condition ?V ?attrPrefer ?valuePrefer ?valueOver116

}117
}118
}119

}120
BIND(IF(((!BOUND(?ConcatenatedParent) &&121

CONTAINS(?outcome_D,?Prefer)&&122
CONTAINS(?outcome_d,?Over))123
||124
(BOUND(?ConcatenatedParent) && ?ConcatenatedParent!="" &&125
CONTAINS(?outcome_D,?ConcatenatedParent) &&126
CONTAINS(?outcome_D,?Prefer) &&127
CONTAINS(?outcome_d,?Over))) ,1,0) AS ?counterBind)128

}129
GROUP BY ?outcome_D ?genre_D ?country_D ?subwork_D ?filmVersion_D ?outcome_d130

}131
FILTER(?counterV=?counterVundominated)132
}133
GROUP BY ?outcome_D ?genre_D ?country_D ?subwork_D ?filmVersion_D134
ORDER BY DESC (?counter)135

