
Title SQuAP-Ont: an ontology of software quality relational factors from
financial systems

Authors Ciancarini, Paolo;Nuzzolese, Andrea Giovanni;Presutti,
Valentina;Russo, Daniel

Publication date 2019-07

Original Citation Ciancarini, P., Nuzzolese, A. G., Presutti, V. and Russo, D. (2019)
SQuAP-Ont: an Ontology of Software Quality Relational Factors
from Financial Systems, Semantic Web, In Press

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://www.semantic-web-journal.net/content/squap-ont-
ontology-software-quality-relational-factors-financial-systems-0

Rights © 2019 – IOS Press and the authors. All rights reserved

Download date 2024-04-26 07:18:45

Item downloaded
from

https://hdl.handle.net/10468/8517

https://hdl.handle.net/10468/8517

Semantic Web 0 (0) 1–14 1
IOS Press

SQuAP-Ont: an Ontology of Software Quality
Relational Factors from Financial Systems
Paolo Ciancarini a,b, Andrea Giovanni Nuzzolese a, Valentina Presutti a, and Daniel Russo a,c,*

a STLab, Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
b University of Bologna, Italy and Innopolis University, Russia
c Lero - The Irish Software Research Center & School of Computer Science & Information Technology University
College Cork, Cork, Ireland

Abstract. Quality, architecture, and process are considered the keystones of software engineering. ISO defines them in three
separate standards. However, their interaction has been scarcely studied, so far. The SQuAP model (Software Quality, Archi-
tecture, Process) describes twenty-eight main factors that impact on software quality in banking systems, and each factor is de-
scribed as a relation among some characteristics from the three ISO standards. Hence, SQuAP makes such relations emerge rig-
orously, although informally. In this paper, we present SQuAP-Ont, an OWL ontology designed by following a well-established
methodology based on the re-use of Ontology Design Patterns (i.e. ODPs). SQuAP-Ont formalises the relations emerging from
SQuAP to represent and reason via Linked Data about software engineering in a three-dimensional model consisting of quality,
architecture, and process ISO characteristics.

Keywords: Ontologies, Ontology Design Patterns, Pattern-based Ontology Modelling, Software Engineering, Software Quality,
Software Process, Software Architecture.

1. A three-dimensional view on software quality

Industrial standards are widely used in the software
engineering practice: they are built on pre-existing lit-
erature and provide a common ground to scholars and
practitioners to analyze, develop, and assess software
systems. As far as software quality is concerned, the
reference standard is the ISO/IEC 25010:2011 (ISO
quality from now on), which defines the quality of
software products and their usage (i.e., in-use quality).
The ISO quality standard introduces eight character-
istics that qualify a software product, and five charac-
teristics that assess its quality in use. A characteris-
tic is a parameter for measuring the quality of a soft-
ware system-related aspect, e.g., reliability, usability,
performance efficiency. The quantitative value associ-
ated with a characteristic is measured employing met-
rics that are dependent on the context of a specific soft-
ware project and defined following the established lit-
erature.

*Corresponding author. E-mail:daniel.russo@lero.ie.

The ISO quality standard only focuses on the re-
sulting software product without explicitly accounting
for the process that was followed or the implemented
architecture. However, there is wide agreement [40]
about the importance of the impact of three com-
bined dimensions: software quality, software develop-
ment process, and software architecture, on the suc-
cessful management and evolution of information sys-
tems. In this respect, the industrial standard ISO/IEC
12207:2008 defines a structure for the software pro-
cess life cycle, and outlines the tasks required for de-
veloping and maintaining software [46]. Regardless
of the chosen methodology (i.e., Agile or Waterfall
ones [40]), this standard identifies the relevant con-
cepts of the life cycle and provides a useful tool for
software developers to assess if they have undertaken
all recommended actions or not. Each lifecycle con-
cept can be evaluated according to its maturity level
through established metrics, e.g., the Capability Matu-
rity Model Integration (CMMI) [49]. As for the archi-
tectural dimension, the ISO/IEC 42010:2011 standard
provides a glossary for the relevant objects of software

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 P. Ciancarini et al. / SQuAP-Ont

architecture. Concerning software architecture evalu-
ation, intended as a way to achieve quality attributes
(i.e., maintainability and reliability in a system), some
approaches have emerged, the most prominent being
ATAM, proposed by the Software Engineering Insti-
tute [30, 14, 5, 4]. Typical research in this domain is
about how architectural patterns and guidelines impact
software components and configurations [22]. A sur-
vey study [16] analyzes architectural patterns to iden-
tify potential risks, and to verify the quality require-
ments that have been addressed in the architectural de-
sign of a system.

The mutual relations among the three dimensions
and their impact on the quality of software systems
have been barely addressed in the literature, but a re-
cent empirical study [43] in the domain of Software
Banking Systems pointed out the importance of those
relations. The study involved 13 top managers of the IT
Banking sector in the first phase and 124 additional do-
main experts in a second validation phase. The result of
such a study was a model named SQuAP that describes
these relations in terms of quality factors. According
to [24], the information available to guide and support
the management of software quality efforts is a critical
success factor for IT domains. Considering the broad
coverage of its empirical provenance, a formalization
of SQuAP may serve as a reference resource and prac-
tical tool for scholars and practitioners of software en-
gineering, to assess the quality of a software system,
to drive its development to meet a certain quality level,
as well as to teach software engineering.

The SQuAP model builds on the concept of qual-
ity factor: a n-ary relation between software qual-
ity characteristics that cover the three dimensions of
software product, process, and architecture, based on
the three reference standards ISO/IEC 25010:2011,
ISO/IEC 12207:2008, and ISO/IEC 42010:2011 re-
spectively. A SQuAP quality factor can be described
as a complex quality characteristic (or parameter) that
provides a three-dimensional view for assessing soft-
ware quality. The model identifies twenty-eight quality
factors.

Our contribution consists in a resource named
SQuAP-Ont, an ontology that formally represents the
concept of quality factor by reusing existing ontology
design patterns (e.g., Description and Situation [41,
21]), instantiates all factors identified so far, and ax-
iomatizes them in order to infer measurable factors
based on the characteristics available at hand. Besides,

the ontology has been annotated with OPLa1 (On-
tology Design Pattern representation language) to in-
crease its reusability. SQuAP-Ont is publicly avail-
able online2 with accompanying documentation that
describes the factors, under a CC-BY-4.0 license.

In the rest of the paper, after discussing relevant re-
lated work (Section 2), we provide additional details
about the SQuAP model by presenting two sample fac-
tors in Section 3. We describe the SQuAP-Ont ontol-
ogy: its main concepts and axioms, the adopted de-
sign methodology and the reused ontology design pat-
terns in Section 4. In Section 5 we provide examples of
how to use it; and discuss the resource potential impact
(Section 6) before concluding and identifying future
developments, in Section 7.

2. Related work

The use of ontologies in the software engineering
domain is very common [9, 51, 28]. The ISO standards
referenced in Section 1 have been the subject of several
ontological studies. For example, useful guidelines for
their ontological representation are proposed by Hen-
derson et al. (2014) and Gonzalez et al. (2016) [26,
23].

An ontology-based approach to express software
processes at the conceptual level was proposed in Liao
et al. (2015) [33] and implemented in e.g., Soydan &
Kokan (2006) [47] for CMMI [13]. Software quality
attributes have been modeled in Kayed et al. (2009)
[29], while an ontology for representing software eval-
uation is proposed in Castro et al. (2010) [12]. Finally,
a formalisation of the ISO 42010, describing software
architecture elements, is developed in Emery & Hil-
iard (2009) [17] and in Kumar & Prabhakar (2010)
[31]; and Antunes et al. (2013) [2] argues that different
architecture domains can be integrated and analyzed
through the use of ontologies.

Most of the works mentioned above focus on a strict
representation of standards in terms of ontologies [33,
47, 13, 17]. Other scholars [29, 12] provide only pre-
liminary ontological solutions for modelling quality
characteristics or software evaluation and, to the best
of our knowledge, they overlook the reuse of ontology
design patterns. In contrast, our work focuses on the
relation between the different ISO standards (system
quality, software development process, and software

1http://ontologydesignpatterns.org/opla/
2 https://w3id.org/squap/

P. Ciancarini et al. / SQuAP-Ont 3

architecture) for supporting the assessment of software
system quality, with the added value of following a rig-
orous pattern-based ontology design approach.

Also at a higher level, an ontology to harmonize
different hierarchical process levels through multiple
models such as CMMI, ISO 90003, ITIL, SWEBOK,
COBIT was presented in Pardo et al. (2012) [38].

Ontologies referred to software quality focus pri-
marily on quality attributes [29]. One quality evalua-
tion, based on the ISO 25010 standard, is enhanced by
taking into consideration several object-oriented met-
rics [36]. Similarly, Castro et al. (2010) reuse current
quality standards and models to present an ontology
for representing software evaluations [12].

Similarly, scholars advanced an ontology for the
ISO 42010 standard regarding software architecture
[17]. An ontological representation of architectural el-
ements has also been expanded by Kumar & Prab-
hakar (2010) [31]. With particular reference to the ar-
chitecture rationale, some visualization and compari-
son techniques with semantic web technologies have
been proposed in literature [35]. Moreover, scholars
showed that different architecture domains could be in-
tegrated and analyzed through the use of ontologies [2]

Finally, the Semantic Web community proposed
also guidelines regarding the representation of ISO
standards of software engineering with ontologies [26,
23]. These two papers use a domain ontology, propos-
ing the creation of a single underpinning abstract do-
main ontology, from existing ISO/IEC standards. Ac-
cording to the authors, the adoption of a single ontol-
ogy will permit the re-engineering of existing Interna-
tional Standards as refinements from this domain on-
tology so that these variously focused standards may
inter-operate.

3. Relational quality factors: the SQuAP Model

The motivation for developing SQuAP is based on
the understanding, in the software engineering and in-
formation systems communities, that assessing soft-
ware quality for contemporary information systems re-
quires to take into consideration the relations among
different dimensional perspectives, namely: software
quality, process, and architecture [40]. Accordingly,
we conducted an empirical study in the banking sec-
tor [44]. The financial and banking industry is partic-
ularly useful to explore information systems quality
issues for several reasons. First, it is mission-critical,
i.e., the failure of even one system would lead to unpre-

dictable consequences. Thus, the top manager showed
increasing concerns about the quality and sustainabil-
ity of their information systems [43]. Secondly, most
institutions, such as those involved in the study, are
multinational, sharing the same systems and the same
concerns. Finally, this sector is highly connected and
regulated centrally by banking authorities. So, many
functionalities and requirements are well defined by
such authorities, which means that the entire industry
is using similar software products.

Therefore, to develop the SQuAP quality meta-
model, we executed our research according to the fol-
lowing steps. In the first phase, based on the Delphi
method [15], we involved 13 top managers of this sec-
tor to express their most significant software quality
concerns. The result was a set of distinct 28 quality
factors emerging from the elicited concerns, after a
consensus-based negotiation phase (part of the Delphi
method). In a second phase, we involved 124 domain
experts that validated the 28 factors with a high level
of agreement. Each factor has been then linked to sev-
eral characteristics or elements defined in the three dif-
ferent standards, i.e., ISO 25010, ISO 42010, and ISO
12207, for software quality, architecture, and process
respectively. We followed the theoretical coding ap-
proach by Strauss & Corbin (1997) [48] to map the
factors to the ISO standards3.

The selection criteria and demographics of the ex-
perts involved in both phases, the inclusion and exclu-
sion criteria, the agreement figures as well as the indus-
try coverage are explained in Russo et al. (2018) [44].
In the same paper, we provide further details about the
methodological approach and an exhaustive descrip-
tion of the 28 factors. A list of them are also published
on the resource website4 along with a short textual de-
scription, and by tables depicting their mappings to
ISO standards.

The 28 SQuAP factors have been rigorous, although
informally defined in our previous work [44]. These
definitions are the primary input for the development
of SQuAP-Ont; hence, it is relevant to report here at
least one them. The definition of a factor consists of
a set of quotes from the experts involved in the study
followed by an analysis (based on theoretical coding)
on what are the main characteristics and elements from
the standards that emerged as components of the fac-

3Standards are de facto second-order theories, built on grounded
pre-existing ones and shared among scholar’s and practitioner’s
communities.

4https://w3id.org/squap/documentation/factors.html

https://w3id.org/squap/documentation/factors.html

4 P. Ciancarini et al. / SQuAP-Ont

Fig. 1. Factor 26: Data analysis vs. Functional analysis. This factor is defined as a relation between three quality characteristics of a software
project: Functional Correctness (ISO 25010), Architectural View (ISO 45010), and Development (ISO 12207).

tor. We choose randomly one factor (26) to explain the
underlying logic of the factor mapping.

Factor 26: Data analysis vs Functional analysis.
This factor explores whenever poor data analysis in-
fluences functional analysis and so, system integrity.
“The “functional centric” view is quite misleading
since it relegates the importance of data. Data give
the “static view” of existing functionalities, which is
very important for the functional analysis. One soft-
ware product may have all possible functionalities re-
quired by the user but lacking fundamental data its
deployment and system integration becomes impossi-
ble”, said one surveyed expert. Moreover, “data anal-
ysis skills are generally lacking and poorly used in
functional analysis”, affirmed another one. This issue
is present market-wide. “In my opinion, in the market,
there is a lacking perception about the importance of
data analysis as the preliminary phase of functional
analysis”. However, other experts disagree. “Saying
that poor analysis is due to poor data understanding is
a quite generic (it is obvious that data processing is the
main IT goal) and old issue”. Other issues are also rel-
evant to understand the factor. “Also knowing what dif-
ferent data means is important”. Also, “it is not only
an issue of poor technical skills”. Furthermore, “per-
sonally, I saw poorer knowledge of bank’s operation
processes”. There was a shift after 2010, which give
fascinating insights. “It is true for applications devel-
oped before 2010. Data governance is now more rele-
vant, and data analysis is performed before the func-
tional one. So I see a clear discontinuity with the past”.

Theoretical coding analysis: experts stressed the
importance of data and functional analysis, impacting
on the dimensions of Functional Correctness (soft-
ware quality), Development (software process), and
Architecture View (software architecture). They re-
fer to the functional suitability of applications through
correctness. This impacts the development process,
which is supported by such an analysis. The architec-
ture view addresses the concern of a suitable system
held by the system’s stakeholders. Figure 1 shows a
graphical representation of Factor 26.

4. SQuAP-Ont: an OWL formalisation of SQuAP

In this section we first provide details about the on-
tology design methodology adopted (cf. Section 4.1),
then we describe the SQuAP Ontology (cf. Sec-
tion 4.3) and we provide its formalisation (cf. Sec-
tion 4.3). Finally, we provide the implementation de-
tails of the ontology (cf. Section 4.4).

4.1. Design methodology

The SQuAP Ontology (SQuAP-Ont) is designed by
reusing ontology design patterns (ODPs) [20] accord-
ing to an extension of the eXtreme Design method-
ology [6]. We opt for an ODP-based methodology as
there are shreds of evidence [6] that the reuse of ODPs
(i) speeds up the ontology design process, (ii) eases
design choices, (iii) produces more effective results in
terms of ontology quality, and (iv) boosts interoper-

P. Ciancarini et al. / SQuAP-Ont 5

Fig. 2. The XD methodology as implemented for modelling the SQuAP ontology.

ability. This extension has been first described in [42]
and mainly focuses on providing ontology engineers
with clear strategies for ontology reuse. According to
the guidelines provided by [42], we adopt the indirect
re-use: ODPs are reused as templates. Hence, ODPs
are specialized by specific ontology modules devel-
oped as components of the final ontologies instead of
being directly reused and linked by those modules.
For example, if we want to reuse the object property
region:hasParameter from the Region ODP,
then we define the object property :hasParameter
into the target ontology and we formally annotate
such indirect reuse employing the OPLa ontology [27].
Nevertheless, the ontology guarantees interoperability
by keeping the appropriate alignments with the exter-
nal ODPs and provides extensions that satisfy more
specific requirements.

The XD extension implemented in this work has
been successfully adopted in several ontologies and
linked open data projects so far. Examples are [37, 39,
34, 18, 11]. This extension implements an iterative and
incremental approach to ontology design that involves
three different actors: (i) a design team, in charge of
selecting and implementing suitable ODPs as well as

to perform alignments and linking; (ii) a testing team,
disjoint from the design team, which takes care of test-
ing the ontology; (iii) a customer team, who elicits the
requirements that are translated by the design team and
testing team into ontological commitments (i.e., com-
petency questions and other constraints) that guide the
ontology development. Figure 2 depicts the UML ac-
tivity diagram that represents the XD extension de-
scribed in Presutti et al. [42] as implemented in this
work. The diagram is extended by explicitly identi-
fying the actors that are associated with each action
they are involved in. The first action of the methodol-
ogy is the collection of requirements that involves both
the customer and the design team. At this stage, the
requirements are recorded as stories, which are typi-
cally used in agile software development for commu-
nicating requirements from the customer to the devel-
opment team. After requirement stories are recorded,
the design team starts to transform them into compe-
tency questions [25] (CQs). CQs represent the ontolog-
ical commitments that drive the ontology development.
Table 1 reports the CQs, identified by analysing the
SQuAP model (cf. Section 3) and by discussing with
domain experts (i.e., the customer team in our context).

6 P. Ciancarini et al. / SQuAP-Ont

Table 1
Competency questions used for modelling SQuAP-Ont.

ID Competency question
CQ1 What are the quality characteristics of a soft-

ware system at software, process, and architectural
level?

CQ2 What are the factors, the assessment of which, is
affected by a certain quality characteristic?

CQ3 What are the quality characteristics that affect the
assessment of a certain factor?

CQ4 What is the unit of measure (i.e., metric) associated
with a certain quality characteristic?

CQ5 What is the value computed for assessing a certain
quality characteristic?

The next action is about the design team looking for
possible ODPs to reuse by analysing the resulting CQs.
Those ODPs, if available, are reused for designing the
modules of the ontology that addresses the specific
CQs. When an ontology module is ready, the testing
team performs the validation by assessing its fulfilment
to the CQs. This validation is performed by (i) con-
verting the CQs to SPARQL queries and (ii) executing
those queries on a data sample, which is modelled ac-
cording to the target ontology module. If the validation
is successful, the design team integrates the ontology
module in the final ontology. Additionally, the design
team provides alignments with related external ontolo-
gies and vocabularies in the Semantic Web for boost-
ing interoperability. Then, the testing team performs a
set of integration tests aimed at (i) validating the log-
ical consistency of the ontology and (ii) its ability to
detect errors by deliberately introducing contradictory
facts. Both checks can be performed by using a DL
reasoner, such as HermiT5, Pellet6, etc. We remark that
the testing based on the (i) validation of the CQs, (ii)
the check of the logical consistency, and (iii) the er-
ror provocation follows the methodology designed by
Blomqvist et al. (2012) [7]. If the integration tests suc-
ceed, then the design team performs another iteration
of the process by selecting an untreated CQ. If no un-
treated CQ is available, then the iteration consists of
the selection of an untreated requirement story. Finally,
after several iterations and when no untreated require-
ment story is available, the process ends. Accordingly,
the ontology is released.

4.2. Ontology description

Figure 3 shows a diagram of SQuAP-Ont. We use
the namespace https://w3id.org/squap/. SQuAP-Ont

5http://www.hermit-reasoner.com/
6https://github.com/stardog-union/pellet

re-uses as templates the following ontology design pat-
terns [41]: Description and Situation (D&S)7 [19], and
Parameter Region8.

The D&S pattern allows representing the conceptu-
alisation of a n-ary relation (i.e., description) and its
occurrences (i.e., situations) in the same domain of
discourse. For example, it is used for representing the
description of a plan (D) and its actual executions (S),
the model of disease (D, e.g., its symptoms) and the
actual occurrence of it in a patient (S), etc. SQuAP-
Ont reuses this pattern for modelling quality fac-
tors with the class :SoftwareQualityFactor,
a subclass of :Description. The actual occur-
rences of quality factors assessed in a specific soft-
ware project are modelled with the class :Factor-
Occurrence, a subclass of :Situation. Both
:Description and :Situation are core ele-
ments of the D&S pattern. According to the D&S pat-
tern a :Description defines a set of :Concepts.
In the context of SQuAP-Ont we say that a :Software-
QualityFactor uses a set of :SoftwareQuality-
Characteristic. This relation is modelled by
the property :usesQualityCharacteristic.
We model three types of :SoftwareQuality-
Characteristic: :SoftwareQuality, :Ar-
chitecturalAlignment, and :ProcessMat-
urity. They classify the characteristics associated
with the three different ISO standards and their own
perspectives, i.e., software quality, architecture, and
process. In a similar way, a set of entities are in the
setting provided by a :Situation. In the context
of SQuAP-Ont we say that a set of :Measure-
mentResult affects the assessment of a :Factor-
Occurrence. We model three types of :Meas-
urementResult with the classes :Software-
QualityMeasurementResult, :Architec-
turalAlignmentResult, and :ProcessMat-
urityResult which are instantiated with result
measurements computed for assessing the quality
characteristics of a specific software system. A :Meas-
urementResult has a :Value and a reference
:Metric. For example, we may want to represent
that the Reliability of a software system is associated
with a specific degree value according to a certain met-
ric. This part of the model reuses the Parameter Region
ontology design pattern as template.

7http://ontologydesignpatterns.org/cp/owl/
descriptionandsituation.owl

8http://ontologydesignpatterns.org/cp/owl/parameterregion.owl

https://w3id.org/squap/
http://www.hermit-reasoner.com/
https://github.com/stardog-union/pellet
http://ontologydesignpatterns.org/cp/owl/descriptionandsituation.owl
http://ontologydesignpatterns.org/cp/owl/descriptionandsituation.owl
http://ontologydesignpatterns.org/cp/owl/parameterregion.owl

P. Ciancarini et al. / SQuAP-Ont 7

Fig. 3. Core classes of SQuAP-Ont.

In D&S each entity that is in the setting of a
:Situation is classified by a :Concept. In the
context of SQuAP-Ont we specialized this relation
by saying that a :MeasurementResult assesses
a :SoftwareQualityCharacteristic. Based
on the :MeasurementResults that compose a
:FactorOccurrence it may satisfy one or more
:SoftwareQualityFactors (cf. modelled by the
property :satisfiesFactor.
:SoftwareQualityFactors are represented

in SQuAP both as individuals and classes, by ex-
ploiting OWL punning. Punning implements meta-
classing in OWL and allows to interpret the same
ontology entity either as a class or an instance of a
metaclass depending on the syntactic context. This

mechanism makes ontology modelling more simi-
lar to the way humans communicate knowledge by
using natural language. Punning evoke verbal jokes
(i.e., pun), which are typically used in natural lan-
guage to emphasise a particular fact. When quality
factors are interpreted as classes, then it is possible
to introduce instances of those classes. Hence, it is
possible to describe specific quality factors that oc-
cur for contextualising the quality of certain soft-
ware. For example, it is possible to describe the qual-
ity resulting from the analysis of a specific soft-
ware by introducing a specific individual of the factor
factor:QualityVsRequirements represented
as a class. On the contrary, when quality factors are in-
terpreted as individuals, then it is possible to treat them

8 P. Ciancarini et al. / SQuAP-Ont

as instances of the metacass :SoftwareQuality-
Factor. Hence, it is possible to predicate them. In
the latter case, we can use the SQuAP-Ont to model a
knowledge graph that provides facts about the quality
factors from a general perspective. For example, we
might state that factor:QualityVsRequire-
ments dul:associatedWith factor:Qua-
lityVsTimeAndBudget. Additionally, a clear ben-
efit from modelling factors with punning is the possi-
bility to use both DL axioms or rules (e.g., SPARQL
CONSTRUCT) to infer new knowledge. All factors
identified by the SQuAP model are instantiated in
the ontology. SQuAP-Ont models the three types
of :SoftwareQualityCharacteristics in a
similar way: a set of individuals extracted from the
SQuAP model, according to the three reference ISO
standards (cf. Section 3), are included in the ontol-
ogy. They are also modelled as classes to make the
ontology extensible with possible specific axioms.
Furthermore, :SoftwareQualityCharacter-
istics are organized hierarchically through the ob-
ject property :specializes, which is declared
as transitive. The use of both rdfs:subClassOf
and :specializes allows to represent hierarchi-
cal relations among :SoftwareQualityChar-
acteristics both when they are interpreted as
classes and when they are interpreted as individuals.
The latter is beneficial for defining and reasoning on
software quality characteristics organized taxonomi-
cally within a controlled vocabulary, similarly to the
taxonomic relations among concepts in SKOS (i.e.,
skos:borrower).

As aforementioned, SQuAP-Ont is annotated with
the OPLa ontology [27] for explicitly indicating the
reused patterns. We use the property opla:reuses-
PatternAsTemplate to link SQuAP-Ont to the
two patterns we adopted as template, i.e., D&S and
Parameter Region. Similarly, we use the property
opla:isNativeTo to indicate that certain classes
and properties of SQuAP-Ont are core elements of
specific ontology patterns. These annotations enable
the automatic identification of the patterns reused by
SQuAP-Ont, e.g., with SPARQL queries, hence facili-
tating the correct reuse of the ontology.

Finally, SQuAP is aligned, using an external file, to
DOLCE+DnS UltraLight 9. Tables 2 and 3 report the
alignments axioms between the classes and the prop-
erties of the two ontologies, respectively.

9http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

Table 2
Alignments between the classes of SQuAP-Ont and DOLCE
UltraLight.

SQuAP class Align. axiom DOLCE class
:Region owl:equivalentClass dul:Region

:Value owl:subClassOf dul:Amount

:Parameter owl:equivalentClass dul:Parameter

:Concept owl:equivalentClass dul:Concept

:Situation owl:equivalentClass dul:Situation

Table 3
Alignments between the properties of SQuAP-Ont and DOLCE
UltraLight.

SQuAP prop. Align. axiom DOLCE prop.
:classifies owl:equivalentProperty dul:classifies

:isClassifiedBy owl:equivalentProperty dul:isClassifiedBy

:usesConcept owl:equivalentProperty dul:usesConcept

:isConceptUsedIn owl:equivalentProperty dul:isConceptUsedIn

:satisfies owl:equivalentProperty dul:satisfies

:isSatisfied owl:equivalentProperty dul:isSatisfied

:specializes owl:equivalentProperty dul:specializes

:isSpecializedBy owl:equivalentProperty dul:isSpecializedBy

:isSettingFor owl:equivalentProperty dul:isSettingFor

:value owl:subPropertyOf dul:hasRegionDataValue

4.3. Formalisation

The following is the formalisation of SQuAP-Ont
described in Section 4.3. The formalisation is ex-
pressed in Description Logics. For brevity, we use
the terms SwQualityChar for SowftwareQual-
ityCharacteristic, ArchAlign for Archi-
tecturalAlignment, ProcMat for Process-
Maturity, SwQuality for SoftwareQuality,
SwQualityFactor for SoftwareQualityFactor,
MeasureRes for MeasurementResult, Proc-
MatRes for ProcessMaturityResult, SwQual-
ityRes for SoftwareQualityResult, and Mea-
sureQualityRes for MeasurementQuality-
Result.

Value v Region (1)

Value v=1value.Literal (2)

Concept 6≡ Description (3)

Concept 6≡ Description (4)

SwQualityChar v Concept (5)

SwQualityChar ≡ ArchAlign t ProcMat t SwQuality (6)

ArchAlign v SwQualityChar (7)

ArchAlign 6≡ ProcMat (8)

ArchAlign 6≡ SwQuality (9)

ProcMat v SwQualityChar (10)

ProcMat 6≡ ArchAlign (11)

ProcMat 6≡ SwQuality (12)

P. Ciancarini et al. / SQuAP-Ont 9

SwQuality v SwQualityChar (13)

SwQuality 6≡ ArchAlign (14)

SwQuality 6≡ ProcMat (15)

Description 6≡ Concept (16)

Description 6≡ Situation (17)

SwQualityFactor v Description (18)

SwQualityFactor v ∀usesQualChar.SwQualityChar (19)

SwQualityFactor v ∃usesQualChar.SwQualityChar (20)

MeasureRes v ∃assess.SwQualityChar (21)

MeasureRes v=1hasValue.Value (22)

MeasureRes v=1hasMetric.Metric (23)

ArcAlignmentRes v MeasureRes (24)

ProcMatRes v MeasureRes (25)

SwQualityRes v MeasureRes (26)

FactorOccurrence v Situation (27)

FactorOccurrence v ∃isAffectedBy.MeasureRes (28)

FactorOccurrence v ∃satisfiesFactor.SwQualityFactor
(29)

usesConcept ◦ specializes v usesConcept (30)

4.4. Implementation details

The namespace https://w3id.org/squap/ identifies
the ontology and enables permanent identifiers to be
used for referring to concepts and properties of the
ontology. We define individuals’ URIs with the name
of their types (e.g., ArchitecturalAlignment)
preceding their IDs (e.g., ObjectiveCharacteristic).
This convention is a common practice in many linked
open data projects to define individuals’ URIs. For ex-
ample, squap:ArchitecturalAlignmentOb-
jectiveCharacteristic is the URI associated
with the individual ObjectiveCharacteristic
typed as ArchitecturalAlignment. All the on-
tology entities modelled by using OWL punning fol-
low such a convention as the can be interpreted as indi-
viduals (or classes) depending on the context. We setup
a content negotiation mechanism that allows a client
to request the ontology either (i) as HTML (e.g. when
accessing the ontology via a browser) or (ii) as one
of the possible serialisations allowed (i.e., RDF/XML,
Turtle, N-triples).

The alignments with DOLCE+DnS UltraLight (DUL)
are published in a separate OWL file10, which imports

10https://w3id.org/squap/squap-dul.owl

both SQuAP-Ont and DUL. This allows one to use
either SQuAP-Ont alone or its version aligned with
and dependent on DUL. The resource, including the
core ontology, the alignments, and the usage exam-
ples, is under version control on the CERN Zenodo
repository11. SQuAP-Ont is published according to
the Creative Commons Attribution 4.0 International
(CC-BY-4.0) license12 and it has been uploaded on
Linked Open Vocabularies13 (LOV). The license in-
formation is included in the ontology by using the
dcterms:license property.

5. How to use SQuAP-Ont

Flexibility is among the most relevant characteris-
tic of this ontology. Although the higher levels of this
ontology, regarding the standard and the factors map-
ping, are fixed, its measurement model can be adapted
to the most suited scenario. In particular, the proposed
way to evaluate information systems characteristics is
just an illustrative example, which can be adapted to
for any assessment purposes.

As a usage example of the SQuAP ontology, we
show a real-world example consisting of the evalu-
ation of a banking application employing the Goal-
Question-Metric (GQM) approach [3]. GQM defines
a measurement model on three levels, i.e., Conceptual
level (Goal), Operational level (Question), Quantita-
tive level (Metric). This method offers a hierarchical
assessment framework, where goals are typically de-
fined and stable in time, and metrics may be adapted
according to new measurement advances. So, we stress
the fact that this paper does not focus on the mea-
surement model, preferably on the knowledge repre-
sentation of SQuAP for assessment and benchmarking
purposes. So, we provide the following synthetic RDF
data about the assessment. The data are expressed as
RDF serialised in TURTLE14.

@prefix : <https://w3id.org/squap/examples/gqm/> .
@prefix arc:
<https://w3id.org/squap/ArchitecturalAlignment/> .

@prefix sw:
<https://w3id.org/squap/SoftwareQuality/> .

@prefix prc:
<https://w3id.org/squap/ProcessMaturity/> .

@prefix squap: <https://w3id.org/squap/> .

:compatibility-result a

11http://doi.org/10.5281/zenodo.3361387
12https://creativecommons.org/licenses/by/4.0/
13https://lov.linkeddata.es/dataset/lov/
14The RDF is available at https://w3id.org/squap/examples/gqm

https://w3id.org/squap/
https://w3id.org/squap/squap-dul.owl
http://doi.org/10.5281/zenodo.3361387
https://creativecommons.org/licenses/by/4.0/
https://lov.linkeddata.es/dataset/lov/
https://w3id.org/squap/examples/gqm

10 P. Ciancarini et al. / SQuAP-Ont

squap:SoftwareQualityResult ;
squap:assesses sw:Compatibility ;
squap:hasMetric :sonarqube-sw-quality ;
squap:hasValue :sonarqube-value-b .

:correspondenceresult
a squap:ArchitecturalAlignmentResult ;
squap:assesses arc:Correspondence ;
squap:hasMetric :likert-scale-1-7 ;
squap:hasValue :likert-value-7 .

:documentation-result
a squap:ProcessMaturityResult ;
squap:assesses prc:Documentation ;
squap:hasMetric :likert-based-prc-maturity ;
squap:hasValue :likert-value-6 .

:sonarqube-sw-quality a squap:Metric ;
squap:hasParameter :sonarqube-params .

:sonarqube-params a squap:Parameter ;
squap:parametrizes :sonarqube-value-a ,
:sonarqube-value-b ,
:sonarqube-value-c .

:likert-based-prc-maturity a squap:Metric ;
squap:hasParameter :likert-scale-1-7 .

:likert-scale-1-7 a squap:Parameter ;
squap:parametrizes
:likert-value-1 , :likert-value-2 ,
:likert-value-3 , :likert-value-4 ,
:likert-value-5 , :likert-value-6 ,
:likert-value-7 .

:sonarqube-value-b a squap:Value ;
squap:value "B" .

:likert-value-7 a squap:Value ;
squap:value 7 .

:likert-value-6 a squap:Value ;
squap:value 6 .

The example describes a banking system associ-
ated with three assessments about the dimensions
of software quality, architectural alignment, and pro-
cess maturity. The specific measurement results are:
:compatibility-result, which assesses the
characteristic sw-quality:Compatibility (soft-
ware quality), :correspondenceresult, which
assesses the characteristic arc-alignment:Cor-
respondence (architectural alignment), and :doc-
umentation-result, which assesses the char-
acteristic prc-maturity:Documentation (pro-
cess maturity). Those measurement results are associ-
ated with a value (e.g., :likert-value-7, which
identifies the value 7 of a Likert scale) and a met-
ric (e.g., :likert-scale-1-7, which identifies a
Likert scale ranging from 1 to 7). Each value is re-
ported with a literal representation and is associated
with a metric. It is possible to use the axioms defined
in SQuAP-Ont in order to gather all the factors that
can be enabled by the available measured quality char-

acteristics (e.g., sw-quality:Compatibility).
This can be done, for example, by executing a Protégé
DL query, the result of which is shown in Figure 4.

In this example, different standards’ items represent
the Goals, which are measured with one or several
(also concurrent) software quality metrics. To do so,
we followed literature recommendations [50, 10]. The
result is the sum of different evaluators, which repre-
sent a measurement of the three standards.

Fig. 4. Execution of a DL query on the RDF sample.

Alternatively, it is possible to define productive rules
to materialise the factors that are enabled by the avail-
able measured quality characteristics. The following
SPARQL CONSTRUCT is a possible productive rule
for our example.

PREFIX squap: <https://w3id.org/squap/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
CONSTRUCT {
?measurementResult
squap:affectsMeasurementOf ?factorOccurrence .

?factorOccurrence
a squap:FactorOccurrence;
squap:satisfiesFactor ?factor

}
WHERE{
?factor
squap::usesQualityCharacteristic ?char;
rdfs:label ?factorLabel .

?measurementResult
squap:assesses ?char

BIND(IRI(
CONCAT("https://w3id.org/squap/example/gqm/",
?factorLabel))

AS ?factorOccurrence)
}

We remark that factors and quality characteristics
are defined in SQuAP-Ont both as classes and indi-

P. Ciancarini et al. / SQuAP-Ont 11

viduals through OWL punning. Hence, one can decide
to use DL reasoning or rules defined in any other for-
malism depending by the specific case, e.g., SPARQL
CONSTRUCT, Shapes Constraint Language15 (SHACL),
etc.

Another worth presenting example is a dogfooding
usage scenario. Dogfooding is when an organization
uses its product for demonstrating its quality. In this
example, we use the SQuAP-Ont to record the metrics,
the values, the factors, and the quality characteristics
resulting from the measurement of its characteristics.
The data of this example are expressed as RDF seri-
alised in TURTLE.

@prefix :
<https://w3id.org/squap/examples/dogfooding/> .

@prefix owl:
<http://www.w3.org/2002/07/owl#> .

@prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .

@prefix squap:
<https://w3id.org/squap/> .

@prefix factor:
<https://w3id.org/squap/Factor/> .

@prefix prc:
<https://w3id.org/squap/ProcessMaturity/> .

:documentation-measurement-result
a squap:MeasurementResult ;
squap:hasMetric
:protege-ontology-annotations-metric ;

squap:hasValue
:documentation-measurement-result-value .

:documentation-measurement-result-value
a squap:Value ;
squap:value "233"^^xsd:integer .

:protege-ontology-annotations-metric
a squap:Metric ;
squap:assess
prc:Documentation

prc:Documentation
a squap:ProcessMaturity .

factor:PackagesVsDocumentation
a squap:Factor ;
squap:usesConcept prc:Documentation .

:process-maturity-occurrence
a squap:FactorOccurrence ;
squap:isAffectedBy
:documentation-measurement-result ;

squap:satisfiesFactor
factor:PackagesVsDocumentation .

In the dogfooding example the ontology is used
for recording a measurement result (i.e., :documen-
tation-measurement-result) for the SQuAP-
ONT based on the Protégé ontology metric that records

15https://www.w3.org/TR/shacl/

the number of annotations in an ontology (i.e., :pro-
tege-ontology-annotations-metric). The
value associated with such a measurement result is
"233", that is the number of annotations used for
documenting the ontology. The aforementioned value
can be easily obtained by using the ontology metrics
view when opening the SQuAP-ONT with Protégé.
The :protege-ontology-annotations-me-
tric assesses the :prc:Documentation, which
is a specific concept defined in SQuAP-ONT for char-
acterising the process maturity (i.e., squap:Pro-
cessMaturity) in terms of how much the software
is documented. It is worth noticing that, by relying on
OWL punning, we use prc:Documentation as an
individual, though it is also defined as a class in the
ontology. The concept of prc:Documentation is
used by a specif factor, that is factor:Packages-
VsDocumentation. Accordingly, we have a fac-
tor occurrence, that is :process-maturity-oc-
currence.

6. Potential impact

In the last decade, there has been a considerable ef-
fort, especially by the Management Information Sys-
tems research community, to study the phenomenon
of the alignment of business and information systems
[1]. What emerged is the importance of such align-
ment for both business’ competitiveness and techni-
cal efficiency. When it comes to integrating new solu-
tions, modules, or interfaces, such alignment is of cru-
cial importance. Several other scholars found similar
results, suggesting the importance of standard gover-
nance defining key architecture roles, involving critical
stakeholders through liaison roles and direct commu-
nication, institutionalizing monitoring processes and
centralizing IT critical decisions [8]. Especially in the
financial sector, architectural governance is a crucial
issue for IT efficiency and flexibility [45]. Generally
speaking, this finding is also primarily shared beyond
the financial sector [32]. The need for people from
different backgrounds (mainly business and technical
ones) to align the organization is the most considerable
insight into this research stream.

To tackle the issue of information systems qual-
ity from an empirical perspective, we started in 2014
to survey banking application maintenance group ex-
perts, Chief Executive Officers, Chief Information Of-
ficers, IT architects, technical sales accounts, Chief
Data Officers, and maintenance managers [43]. This

https://www.w3.org/TR/shacl/

12 REFERENCES

ongoing project is pursued with a leading consultancy
firm, according to which we were able to cover with
our representative sample the IT banking sector. Con-
sequently, the need for knowledge representation of
different measurement models is perceived as contin-
gent and requested by the IT banking community in
this significant project on information systems’ qual-
ity. One crucial insight that emerged from the factors
is the difficulty to assess their applications, also due to
the diversity and complexity of measurement models.
Indeed, the three standards measure three different di-
mensions. Quality measures the software as a product;
Process as a process; and Architecture the alignment
to a taxonomy. Accordingly, metrics and predictors re-
flect these differences. Therefore, the development of
this ontology is a direct request from practitioners.

Since this research journey started from an indus-
try’s need, an ontology, intended as the knowledge
representation of different measurement models is of
pivotal importance, and a first tool to systematize the
assessment of banking information systems’ quality.
Thus, this ontology will be used for consultancy pur-
poses to implement the SQuAP quality model. More-
over, it is also useful to trace changes in quality in time
and suggest specific improvements. So, this ontology
is the knowledge layer over which this quality model
is built. Consultancy firms expressed their interest in a
knowledge representation tool which can be displayed
to customers in the assessment phase, to tailor their
consultancy efforts. However, also the bank’s IT de-
partments will use it for similar purposes. They can
also tailor-made and modify this ontology and the un-
derlying metrics suggested by the literature, according
to their specific needs.

For this reason, we used a CC-BY-4.0 license, open
to commercial use. Our industrial partners consider the
use and reuse of this ontology as an excellent value for
the practitioners’ community.

7. Conclusion and future development

In this paper, we have described SQuAP-Ont, an on-
tology to assess information systems of the banking
sector. SQuAP-Ont a) guides its users through the (on-
going) assessment phases suggested by software engi-
neering literature; b) helps to identify critical quality
flaws within applications; and c) extends and integrates
existing work on software ISO ontology terms, dia-
gram visualizations and ontology revisions. SQuAP-
Ont has been developed for commercial use, within

an industrial project on quality of banking informa-
tion systems. Nevertheless, like all ontologies, it is
an evolving effort, and we are open to suggestions
proposed by the broad researchers’ and practitioners’
communities. We have addressed several issues raised
in previous studies, and according to the industry’s ex-
pectations.

Our future work aims to facilitate enrichment and
refine the ontology continuously along with standards
and literature recommendation changes. The enrich-
ment is also about the introduction of specific anno-
tations based on reference vocabularies for tracking
provenance and versioning (e.g., PROV-O). Another
important aspect is to validate and monitor the appli-
cation of SQuAP in domains and software projects dif-
ferent from the banking system context. This may lead
to the model’s enrichment and improvement.

Acknowledgments

This work was partially funded by the Consorzio
Interuniversitario Nazionale per l’Informatica (CINI)
and the Science Foundation Ireland grant 15/SIRG/3293
and 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern &
Eastern Regional Operational Programme to Lero—
the Irish Software Research Centre. (www.lero.ie).

References

[1] A. T. M. Aerts, J. B. M. Goossenaerts, D. K. Hammer, and
J. C. Wortmann. “Architectures in context: on the evolution
of business, application software, and ICT platform architec-
tures”. In: Information & Management 41.6 (2004), pp. 781–
794. DOI: 10.1016/j.im.2003.06.002.

[2] G. Antunes, A. Caetano, M. Bakhshandeh, R. Mayer, and J.
Borbinha. “Using ontologies to integrate multiple enterprise
architecture domains”. In: Proceedings of the 16th Interna-
tional Conference on Business Information Systems, ed. by
W. Abramowicz. Vol. 160. Lecture Notes in Business Infor-
mation Processing. Springer. 2013, pp. 61–72. DOI: 10.1007/
978-3-642-41687-3_8.

[3] V. Basili. Software modeling and measurement: the Goal
Question Metric paradigm. Tech. rep. 1992.

[4] S. Bellomo, I. Gorton, and R. Kazman. “Toward agile archi-
tecture: Insights from 15 years of ATAM data”. In: IEEE Soft-
ware 32.5 (2015), pp. 38–45. DOI: 10.1109/MS.2015.35.

[5] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
“Architecture-level modifiability analysis (ALMA)”. In: Jour-
nal of Systems and Software 69.1 (2004), pp. 129–147. DOI:
10.1016/S0164-1212(03)00080-3.

http://dx.doi.org/10.1016/j.im.2003.06.002
http://dx.doi.org/10.1007/978-3-642-41687-3_8
http://dx.doi.org/10.1007/978-3-642-41687-3_8
http://dx.doi.org/10.1109/MS.2015.35
http://dx.doi.org/10.1016/S0164-1212(03)00080-3

REFERENCES 13

[6] E. Blomqvist, V. Presutti, E. Daga, and A. Gangemi. “Ex-
perimenting with eXtreme design”. In: Proceedings of the
17th International Conference on Knowledge Engineering
and Knowledge Management, ed. by P. Cimiano and H. Pinto.
Vol. 6317. Lecture Notes in Computer Science. Springer.
2010, pp. 120–134. DOI: 10.1007/978-3-642-16438-5_9.

[7] E. Blomqvist, A. Seil Sepour, and V. Presutti. “Ontology
Testing - Methodology and Tool”. In: Proceedings of the
18th International Conference on Knowledge Engineering
and Knowledge Management, ed. by A. ten Teije, J. Völker,
S. Handschuh, et al. Vol. 7603. Lecture Notes in Computer
Science. Springer, 2012, pp. 216–226. DOI: 10.1007/978-3-
642-33876-2_20.

[8] W. Boh and D. Yellin. “Using enterprise architecture stan-
dards in managing information technology”. In: Journal of
Management Information Systems 23.3 (2006), pp. 163–207.
DOI: 10.2753/MIS0742-1222230307.

[9] C. Calero, F. Ruiz, and M. Piattini. Ontologies for software
engineering and software technology. ISBN: 9783540345183.
Springer, 2006.

[10] G. Campbell and P. Papapetrou. SonarQube in action. Man-
ning, 2013. ISBN: 9781617290954.

[11] V. Carriero, A. Gangemi, M. Mancinelli, L. Marinucci, A. G.
Nuzzolese, V. Presutti, and C. Veninata. “ArCo: the Ital-
ian Cultural Heritage Knowledge Graph”. In: Proceedings
of the 18th International Semantic Web Conference 2019
(to appear). Lecture Notes in Computer Science. ArXive:
1905.02840. Springer, 2019.

[12] R. Castro, M. Gutiérrez, M. Kerrigan, and S. Grimm. “An
Ontology Model to Support the Automated Evaluation of
Software”. In: Proceedings of the 22nd International Confer-
ence on Software Engineering and Knowledge Engineering.
Knowledge Systems Institute Graduate School, 2010.

[13] M. Chrissis, M. Konrad, and S. Shrum. CMMI guidelines
for process integration and product improvement. Addison-
Wesley Longman, 2003. ISBN: 9780321711502.

[14] P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures. Addison-Wesley Professional, 2002. ISBN:
9780201704822.

[15] N. C. Dalkey, B. B. Brown, and S. Cochran. The Delphi
method: An experimental study of group opinion. Vol. 3. Rand
Corporation Santa Monica, CA, 1969.

[16] L. Dobrica and E. Niemela. “A survey on software architec-
ture analysis methods”. In: IEEE Transactions on Software
Engineering 28.7 (2002), pp. 638–653. DOI: 10.1109/TSE.
2002.1019479.

[17] D. Emery and R. Hilliard. “Every architecture description
needs a framework: Expressing architecture frameworks us-
ing ISO/IEC 42010”. In: Proceedings of the Joint Working
IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture. IEEE. 2009, pp. 31–40.
DOI: 10.1109/WICSA.2009.5290789.

[18] A. Gangemi, R. Lillo, G. Lodi, A. G. Nuzzolese, and V. Pre-
sutti. “A Pattern-based Ontology for the Internet of Things.”
In: Proceedings of the 8th Workshop on Ontology Design and
Patterns of the 16th International Semantic Web Conference,
ed. by E. Blomqvist, Ó. Corcho, M. Horridge, et al. Vol. 2043.
CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[19] A. Gangemi and P. Mika. “Understanding the semantic web
through descriptions and situations”. In: Proceedings of the
OTM Confederated International Conferences “On the Move
to Meaningful Internet Systems”, ed. by R. Meersman, Z.
Tari, and D. C. Schmidt. Vol. 2888. Lecture Notes in Com-
puter Science. Springer. 2003, pp. 689–706. DOI: 10 .1007/
978-3-540-39964-3_44.

[20] A. Gangemi and V. Presutti. “Ontology design patterns”. In:
Handbook on Ontologies, ed. by S. Staab and R. Studer. Inter-
national Handbooks on Information Systems. Springer, 2009.
Chap. Ontology Engineering, pp. 221–243. DOI: 10 . 1007 /
978-3-540-39964-3_44.

[21] A. Gangemi. “Norms and plans as unification criteria for
social collectives”. In: Autonomous Agents and Multi-Agent
Systems 17.1 (2008), pp. 70–112. DOI: 10.1007/s10458-008-
9038-9.

[22] D. Garlan and D. E. Perry. “Introduction to the special issue
on software architecture”. In: IEEE Transaction on Software
Engineering 21.4 (1995), pp. 269–274. DOI: 10.1109/TSE.
1995.10003.

[23] C. Gonzalez-Perez, B. Henderson-Sellers, T. McBride, G. C.
Low, and X. Larrucea. “An Ontology for ISO software engi-
neering standards: 2) Proof of concept and application”. In:
Computer Standards & Interfaces 48 (2016), pp. 112–123.
DOI: 10.1016/j.csi.2016.04.007.

[24] N. Gorla, T. Somers, and B. Wong. “Organizational impact
of system quality, information quality, and service quality”.
In: The Journal of Strategic Information Systems 19.3 (2010),
pp. 207–228. DOI: 10.1016/j.jsis.2010.05.001.

[25] M. Grüninger and M. Fox. “The role of competency ques-
tions in enterprise engineering”. In: Benchmarking–Theory
and practice, ed. by A. Rolstadås. Springer, 1995, pp. 22–31.
DOI: 10.1007/978-0-387-34847-6_3.

[26] B. Henderson-Sellers, C. Gonzalez-Perez, T. Mcbride, and G.
Low. “An ontology for ISO software engineering standards.
1) Creating the infrastructure”. In: Computer Standards & In-
terfaces 36.3 (2014), pp. 563–576. DOI: 10.1016/j.csi.2013.
11.001.

[27] P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and
V. Presutti. “Towards a simple but useful ontology design
pattern representation language”. In: Proceedings of the 8th
Workshop on Ontology Design and Patterns of the 16th In-
ternational Semantic Web Conference, ed. by E. Blomqvist,
Ó. Corcho, M. Horridge, et al. Vol. 2043. CEUR Workshop
Proceedings. CEUR-WS.org, 2017.

[28] E. Kabaale, L. Wen, Z. Wang, and T. Rout. “An Axiom Based
Metamodel for Software Process Formalisation: An Ontology
Approach”. In: Proceedings of the 17th International Confer-
ence on Software Process Improvement and Capability Deter-
mination, ed. by A. Mas, A. Mesquida, R. V. O’Connor, et al.
Vol. 770. Communications in Computer and Information Sci-
ence. Springer. 2017, pp. 226–240. DOI: 10.1007/978-3-319-
67383-7_17.

[29] A. Kayed, N. Hirzalla, A. A. Samhan, and M. Alfay-
oumi. “Towards an ontology for software product quality at-
tributes”. In: Proceedings of the 4th International Conference
on Internet and Web Applications and Services, ed. by M.
Perry, H. Sasaki, M. Ehmann, et al. IEEE. 2009, pp. 200–204.
DOI: 10.1109/ICIW.2009.36.

http://dx.doi.org/10.1007/978-3-642-16438-5_9
http://dx.doi.org/10.1007/978-3-642-33876-2_20
http://dx.doi.org/10.1007/978-3-642-33876-2_20
http://dx.doi.org/10.2753/MIS0742-1222230307
http://dx.doi.org/10.1109/TSE.2002.1019479
http://dx.doi.org/10.1109/TSE.2002.1019479
http://dx.doi.org/10.1109/WICSA.2009.5290789
http://dx.doi.org/10.1007/978-3-540-39964-3_44
http://dx.doi.org/10.1007/978-3-540-39964-3_44
http://dx.doi.org/10.1007/978-3-540-39964-3_44
http://dx.doi.org/10.1007/978-3-540-39964-3_44
http://dx.doi.org/10.1007/s10458-008-9038-9
http://dx.doi.org/10.1007/s10458-008-9038-9
http://dx.doi.org/10.1109/TSE.1995.10003
http://dx.doi.org/10.1109/TSE.1995.10003
http://dx.doi.org/10.1016/j.csi.2016.04.007
http://dx.doi.org/10.1016/j.jsis.2010.05.001
http://dx.doi.org/10.1007/978-0-387-34847-6_3
http://dx.doi.org/10.1016/j.csi.2013.11.001
http://dx.doi.org/10.1016/j.csi.2013.11.001
http://dx.doi.org/10.1007/978-3-319-67383-7_17
http://dx.doi.org/10.1007/978-3-319-67383-7_17
http://dx.doi.org/10.1109/ICIW.2009.36

14 REFERENCES

[30] R. Kazman, L. Bass, G. Abowd, and M. Webb. “SAAM:
A method for analyzing the properties of software architec-
tures”. In: Proceeding of the 16th International Conference
on Software Engineering, ed. by B. Fadini, L. Osterweil, and
A. van Lamsweerde. IEEE. 1994, pp. 81–90. DOI: 10.1109/
ICSE.1994.296768.

[31] K. Kumar and T. Prabhakar. “Pattern-oriented knowledge
model for architecture design”. In: Proceedings of the 17th
Conference on Pattern Languages of Programs, ed. by C.
Kohls. ACM. 2010, 23:1–23:21. DOI: 10 . 1145 / 2493288 .
2493311.

[32] M. Lange, J. Mendling, and J. Recker. “An empirical analysis
of the factors and measures of Enterprise Architecture Man-
agement success”. In: European Journal of Information Sys-
tems 25.5 (2016), pp. 411–431. DOI: 10.1057/ejis.2014.39.

[33] L. Liao, Y. Qu, and H. Leung. “A software process ontol-
ogy and its application”. In: Semantic Web Enabled Software
Engineering, ed. by J. Z. Pan and Y. Zhao. Vol. 17. Studies
on the Semantic Web. IOS-Press, 2014, pp. 207–217. DOI:
10.3233/978-1-61499-370-4-207.

[34] G. Lodi, L. Asprino, A. G. Nuzzolese, V. Presutti, A.
Gangemi, D. R. Recupero, C. Veninata, and A. Orsini. “Se-
mantic web for cultural heritage valorisation”. In: Data An-
alytics in Digital Humanities, ed. by S. Hai-Jew. Springer,
2017, pp. 3–37. DOI: 10.1007/978-3-319-54499-1_1.

[35] C. López, P. Inostroza, L. Cysneiros, and H. Astudillo. “Vi-
sualization and comparison of architecture rationale with se-
mantic web technologies”. In: Journal of Systems and Soft-
ware 82.8 (2009), pp. 1198–1210. DOI: 10.1016/j.jss.2009.
03.085.

[36] S. Motogna, I. Ciuciu, C. Serban, and A. Vescan. “Improv-
ing software quality using an ontology-based approach”. In:
Proceedings of the OTM Confederated International Con-
ferences, ed. by I. Ciuciu, H. Panetto, C. Debruyne, et al.
Springer. 2015, pp. 456–465. DOI: 10 . 1007 / 978 - 3 - 319 -
26138-6_49.

[37] A. Nuzzolese, A. L. Gentile, V. Presutti, and A. Gangemi.
“Conference Linked Data: The ScholarlyData Project”. In:
Proceedings of the 15th International Semantic Web Con-
ference, ed. by P. T. Groth, E. Simperl, A. J. G. Gray, et
al. Vol. 9982. Lecture Notes in Computer Science. 2016,
pp. 150–158. DOI: 10.1007/978-3-319-46547-0_16.

[38] C. Pardo, F. J. Pino, F. García, M. Piattini, and M. Baldassarre.
“An ontology for the harmonization of multiple standards and
models”. In: Computer Standards & Interfaces 34.1 (2012),
pp. 48–59. DOI: 10.1016/j.csi.2011.05.005.

[39] S. Peroni, G. Lodi, L. Asprino, A. Gangemi, and V. Presutti.
“FOOD: FOod in Open Data”. In: Proceedings of the 15th
International Semantic Web Conference, ed. by P. T. Groth,
E. Simperl, A. J. G. Gray, et al. Vol. 9982. Lecture Notes in
Computer Science. 2016, pp. 168–176. DOI: 10.1007/978-3-
319-46547-0_18.

[40] R. Pressman. Software Engineering: a Practitioner’s Ap-
proach. McGrawHill, 2014. ISBN: 9780078022128.

[41] V. Presutti and A. Gangemi. “Dolce+D&S Ultralite and its
main ontology design patterns”. In: Ontology Engineering
with Ontology Design Patterns - Foundations and Applica-
tions, ed. by P. Hitzler, A. Gangemi, K. Janowicz, et al.
Vol. 25. Studies on the Semantic Web. IOS Press, 2016,
pp. 81–103. DOI: 10.3233/978-1-61499-676-7-81.

[42] V. Presutti, G. Lodi, A. Nuzzolese, A. Gangemi, S. Peroni,
and L. Asprino. “The role of ontology design patterns in
linked data projects”. In: Proceedings of the 35th Interna-
tional Conference on Conceptual Modeling, ed. by I. Comyn-
Wattiau, K. Tanaka, I.-Y. Song, et al. Vol. 9974. Lecture Notes
in Computer Science. Springer. 2016, pp. 113–121. DOI: 10.
1007/978-3-319-46397-1_9.

[43] D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi. “Soft-
ware Quality Concerns in the Italian Bank Sector: The Emer-
gence of a Meta-quality Dimension”. In: Proceedings of the
39th International Conference on Software Engineering, ed.
by N. Juristo and D. Shepherd. IEEE. 2017, pp. 63–72. DOI:
10.1109/ICSE-SEIP.2017.10.

[44] D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi. “A
Meta-Model for Information Systems Quality: A Mixed
Study of the Financial Sector”. In: ACM Transactions on
Management Information Systems 9.3 (2018), pp. 1–38. DOI:
10.1145/3230713.

[45] C. Schmidt and P. Buxmann. “Outcomes and success factors
of enterprise IT architecture management: empirical insight
from the international financial services industry”. In: Euro-
pean Journal of Information Systems 20.2 (2011), pp. 168–
185. DOI: 10.1057/ejis.2010.68.

[46] R. Singh. “International Standard ISO/IEC 12207 software
life cycle processes”. In: Software Process Improvement and
Practice 2.1 (1996), pp. 35–50. DOI: 10.1002/(SICI)1099-
1670(199603)2:1<35::AID-SPIP29>3.0.CO;2-3.

[47] G. Soydan and M. Kokar. “An OWL ontology for represent-
ing the CMMI-SW model”. In: Proceedings of the Workshop
on Semantic Web Enabled Software Engineering. 2006.

[48] A. Strauss and J. Corbin. Grounded theory in practice. ISBN:
9780761907480. Sage, 1997.

[49] C. P. Team. Capability Maturity Model R© Integration (CMMI),
Version 1.1–Continuous Representation. Tech. rep. 2002.

[50] S. Wagner et al. “The Quamoco product quality modelling
and assessment approach”. In: Proceedings of the 34th In-
ternational Conference on Software Engineering, ed. by M.
Glinz, G. Murphy, and M. Pezzè. IEEE. 2012, pp. 1133–1142.
DOI: 10.1109/ICSE.2012.6227106.

[51] Y. Zhao, J. Dong, and T. Peng. “Ontology classification for
semantic-web-based software engineering”. In: IEEE Trans-
actions on Services Computing 2.4 (2009), pp. 303–317. DOI:

10.1109/TSC.2009.20.

http://dx.doi.org/10.1109/ICSE.1994.296768
http://dx.doi.org/10.1109/ICSE.1994.296768
http://dx.doi.org/10.1145/2493288.2493311
http://dx.doi.org/10.1145/2493288.2493311
http://dx.doi.org/10.1057/ejis.2014.39
http://dx.doi.org/10.3233/978-1-61499-370-4-207
http://dx.doi.org/10.1007/978-3-319-54499-1_1
http://dx.doi.org/10.1016/j.jss.2009.03.085
http://dx.doi.org/10.1016/j.jss.2009.03.085
http://dx.doi.org/10.1007/978-3-319-26138-6_49
http://dx.doi.org/10.1007/978-3-319-26138-6_49
http://dx.doi.org/10.1007/978-3-319-46547-0_16
http://dx.doi.org/10.1016/j.csi.2011.05.005
http://dx.doi.org/10.1007/978-3-319-46547-0_18
http://dx.doi.org/10.1007/978-3-319-46547-0_18
http://dx.doi.org/10.3233/978-1-61499-676-7-81
http://dx.doi.org/10.1007/978-3-319-46397-1_9
http://dx.doi.org/10.1007/978-3-319-46397-1_9
http://dx.doi.org/10.1109/ICSE-SEIP.2017.10
http://dx.doi.org/10.1145/3230713
http://dx.doi.org/10.1057/ejis.2010.68
http://dx.doi.org/10.1002/(SICI)1099-1670(199603)2:1<35::AID-SPIP29>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-1670(199603)2:1<35::AID-SPIP29>3.0.CO;2-3
http://dx.doi.org/10.1109/ICSE.2012.6227106
http://dx.doi.org/10.1109/TSC.2009.20

	A three-dimensional view on software quality
	Related work
	Relational quality factors: the SQuAP Model
	SQuAP-Ont: an OWL formalisation of SQuAP
	Design methodology
	Ontology description
	Formalisation
	Implementation details

	How to use SQuAP-Ont
	Potential impact
	Conclusion and future development
	Acknowledgments
	References

