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Abstract. Searching for similar documents and exploring major themes covered across groups of documents are common activities
when browsing collections of scientific papers. This manual knowledge-intensive task can become less tedious and even lead to
unexpected relevant findings if unsupervised algorithms are applied to help researchers. Most text mining algorithms represent
documents in a common feature space that abstract them away from the specific sequence of words used in them. Probabilistic
Topic Models reduce that feature space by annotating documents with thematic information. Over this low-dimensional latent
space some locality-sensitive hashing algorithms have been proposed to perform document similarity search. However, thematic
information gets hidden behind hash codes, preventing thematic exploration and limiting the explanatory capability of topics to
justify content-based similarities. This paper presents a novel hashing algorithm based on approximate nearest-neighbor techniques
that uses hierarchical sets of topics as hash codes. It not only performs efficient similarity searches, but also allows extending
those queries with thematic restrictions explaining the similarity score from the most relevant topics. Extensive evaluations on
both scientific and industrial text datasets validate the proposed algorithm in terms of accuracy and efficiency.
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1. Introduction proaches than having to calculate all pairwise similari-

ties.

Huge amounts of documents are publicly available
on the Web offering the possibility of extracting knowl-
edge from them (e.g. scientific papers in digital jour-
nals). Document similarity comparisons in many in-
formation retrieval (IR) and natural language process-
ing (NLP) areas are too costly to be performed in such
huge collections of data and require more efficient ap-

*Corresponding author. E-mail: cbadenes @fi.upm.es.

In this paper we address the problem of programmat-
ically generating annotations for each of the items in-
side big collections of textual documents, in a way that
is computationally affordable and enables a semantic-
aware exploration of the knowledge inside it that state-
of-the-art methods relying on topic models are not able
to materialize.

Most text mining algorithms represent documents
in a common feature space that abstracts the specific
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sequence of words used in each document and, with
appropriate representations, facilitate the analysis of
relationships between documents even when written
using different vocabularies. Although a sparse word
or n-gram vectors are popular representational choices,
some researchers have explored other representations
to manage these vast amounts of information. Latent
Semantic Indexing (LSI) [17], Probabilistic Latent Se-
mantic Indexing (PLSI) [25] and more recently, Latent
Dirichlet Allocation (LDA) [11], which is the simplest
probabilistic topic model (PTM) [10], are algorithms
focused on reducing feature space by annotating docu-
ments with thematic information. PLST and PTM also
allow a better understanding of the corpus through the
topics discovered, since they use probability distribu-
tions over the complete vocabulary to describe them.
However, only PTM’s are able to identify topics in
previously unseen texts.

One of the greatest advantages of using PTM in large
document collections is the ability to represent docu-
ments as probability distributions over a small num-
ber of topics, thereby mapping documents into a low-
dimensional latent space (the K-dimensional probabil-
ity simplex, where K is the number of topics). A doc-
ument, represented as a point in this simplex, is said
to have a particular topic distribution. This brings a
lot of potential when applied over different IR tasks,
as evidenced by recent works in different domains
such as scholarly [23][19], health [45] [38] [50], legal
[43]]20], news [24] and social networks [47][15]. This
low-dimensional feature space could also be suitable
for document similarity tasks, especially on big real-
world data sets, since topic distributions are continuous
and not as sparse as discrete-term feature vectors.

Exact similarity computations for most topic distri-
butions require to have complexity O(n?) for neigh-
bours detection tasks or O(kn) computations when &
queries are compared against a dataset of n documents.
Computation can be an approximate nearest neighbor
(ANN) search problem. ANN search is an optimization
problem that finds nearest neighbors of a given query
q in a metric space of n points. Due to the low stor-
age cost and fast retrieval speed, hashing is one of the
most popular solutions for ANN search [34] [4] [60].
This technique transforms data points from the original
feature space into a binary-code space, so that simi-
lar data points have larger probability of collision (i.e.
having the same hash code). This type of formulation
for the document similarity comparison problem has
proven to yield good results in the metric space due to
the fact that ANN search has been designed to handle

distance metrics (e.g. cosine, Euclidean, Manhattan)
[49][46][29], even in high-dimensional simplex spaces
handling information-theoretically motivated metrics
(e.g. Hellinger, Kullback-Leibler divergence, Jensen-
Shannon divergence) as demonstrated by [39].

However, the smaller space created by existing hash-
ing methods loses the exploratory capabilities of topics
to support document similarity. The notion of topics
is lost and therefore the ability to make thematic ex-
plorations of documents. Moreover, metrics in simplex
space are difficult to interpret and the ability to explain
the similarity score on the basis of the topics involved
in the exploration can be helpful. While other models
based on vector representations of documents are sim-
ply agnostic to the human concept of themes, topic mod-
els can help finding the reasons why two documents are
similar.

Semantic knowledge can be thought of as knowledge
about relations among several types of elements, in-
cluding words, concepts, and percepts [22]. Since topic
models create latent themes from word co-occurrence
statistics in corpus, a topic (i.e latent theme) reflects the
knowledge about the word-word relations it contains.
This abstraction can be extended to cover the knowl-
edge derived from sets of topics. The topics obtained
via state-of-the art methods (LDA) are hierarchically
divided into groups with different degrees of seman-
tic specificity in a document. Documents can then be
annotated with the semantic inferred from the topics
detected, and from their relation between topics inside
each hierarchy level. Let’s look at a practical example to
clarify this idea. A topic model is created from texts la-
beled with Eurovoc ! categories. This model® annotates
texts with categories inferred from their topic distribu-
tions. For the document "Commission Decision of 23
December 2003.. on seeds and propagating material of
gramineae, Triticum aestivum.."” 3 the top5 categories
are: (1) research, (2) sugar, (3) fats, (4) textile_industry
and (5) marketing . In contrast to these categories that
standard topic modelling methods are able to offer, a
3-level hierarchical set of topics would be: (1) research,
(2) sugar and fats, and (3) textile_industry and market-
ing. The knowledge provided by each of these annota-
tions is derived from the relations between the topics
that compose it. Based on these semantic annotations,
the content-based similarity among documents is calcu-

Thttp://publications.europa.eu/resource/dataset/eurovoc
Zhttp://librairy.linkeddata.es/jrc-en-model/
3https://eur-lex.europa.eu/eli/dec/2004/57(1)/oj
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lated and the exploration of large document collections
is performed following an ANN search.

Thus, in this paper, we propose a hashing algorithm
that (1) groups similar documents, (2) preserves their
topic distributions, and (3) works over unseen docu-
ments. Therefore our contributions are:

— a novel hashing algorithm based on topic mod-
els that not only performs efficient searches, but
also introduces semantic in the hierarchy of con-
cepts as a way to restrict those queries and provide
explanatory information.

— an optimized and easily customizable open-source
implementation of the algorithm [9]

— data-sets and pre-trained models to facilitate
other researchers to replicate our experiments and
validate and test their own ideas [9]

2. Document Similarity

In the probability simplex space created from topic
models, documents are represented as vectors con-
taining topic distributions. Distance metrics based on
vector-type data such as Euclidean distance (/2), Man-
hattan distance (/1), and angular metric (6) are not op-
timal in this space [39]. Information-theoretically mo-
tivated metrics such as Kullback-Leibler (KL) diver-
gence (Eq.1) (also known as relative entropy), Jensen-
Shannon (JS) divergence (Eq.2) (as its symmetric ver-
sion) and Hellinger (He) distance (Eq.3) are often more
reasonable [39]:

= _plx)log zg; (1)

JS(P.Q) = fKL (p,”;q) + 2KL( ) @)

PQ—i(m—m)Q )

i=1

where P and Q are two known distributions, K is the
dimensionality of P and Q, and p; and g; are the values
of the i;, component of P and Q, respectively.

He distance is also symmetric and, along with JS
divergence, are usually used in various fields where a
comparison between two probability distributions is re-
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Fig. 1. Distance values based on KL-divergence between 10 pair of
documents from topic models with 100-to-2000 dimensions.

quired. However, all these metrics are not well-defined
distance metrics, that is, they do not satisfy triangle
inequality [14]. This inequality considers d(x,z) <=
d(x,y) + d(y,z) for a metric d [22]. It places strong
constraints on distance measures and on the locations
of points in a space given a set of distances. As a metric
axiom the triangle inequality must be satisfied in order
to take advantage of the inferences that can be deduced
from it. Thus, if similarity is assumed to be a mono-
tonically decreasing function of distance, this inequal-
ity avoids the calculation of all pairs of similarities by
considering that if x is similar to y and y is similar to z,
then x must be similar to z.

S2JSD was introduced by [18] to satisfy the triangle
inequality. It is the square root of two times the JS
divergence:

S2JSD(P,Q) = +/2xJS(P,Q) 4)

However, making sense out of the similarity score is
not easy. As shown in figures 1 to 4, given a set of pairs
of documents, their similarity scores vary according to
the number of topics. So the distances between those
pairs fluctuate from being more to less distant when
changing the number of topics.

Distances between documents generally increase as
the number of dimensions of the space increases. This
is due to the fact that as the number of topics describing
the model increases, the more specific the topics will
be. Topics shared by a pair of documents can be bro-
ken down into more specific topics that are not shared
by those documents. Thus, similarity between pairs of
documents is dependent on the model used to represent
them when considering this type of metrics. We know
that absolute distances between documents vary when
we tune hyperparameters differently, but in this study
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Fig. 2. Distance values based on JS -divergence between 10 pair of
documents from topic models with 100-to-2000 dimensions.
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Fig. 3. Distance values based on He-divergence between 10 pair of
documents from topic models with 100-to-2000 dimensions.
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Fig. 4. Distance values based on S2JS D between 10 pair of docu-
ments from topic models with 100-to-2000 dimensions.

we also see that "relative distances" also change: e.g.
for model M1, A is closer to B than C, but according
to a M2 trained in the same corpora with different pa-
rameters , A is closer to C than B (cross-lines in figs
1-4). This behaviour highlights the difficulty of estab-
lishing absolute similarity thresholds and the complex-
ity to measure distances taking into account all dimen-
sions. Distance thresholds should be model-dependent

rather than general and metrics flexible enough to han-
dle dimensional changes. These challenges are tack-
led through the proposed hashing algorithms by means
of clusters of topics to measure similarity, instead of
directly using their weights.

3. Hashing Topic Distributions

Hashing methods transform the data points from
the original feature space into a binary-code Ham-
ming space, where the similarities in the original space
are preserved. They can learn hash functions (data-
dependent) or use projections (data-independent) from
the training data [56]. Data-independent methods unlike
data-dependent ones do not need to be re-calculated
when data changes, i.e. adding or removing documents
to the collection. Taking large-scale scenarios into ac-
count (e.g. Document clustering, Content-based Recom-
mendation, Duplicate Detection), this is a key feature
along with the ability to infer hash codes individually
(for each document) rather than on a set of documents.

Data-independent hashing methods depend on two
key elements: (1) data type and (2) distance metric.
For vector-type data, as introduced in section 2, based
on [, distance with pe[0, 2) lots of hashing methods
have been proposed, such as p-stable Locality-Sensitive
Hashing (LSH) [16], Leech lattice LSH [3], Spheri-
cal LSH [51], and Beyond LSH [5]. Based on the 6
distance many methods have been developed such as
Kernel LSH [31] and Hyperplane hashing [53]. But
only few methods handle density metrics in a simplex
space. A first approach transformed the He divergence
into an Euclidean distance so that existing ANN tech-
niques, such as LSH and k-d tree, could be applied [30].
But this solution does not consider the special attribu-
tions of probability distributions, such as Non-negative
and Sum-equal-one. Recently, a hashing schema [39]
taking into account the symmetry has been proposed,
non-negativity and triangle inequality features of the
S2JSD metric for probability distributions. For set-type
data, Jaccard Coefficient is the main metric used. Some
examples are K-min Sketch [33], Min-max hash [28],
B-bit minwise hashing [32] and Sim-min-hash [59].

All of them have demonstrated efficiency in the
search for similar documents, but none of them allows
the search for documents (1) by thematic areas or (2)
by similarity levels, nor they offer (3) an explanation
about the similarity obtained beyond the vectors used
to calculate it. Binary-hash codes drop a very precious
information: the topic relevance.
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Fig. 5. Hash method based on hierarchical set of topics from a given topic distribution

A new hierarchical set-type data is proposed. Each
level of the hierarchy indicates the importance of the
topic according to its distribution. Level O contains the
topics with the highest score. Level 1 contains the top-
ics with highest score once the first ones have been
eliminated, and so on. From a vector of components,
where each of the components is the score of topic ¢, a
vector containing set of topics is proposed, where each
of the dimensions means a topic relevance. Thus, for
the topic distribution ¢ = [0.3,0.15,0.4,0.15], a hier-
archical set of topics may be i = {(#2), (¢0), (¢1,23) }.
It means that topic 2 (0.4) is the most relevant, then
topic 70 (0.3) and, finally, topics #1 (0.15) and 3 (0.15).
This is just an example about the data structure that
will support the different hashing strategies. In section
3.3 some approaches to create hash codes based on this
data structure are described.

3.1. Data Type

A traditional approach to text representation usually
requires encoding of documents into numerical vectors.
Words are extracted from a corpus as feature candidates
and based on a certain criterion they are assigned values
to describe the documents: term-frequency, TF-IDF,
information gain, and chi-square are typical measures.
But this causes two main problems: huge number of

dimensions and sparse distribution. The use of topics as
feature space has been extended to mapping documents
into low-dimensional vectors. However, as shown in
Figures 1 to 4, the distance metrics based on probability
densities vary according to the dimensions of the model
and reveal the difficulty of calculating the similarity
values using the vectors with the topic distributions.

Since hashing techniques can transform both vector
and set-based data [39] [28] into a new space where
the similarity (i.e. closeness of points) in the original
feature space is preserved, a new set-based data struc-
ture is proposed in this paper. It is created from clusters
of topics organized by relevance levels and it aims to
extend the ability of building queries with topic-based
restrictions over the searching space while maintaining
high level of accuracy.

The new hierarchical set-type data describes each
document as a sequence of sets of topics sorted by
relevance. Each level of the hierarchy expresses how
important those topics are in that document. In the first
level (i.e level 0) are the topics with the highest score.
In the second level (i.e level 1) are the topics with the
highest score once the first ones have been removed,
and so on. In this work, several clustering approaches
have been considered to assign topics to each level.

In a feature space created from a PTM with eight
topics, for example, each data point p is described
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by a eight-dimensional vector with the topic distribu-
tions: vp = [10,11,12,13,14,15,16,¢7] . Then, given a
point g1 = [0.18,0.15,0.2,0.05, 0.14,0.11, 0.09, 0.08],
the three-level hierarchical set of topics may be h =
[{r2}, {10}, {r1,#4}]. It means that ¢2 is the most rel-
evant topic, then topic 0 and finally topics 1 and #4.
This is just an example about the data structure that will
support the hashing strategies. In section 3.3 some ap-
proaches to create hash codes based on this data struc-
ture are described.

Domain-specific features such as vocabulary, writ-
ing style, or speech type, have a major influence on
the topic models, but not in the hashing algorithms de-
scribed in this article. The methods for creating hash
codes are agnostic of these particularities since they are
only based on the topic distributions generated by the
models.

3.2. Distance Metric

Since documents are described by set-type data, the
proposed distance metric is based on the Jaccard co-
efficient. This metric computes the similarity of sets
by looking at the relative size of their intersection as
follows:

ANB
J(A,B) = :A UB: 4)

where A and B are set of topics.

More specifically, d; is based on the Jaccard distance,
which is obtained by subtracting the Jaccard coefficient
J from 1:

d;(A,B) = 1— J(A,B) ©6)

The proposed distance measure dy used to compare
hash codes created from set of topics is the sum of the
Jaccard distances d; for each hierarchy level, i.e. for
each set of topics:

du(Hy, Ho) = (do(Hy (o), Ha(x)) (D)

=1

where Hy and H, are hash codes, Hy(x;) and Ha(x;)
are the set of topics up to level [ for each hash code H
and L is the maximum hierarchy level. A corner case is
L = T, where T is the number of topics in the model.

Threshold-based Hashing
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Fig. 6. Threshold-based Hierarchical Hash (L=3)
3.3. Hash Function

The hash function clusters topics based on relevance
levels. Three approaches are proposed depending on the
criteria used to group topics: threshold-based, centroid-
based and density-based.

3.3.1. Threshold-based Hierarchical Hashing Method

This approach is just an initial and naive way of
grouping topics by threshold values into each relevance
level. They can be manually defined or automatically
generated by thresholds dividing the topic distributions
as follows:

1

thinc: T 4N
(L+1)-T

®)

where L is the number of hierarchy levels, and T the
number of topics.

If L = 3 and T = 10 for a topic distribution #d
defined as follows:

td = [0.017,0.141, 0.010,0.172, 0.030,

©)
0.090,0.199,0.133,0.031,0.171]

Then, a threshold-based hierarchical hash Hr, with
an automatically created threshold defined by equation
8, is equals to Hy = {(11,3,15,16,17,19), (), (t4,18)}
with th;,. = 0.025 (Fig 6).

3.3.2. Centroid-based Hierarchical Hashing Method
This approach assumes topic distributions can be

partitioned into k clusters where each topic belongs to

the cluster with the nearest mean score. It is based on
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Centroid-based Hashing

H={(t6),(t9,t3,t1,t7),(t5)}
Fig. 7. Centroid-based Hierarchical Hash (L=3)

the k-Means clustering algorithm, where k is obtained
by adding 1 to the number of hierarchy levels. Unlike
the previous method, threshold values used to define
the hierarchy levels may vary between documents, i.e.
for each topic distribution, since they are calculated for
each distribution separately.

Following the previous example, if L =3 and T =
10 for a topic distribution #d defined in equation 9, then
a centroid-based hieararchical hash H¢ equals to He =
{(26), (19,17,13,11), (15)} (Fig 7).

3.3.3. Density-based Hierarchical Hashing Method

This approach also considers relative hierarchical
thresholds for each relevance level. Now, a topic distri-
bution is described by points in a single dimension. In
this space, topics closely packed together are grouped
together. This approach does not require a fixed number
of groups. It only requires a maximum distance (eps)
to consider two points close and grouped together. This
value can be estimated from the own distribution of
topics (e.g. variance).

Following the above example, if L = 3 and d is
the topic distribution defined in equation 9, then a
density-based hierarchical hash Hp, is equals to Hp =
{(16), (19,13), (r1)} when eps equals to the variance of
the topic distribution (Fig 8).

3.4. Online-mode Hashing

Hashing methods are batch-mode learning models
that require huge data for learning an optimal model
and cannot handle unseen data. Recent work address on-
line mode by learning algorithms [26] that get hashing
model accommodate to each new pair of data. But these

Density-based Hashing

0.0 ceumeea P

H=({(16),(19,t3),(t1)}
Fig. 8. Density-based Hierarchical Hash (L=3)

approaches require the hashing model to be updated
during each round based on the new pairs of data.

Our methods rely on topic models to build hash
codes. These models do not require to be updated to
make inferences about data not seen during training. In
this way, the proposed hashing algorithms can work on
large-scale and real-time data, as the size and the nov-
elty of the collection does not influence the annotation
process.

4. Experiments

As mentioned above (Section 2), it is difficult to
interpret the similarity score calculated by metrics in a
probability space. Since all of them are based on adding
the distance between each dimension of the model (eq.
1, 2 and 3), distributions that share a fair amount of the
less representative topics may still get higher similarity
values than those that share the most representative ones
specially if the model has a high number of dimensions.

Figures 9 and 10 show overlapped topic distributions
of two pairs of documents. In the first case (fig 9), none
of the most representative topics of each document is
shared between them. However, the similarity score cal-
culated from divergence-based metrics (eq 2) is higher
than in the second case (fig 10), where the most rep-
resentative topic is shared (topic 26). This behavior is
due to the sum of the distances between the less rep-
resentative topics (i.e. topics with a low weight value)
being greater than the sum of the distances between the
most representative ones (i.e. topic with a high weight
value). In high-dimensional models, that sum may be
more representative than the one obtained with the most
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Topic Distribution

0,200

Fig. 9. Topic Distribution of two documents. Similarity score, based
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Fig. 10. Topic Distribution of two documents. Similarity score, based
on JSD, is equals to 0.71

relevant topics, which are fewer in number than the less
relevant ones.

The following experiments aim to validate that hash
codes based on hierarchical set of topics not only
make it possible to search for similar documents
with high accuracy, but also to extend queries with
new restrictions and to offer information that helps
explaining why two documents are similar.

4.1. Datasets and Evaluation Metrics

Three datasets [9] are used to validate the proposed
approach. The OPEN-RESEARCH* dataset consist of
500k research papers in Computer Science, Neuro-
science, and Biomedical randomly selected from the
Open Research Corpus [54]. The CORDIS® dataset
contains 100k documents describing research and in-
novation projects funded by the European Union under
a framework programme since 1990. The PATENTS

dataset consists of 1M patents randomly selected from
the USPTO® collection. For each dataset, documents
are mapped to two latent topic spaces with different
dimensions using LDA. We perform parameter estima-
tion using collapsed Gibbs sampling for LDA [21] from
the open-source librAlry [7] software. It is a frame-
work that combines natural language processing (NLP)
techniques with machine learning algorithms on top
of the Mallet toolkit [40], an open-source machine
learning package. The number of topics varies to study
their influence on the performance of the algorithm (i.e.
CORDIS-70 indicates a latent space created with 70
topics).

Experiments use JS divergence as an information-
theoretically motivated metric in the probabilistic space
created by topic models. Since it is a smoothed and
symmetric alternative to the KL divergence, which is
a standard measure for comparing distributions [13],
it has been extensively used as state-of-the-art metric
over topic distributions in literature [52][1][39]. Our
upper bound is created from the brute-force comparison
of the reference documents with all documents in the
collection to obtain the list of similar documents.

In this scenario the goal is to minimize the accuracy
loss introduced by hashing algorithms. Since this is a
large-scale problem and an accuracy-oriented task, re-
call is not a good measure to be considered and preci-
sion is only relevant for sets much smaller than the total
size of data (between 3-5 candidates).

All the experimental results are averaged over ran-
dom training/set partitions. For each topic space, 100
documents are selected as references, and the remaining
documents as search space. As noted above, only p@5
will be used to report the results of the experiments.

4.2. Retrieving Similar Documents

It is challenging to create an exhaustive gold standard,
given the significant amount of human labour that is
required to get a comprehensive view of the subjects
being covered in it. In order to overcome this problem,
the list of similar documents to a given one is obtained
after comparing the document with all the documents of
the repository and sorting the result. We have observed
that different distance functions perform similarly in
this scenario (figs 1 to 4), so we have decided to use
only the JS divergence (eq. 2) in our experiments.

“https://labs.semanticscholar.org/corpus/
Shttps://data.europa.eu/euodp/data/dataset/cordisref-data

Shttps://www.uspto.gov/learning-and-resources/ip-
policy/economic-research/research-datasets



C. Badenes-Olmedo et al. / Topic-based Hashing Algorithm 9

OPEN-RES-100 (p@5)

CORDIS-70 (p@5)

LEVEL THHM CHHM DHHM LEVEL THHM CHHM DHHM

mean median ‘ ‘ mean median ‘ ‘ mean median mean median ‘ ‘ mean median ‘ ‘ mean median
2 0.22 0.20 0.86 1.00 0.66 0.80 2 0.18 0.20 0.92 1.00 0.66 0.70
3 0.23 0.20 0.87 1.00 0.81 1.00 3 0.20 0.20 0.92 1.00 0.80 0.80
4 0.27 0.20 0.89 1.00 0.86 1.00 4 0.22 0.20 0.94 1.00 0.86 1.00
5 0.27 0.20 0.92 1.00 0.89 1.00 5 0.23 0.20 0.91 1.00 0.89 1.00
6 0.27 0.20 0.94 1.00 0.92 1.00 6 0.19 0.20 0.92 1.00 091 1.00

Table 1 Table 3

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Open Research dataset using a model with 100
topics. LEVEL column indicates the number of hierarchies used.

OPEN-RES-500 (p@5)

LEVEL THHM ' CHHM . DHHM ‘

mean median ‘ ‘ mean median ‘ ‘ mean median
2 0.23 0.20 0.76 0.80 0.67 0.80
3 0.24 0.20 0.80 1.00 0.71 0.80
4 0.25 0.20 0.83 1.00 0.74 0.80
5 0.25 0.20 0.86 1.00 0.81 1.00
6 0.24 0.20 0.89 1.00 0.86 1.00

Table 2

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Open Research dataset using a model with 500
topics. LEVEL column indicates the number of hierarchies used.

Only the top N documents obtained from this method
are used as reference set to measure the performance of
the algorithms proposed in this paper. The value of N is
equals to 0.5% of the corpus size (i.e. if the corpus size
is equal to 1000 elements, only the top 5 most similar
documents are considered relevant for a given docu-
ment). This value has been considered after reviewing
datasets used in similar experiments [30][39]. In those
experiments, the reference data is obtained from ex-
isting categories, and the minimum average between
corpus size and categorized documents is around 0.5%.

Once the reference list of documents similar to
a given one is defined, the most similar documents
through the proposed methods (i.e. threshold-based hi-
erarchical hashing method (thhm), centroid-based hier-
archical hashing method (chhm) and density-based hier-
archical hashing method (dhhm)) are also obtained. An
inverted index has been implemented by using Apache
Lucene’ as document repository. The source code of
both the algorithms and tests is publicly available [9].

Let’s look at an example to better understand the
procedure. We want to measure the accuracy and data
size ratio used to identify the top5 similar documents to

7http://lucene.apache.org

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset using a model with 70 topics.
LEVEL column indicates the number of hierarchies used.

CORDIS-150 (p@5)

LEVEL THHM CHHM DHHM

mean median ‘ ‘ mean median ‘ ‘ mean median
2 0.19 0.20 0.88 1.00 0.78 0.80
3 0.19 0.20 0.92 1.00 0.80 1.00
4 0.25 0.20 0.91 1.00 0.82 1.00
5 0.25 0.20 0.91 1.00 0.83 1.00
6 0.27 0.20 0.91 1.00 0.86 1.00

Table 4

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset using a model with 150 topics.
LEVEL column indicates the number of hierarchies used.

a new document ¢, from a corpus of 1000 documents .
The similarity between d1 and all the documents in the
corpus is calculated based on JS divergence. The top50
(0.5%) documents with the highest values will be the
set of documents considered as similar to d;. As we are
going to use an ANN-based approach, we need the hash
expressions of all documents to measure similarity. The
data structure proposed in this work is a hierarchy of
sets of topics, so that the most similar documents are
those that share most of the topics at the highest levels
of the hierarchy.

The representational model for this example only
considers 8 topics, that is, a document is described by a
vector with 8 dimensions where each dimension corre-
sponds to a topic (i.e [10, 11, 2,3,14,15,16,¢7] ) and its
value will be the weight of that topic in the document,
for example d; = [0.18,0.15,0.2,0.05,0.14,0.11,0.09,
0.08]. The hierarchy level (L) will be equal to 2, i.e.
the hash expression has two hierarchical sets of topics:
h={ho,h}.

According to methods described at Section 3.3, there
are 3 ways to create the hierarchical hash codes for
documents:

1. threshold-based (thhm): 2 thresholds are defined
as described in section 3.3.1, for example 0.15 and
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0.1 . hg includes the topics with a weight greater
than 0.15, and h; the remaining topics with a
weight greater than 0.1. Then kg = {10,71,12}
and hy = {#4,15}. Based on the hash expression
h = {(10,11,12), (r4,£5)}, the documents that
share more topics in those levels (i.e 0 = (10 OR
t1 OR £2), hl = (¢4 OR t5)) or in other levels but
with less relevance are ordered. Since there are
many topics in the expression, potentially many
documents are similar when sharing at least one
of them. This increases the data ratio. Accuracy
is also affected, as the algorithm is not able to
bring under the same bucket similar documents.
In short, the hash expression is not representative
of the document, for the given exploratory task.

2. centroid-based (chhm): sets of topics are created
using a clustering algorithm based on centroids as
described in section 3.3.2. The cardinalities of the
hierarchical groups are generally more uniform
with this method. Since k = L + 1 = 3 in this
example, hp = {10,722} and h; = {r1,¢4}. The
number of representative topics at each level of
the hierarchy is usually lower, and this causes the
data ratio used to discover similar documents to
decrease as well. This approach increases the pre-
cision because now the hierarchy is more selective
to distinguish similar documents. However, the
size of region of similar candidates is still high.

3. density-based (dhhm): now the clustering algo-
rithm is based on how dense certain regions in
the topic relevance dimensions are as described
in section 3.3.3. It can group topics that have un-
balanced distributions and, therefore, generates
more discriminating hash expressions than with
the previous algorithm. In the example, we would
have a hash expression like this: ig = {¢2} and
hy = {r0}. This significantly reduces the data
ratio used to discover similar documents and does
not excessively penalize accuracy. Obviously, in-
creasing L (i.e. number of hierarchies) increases
precision, but with L > 3 that gain is not so sig-
nificant.

As it can be seen in tables 1 to 6, the mean and me-
dian of precision are calculated to compare the perfor-
mance of the methods. In this assessment environment,
the variance is not robust-enough because score values
don’t follow a normal distribution. We consider the re-
sult obtained as significant, based on the fact that mean
and median values are fairly close. The centroid-based
method (chhm) and the density-based method (dhhm)

PATENTS-250 (p@5)

LEVEL THHM . CHHM A DHHM A

mean median ‘ ‘ mean median ‘ ‘ mean median
2 0.03 0.00 0.71 0.80 0.67 0.80
3 0.08 0.00 0.91 1.00 0.90 1.00
4 0.11 0.00 0.95 1.00 0.95 1.00
5 0.12 0.00 0.95 1.00 0.96 1.00
6 0.11 0.00 0.97 1.00 0.97 1.00

Table 5

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Patents dataset using a model with 250 topics.
LEVEL column indicates the number of hierarchies used.

PATENTS-750 (p@5)

LEVEL THHM CHHM DHHM

mean median ‘ ‘ mean median ‘ ‘ mean median
2 0.02 0.00 0.77 0.80 0.76 0.80
3 0.04 0.00 0.94 1.00 0.95 1.00
4 0.06 0.00 0.97 1.00 0.97 1.00
5 0.08 0.00 0.97 1.00 0.97 1.00
6 0.06 0.00 0.97 1.00 0.97 1.00

Table 6

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Patents dataset using a model with 750 topics.
LEVEL column indicates the number of hierarchies used.

OPEN-RES-100 (data-ratio)

LEVEL THHM CHHM DHHM

mean median ‘ ‘ mean median ‘ ‘ mean median
2 99.8 99.9 452 459 4.9 2.5
3 99.9 99.9 74.4 77.6 134 10.7
4 99.9 99.9 87.4 90.2 27.2 22.8
5 99.9 99.9 95.4 96.3 49.9 42.6
6 99.9 99.9 97.9 98.7 72.2 65.8

Table 7

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Open Research dataset and 100 topics.

OPEN-RES-500 (data-ratio)

LEVEL THHM CHHM DHHM

mean median ‘ ‘ mean median ‘ mean median
2 95.9 96.3 222 22.1 14 0.3
3 99.1 99.2 439 43.7 5.1 4.1
4 99.6 99.6 57.1 57.3 11.7 10.3
5 99.6 99.6 70.7 70.7 28.8 22.0
6 99.9 99.9 81.5 80.6 50.3 40.1

Table 8

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Open Research dataset and 500 topics.
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CORDIS-70 (data-ratio)

PATENTS-250 (data-ratio)

LEVEL THHM CHHM DHHM LEVEL THHM CHHM DHHM

mean median ‘ ‘ mean median ‘ ‘ mean median mean median ‘ ‘ mean median ‘ ‘ mean median
2 99.9 99.9 51.3 56.3 5.1 5.0 2 99.9 99.9 432 32.7 35.1 23.0
3 99.9 99.9 84.8 89.5 10.5 10.6 3 99.9 100.0 82.4 100.0 78.2 100.0
4 99.9 99.9 96.1 97.6 20.8 19.5 4 99.9 100.0 96.5 100.0 95.1 100.0
5 99.9 99.9 98.9 99.4 35.0 32.7 5 99.9 99.9 99.2 100.0 98.9 100.0
6 99.9 99.9 99.7 99.8 53.1 51.2 6 100.0 100.0 99.8 100.0 99.7 100.0

Table 9 Table 11

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset and 70 topics.

CORDIS-150 (data-ratio)

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Patents dataset and 250 topics.

PATENTS-750 (data-ratio)

LEVEL THHM ' CHHM . DHHM ' LEVEL THHM . CHHM A DHHM A

mean median ‘ ‘ mean median ‘ ‘ mean median mean median ‘ ‘ mean median ‘ ‘ mean median
2 99.9 99.9 40.9 41.2 3.1 29 2 99.9 100.0 35.2 23.6 31.8 19.9
3 99.9 99.9 75.3 76.7 6.2 6.1 3 99.9 99.9 81.4 99.8 79.6 98.8
4 99.9 99.9 90.0 92.1 12.1 11.8 4 99.9 99.9 96.5 99.9 95.5 99.5
5 99.9 99.9 96.4 96.9 21.6 20.6 5 97.7 96.6 99.0 99.9 98.6 99.7
6 99.9 99.9 98.1 98.9 36.5 339 6 99.1 98.6 99.7 99.9 99.5 99.8

Table 10 Table 12

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset and 150 topics.

show a similar behaviour to the one offered by the use
of brute force by means of JS divergence.

In terms of efficiency, we consider the times to com-
pare pairs of topic distributions constant, and we focus
on the number of comparisons needed. Thus, algorithms
with larger candidate spaces will be less efficient than
others when the accuracy in both is the same. Tables
7-12 show the percentage of the corpus used by each
of the algorithms to discover similar documents. Tables
1-6 show the accuracy of each algorithm for each of
these scenarios. Density-based algorithm (dhhm) shows
better balance between accuracy and volume of infor-
mation (efficiency). It uses smaller samples (i.e lower
ratio size) than others in all tests and even when it only
uses a subset that is a 6.2% (Table 10) of the entire
corpus, it obtains an accuracy of 0.808 (Table 4).

The precision achieved by the algorithm based on
density (dhhm), which is much more restrictive than the
others, suggests that few topics are required to represent
a document in order to obtain similar ones. In addition,
the number of topics does not seem to influence the per-
formance of the algorithms, since their precision values
are similar among the datasets of the same corpus. This
shows that hashing methods based on hierarchical set of
topics are robust to models with different dimensions.

The behavior of the algorithms have also been ana-
lyzed when the number of topics in the model varies.

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on Patents dataset and 750 topics.

Models with 100, 200, 300, 400, 500, 600, 700, 800,
900 and 1000 topics were created from the CORDIS
corpus. For each model, the p@5 of the hashing meth-
ods is calculated taking into account the hierarchy lev-
els: 2, 3,4, 5 and 6. Figures 11 to 13 show the results
obtained for each algorithm. It can be seen how the
performance, i.e precision, of each of the algorithms is
not influenced by the dimensions of the model.

4.3. Exploration

In a certain domain, we may want to retrieve similar
documents to one given. For example, searching for
articles in the Biomedical domain that are similar to an
article about Semantic Web. In terms of topics this kind
of search requires to narrow down the initial search
space to a subset with only documents that contain the
topics that better describe the queried domain.

Existing hashing techniques based on a binary-code
Hamming space do not allow to customize the search
query beyond the reference document itself. However,
the algorithms proposed in this work allow adding new
restrictions to the initial query based on the reference
document, since they use a hierarchy of set of topics as
hash codes.

Through the following example we describe the
workflow to enable such retrieval operations. For sim-
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Fig. 11. Precision at 5 (mean) of threshold-based hashing method
when number of topics varies in CORDIS dataset.
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Fig. 12. Precision at 5 (mean) of centroid-based hashing method
when number of topics varies in CORDIS dataset.
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Fig. 13. Precision at 5 (mean) of density-based hashing method when
number of topics varies in CORDIS dataset.

plicity we consider hash expressions with only two hier-
archy levels. The reference document d; has the follow-
ing hash expression: h = {hg, h1} = {(¢10), (+18)}.
The first query, Q1, searches for documents similar
to the reference document d; among all documents in
the corpus. One of the ways to formalise this query

OPEN-RESEARCH-100
hash ql q2 ratio
thhm || 499,755 | 160,660 67.8
chhm || 356,111 1,976 99.44
dhhm 49,068 766 98.43
Table 13

Number of documents similar to a given one (q1) and also in a specific
domain (q2) for threshold-based (thhm), centroid-based (chhm) and
density-based (dhhm) hierarchical hashing methods.

looks like this: Q1 = hgy : t107100 or hg : t18°50
or hy : t10750 or Ay : t187100. It sets a maximum
boost (100) when the same restrictions as the reference
document (710 in hg and ¢18 in hq) are fulfilled, and
a lower boost (50) for the others (#18 in Ay and ¢10 in
h1). In the specific case of applying this query to the
CORDIS dataset, we observed that most of the retrieved
documents included topic t18 (fig 14).

But if we were only interested in similar documents
to dy that have topic 710, we could restrict the previous
query Q1 to express this condition in the following way:
02 = (hg : 1107100 or Ay : t10"°50) and (h; : 110750
or iy : t187100). The result obtained by Q2 (fig 14)
shows that the condition has been considered since
there is a balance between topics #10 and ¢18 among
the documents similar to d;.

This type of restrictions based on the semantics of-
fered by topics in the hash expression get enabled
thanks to the methods proposed in this work.

5. Conclusions

The usefulness of topics created by probabilistic
models when exploring collections of scientific articles
on large-scale has been widely studied in the literature.
Each document in the corpus is described by probability
distributions that measure the presence of those topics
in their content. These vectors can also be used to mea-
sure the similarity between documents by using met-
rics such as Jensen-Shannon divergence. But with large
amounts of items in the collection, discovering the en-
tire set of nearest neighbors to a given document would
be infeasible. Due to the low storage cost and fast re-
trieval speed, hashing is one of the popular solutions for
approximate nearest neighbors. However, existing hash-
ing methods for probability distributions only focus on
the efficiency of searches from a given document, with-
out handling complex queries or offering hints about
why one document is considered more similar than an-
other. A new data structure is proposed to represent
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Fig. 14. Most relevant topics in similar documents from using a
document as query (Q1) and setting topic t10 as mandatory (Q2).

hash codes, based on topic hierarchies created from the
topic distributions. This approach has proven to obtain
high-precision results and can accommodate additional
query restriction. This way of encoding documents can
also help to understand why two documents are simi-
lar, based on the intersection of topics at hierarchies of
relevance.

In this paper we have focused on (1) comparing the
performance of topic-based hashing methods with re-
spect to the distance metrics based on probability distri-
butions (e.g. JS divergence), (2) their ability to support
more complex queries based on topic-based filters and
(3) the expressiveness of their annotations (topics hier-
archically divided into groups with different degrees of
semantic specificity) to justify the relations obtained.

A manually annotated corpus with content similarity
relations would further confirm the ability of the met-
rics proposed in this paper to reflect similarity as hu-
mans perceive it. Ongoing work on this line includes the
creation of questionnaires ® to more accurately capture
how similar two documents are from the perspective of
human evaluators who read them both. This is an ambi-
tious task that need to deals with the evaluators’ own
interpretation of similarity. What an expert perceives
as different (since his knowledge in the domain allows
him to identify discrepancies between the two texts),
may be considered as similar by an inexperienced user
that might not be able to capture those fine grained
differences.

The next steps in our research are to extend the met-
ric proposed in this paper from the point of view of the
perception of similarity that a human makes, and to per-
form a more in-depth investigation about the meaning
of the topics grouped by levels of relevance.

8http://librairy.linkeddata.es/survey
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