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Abstract. Linked Open Datasets on the Web that are published as RDF can evolve over time. There is a need to be able to
store such evolving RDF datasets, and query across their versions. Different storage strategies are available for managing such
versioned datasets, each being efficient for specific types of versioned queries. In recent work, a hybrid storage strategy has been
introduced that combines these different strategies to lead to more efficient query execution for all versioned query types at the
cost of increased ingestion time. While this trade-off is beneficial in the context of Web querying, it suffers from exponential
ingestion times in terms of the number of versions, which becomes problematic for RDF datasets with many versions. As such,
there is a need for an improved storage strategy that scales better in terms of ingestion time for many versions. We have designed,
implemented, and evaluated a change to the hybrid storage strategy where we make use of a bidirectional delta chain instead
of the default unidirectional delta chain. In this article, we introduce a concrete architecture for this change, together with
accompanying ingestion and querying algorithms. Experimental results from our implementation show that the ingestion time
is significantly reduced. As an additional benefit, this change also leads to lower total storage size and even improved query
execution performance in some cases. This work shows that modifying the structure of delta chains within the hybrid storage
strategy can be highly beneficial for RDF archives. In future work, other modifications to this delta chain structure deserve to be
investigated, to further improve the scalability of ingestion and querying of datasets with many versions.
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1. Introduction

Even though the RDF [7] data model itself is atemporal, RDF datasets typically change over time [29]. Such
changes can include additions, modifications, or deletions of individual facts, ontologies, or even complete datasets.
While some evolving datasets such as DBpedia [3] are published as separate dumps per version, more direct and
efficient access to prior versions can be desired, so that versioned queries in, between, and across different versions
can be done efficiently.

While RDF archiving systems have emerged in the past that can handle such evolving datasets, a survey on
archiving Linked Open Data [9] illustrated the need for improved versioning capabilities in order to preserve RDF
on the Web and expose queryable access. Concretely, there is a need for systems that can store and query such
datasets with low cost and effort on Web servers, so that they can cope with the large scale of RDF datasets on the
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Web, and their velocity of changes. In previous work, we introduced a new hybrid archiving approach, implemented
as a system called OSTRICH [24]. The approach enables efficient triple pattern queries for different versioned query
types, while still keeping storage requirements reasonable. OSTRICH was designed to run on average machines,
so it can be used as a back-end for low-cost Web query interfaces such as Triple Pattern Fragments [31]. Since it
exposes a triple pattern query interface, it can also be used as an index inside SPARQL query engines [14]. As such,
this hybrid storage approach is a step towards solving the need for properly preserving RDF on the Web.

A recent survey [21] has shown that existing RDF archiving solutions fail to handle large RDF archives with
many versions. It was shown that the hybrid approach employed by OSTRICH is the only one capable of storing
large RDF archives, but that it suffers from a scalability issue in terms of ingestion time for many versions. This
is an inherent consequence of the storage strategy of OSTRICH, which is employed to achieve performant query
execution. Concretely, after ingesting many versions, the ingestion process starts slowing down significantly, which
makes OSTRICH unusable for datasets with a large number of versions, which is crucial for preserving RDF datasets
on the Web. The reason for this is that the hybrid storage approach from OSTRICH only consists of a single version
snapshot at the start, followed by an aggregated delta chain that keeps growing longer for every new version. While
this aggregated delta chain is beneficial for faster query execution, it comes at the cost of increased ingestion times.
Since additional deltas lead to a cumulative increase in aggregated delta size during ingestion, this process becomes
more memory-intensive and slower for every new version. In order to delay this problem, we propose a storage
strategy modification, where there still is a single version snapshot, but we place it in the middle of the delta chain,
instead of at the beginning, leading to a bidirectional delta chain. This modification is inspired by the concept of
bidirectional predicted pictures (B-frames) [11] that are a popular technique within video compression. Typically,
such B-frames are used for non-aggregated deltas, but we instead devise a similar technique for aggregated deltas.
While bidirectional delta chains complicate ingestion and querying, it leads to two shorter delta chains. This will
require less effort than one long delta chain, and may lead to faster ingestion and querying.

In the next section, we discuss the related work, and give more details on OSTRICH. Next, in Section 3, we
present our problem statement, followed by our proposed solution in Section 4. After that, we present our experi-
mental setup and results in Section 5, and we conclude in Section 6.

2. Related work

In this section, we discuss the fundamentals on RDF archiving, which RDF archiving solutions already exist, and
benchmarks for RDF archiving. Finally, we discuss OSTRICH in more detail, since we build upon this approach in
this work.

2.1. RDF archiving

Various techniques have been introduced to store RDF datasets [8,19]. These techniques make use of various
indexing and compression techniques to optimize query execution and storage size. There is a need to maintain the
history of these datasets [9,29], which gave rise to the research domain of RDF archiving. An RDF archive [10]
has been defined as a set of version-annotated triples. Where a version-annotated triple is defined as an RDF triple
with a label representing the version in which this triple holds. Furthermore, an RDF version of an RDF archive is
composed of all triples with a given version label.

RDF archives allow multiple versions to exist in parallel, which leads to a range of new querying possibilities.
Instead of only querying within the latest version of a dataset, also previous versions can be queried, or even differ-
ences between different versions. To cover this new range of querying possibilities, five foundational query types
were introduced [10], which are referred to as query atoms. For brevity, we refer to the article in which they were
introduced [10] for their formal details. In the scope of this article, we only discuss three of the five query atoms, as
the other two query atoms can be expressed in terms of just three query atoms [27]. The three relevant query atoms
are defined as follows:

1. Version materialization (VM) retrieves data using a query targeted at a single version. Example: Which books
were present in the library yesterday?
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2. Delta materialization (DM) retrieves query result change sets between two versions. Example: Which books
were returned or taken from the library between yesterday and now?

3. Version query (VQ) annotates query results with the versions in which they are valid. Example: At what times
was book X present in the library?

2.2. RDF archiving solutions

In the recent years, several techniques and solutions have been proposed to allow storing and querying RDF
archives. RDF archiving systems are typically categorized into four non-orthogonal storage strategies [2,9]:

• The Independent Copies (IC) approach creates separate instantiations of datasets for each change or set of
changes.

• The Change-Based (CB) approach instead only stores change sets between versions.
• The Timestamp-Based (TB) approach stores the temporal validity of facts.
• The Fragment-based (FB) approach stores snapshots of each changed fragment of datasets.

There exists a correspondence between these query atoms and the independent copies (IC), change-based (CB),
timestamp-based (TB) and fragment-based (FB) storage strategies. Namely, IC and FB typically lead to efficient VM
queries, CB is better for DM queries, and TB is best for VQ queries. No single strategy leads to good performance
of all query atoms.

Table 1 shows an overview of the primary RDF archiving systems, and which storage strategy they follow. These
are explained in more detail hereafter.

2.2.1. Independent copies approaches
SemVersion [32] tracks different versions of RDF graphs, using Concurrent Versions System (CVS) concepts to

maintain different versions of ontologies, such as diff, branching and merging.

2.2.2. Change-based approaches
Cassidy et al. [4] propose a system to store changes to graphs as a series of patches, which makes it a CB approach.

They describe operations on versioned graphs such as reverse, revert and merge. A preliminary evaluation shows
that their implementation is significantly slower than a native RDF store. Im et al. [16] propose a CB patching
system based on a relational database. In their approach, they use a storage scheme called aggregated deltas which
associates the latest version with each of the previous ones. While aggregated deltas result in fast delta queries, they
introduce a higher storage overhead. R&WBase [30] is a CB versioning system that uses the graph component of
quad-stores to build a versioning layer. It supports tagging, branching and merging. R43ples [13] follows a similar

Table 1

Overview of RDF archiving solutions with their corresponding storage strategy: Individual copies (IC), Change-based (CB), Timestamp-based
(TB), or Fragment-based (FB). �: fullfils the strategy completely; ∼: fullfils the strategy partially

Name IC CB TB FB

SemVersion [32] �
Cassidy et al. [4] �
R&WBase [30] �
R43ples [13] �
Hauptman et al. [15] �
X-RDF-3X [20] �
RDF-TX [12] �
v-RDFCSA [5] �
Dydra [1] �
Quit Store [2] �
TailR [18] � �
Cuevas et al. [6] � � �
OSTRICH [24] ∼ � �
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approach to R&WBase, but they additionally introduce new SPARQL keywords, such as REVISION, BRANCH
and TAG.

2.2.3. Timestamp-based approaches
Hauptman et al. [15] store each triple in a different named graph, which corresponds to the TB storage approach.

The identifying graph of each triple is used in a commit graph for SPARQL query evaluation at a certain version. X-
RDF-3X [20] is a versioning extension of RDF-3X [19], where each triple is annotated with a creation and deletion
timestamp. RDF-TX [12] is an in-memory query engine that supports a temporal SPARQL querying extension,
which makes use of a compressed multi-version B+Tree that outperforms similar systems such as X-RDF-3X in
terms of querying efficiency, while having similar storage require ments. v-RDFCSA [5] is a self-indexing RDF
archive mechanism that enables versioning queries on top of compressed RDF archives as a TB approach. Dydra [1]
is an RDF graph storage platform with dataset versioning support. They introduce the REVISION keyword, which
is similar to the SPARQL keyword GRAPH for referring to different dataset versions.

2.2.4. Fragment-based approaches
Quit Store [2] is a system that is built on top of Git, which allows these same features by considering each version

to be a commit. A version is made up of multiple fragments, which may be reused across multiple versions of a
dataset, which typically leads to lower storage space compared to a pure IC strategy. Using Git’s delta compression,
this storage space can be reduced even further at the cost of slower querying.

2.2.5. Hybrid approaches
TailR [18] is an HTTP archive for Linked Data pages for retrieving prior versions of certain HTTP resources.

It is a hybrid CB/IC approach as it starts by storing a dataset snapshot, after which only deltas are stored for
each consecutive version. When the chain becomes too long, or other conditions are fulfilled, a new snapshot is
created for the next version to avoid long version reconstruction times. Cuevas et al. [6] propose an approach similar
to R&WBase, where the named graph functionality in SPARQL 1.1 engines is used to store RDF archives, and
versioned queries are achieved through query rewriting. As opposed to R&WBase which only uses a CB approach,
they propose distinct a IC strategy, four CB strategies, and a TB strategy. For each of those strategies, they introduce
separate query rewriting techniques for VM and DM queries, but do not consider VQ queries. Experimental results
on an archive with eight large versions show there is a time-space trade-off, whereby large storage sizes achieve
faster query execution, and smaller storage sizes result in slower query execution. The authors consider the TB
strategy achieving the best trade-off. Relevant for our work is the use of four CB strategies, which correspond to
forward, backward deltas, forward aggregated [16], and backward aggregated deltas. OSTRICH [24] is a hybrid
IC/CB/TB approach that exploits the advantages of each strategy to provide a trade-off between storage requirements
and querying efficiency. It only fullfils the IC strategy partially, since it only creates a fully materialized snapshot
for the first version, and stores differences afterwards. Experiments show that OSTRICH achieves good querying
performance for all query atoms, but suffers from scalability issues in terms of ingestion time for many versions. As
such, we build upon OSTRICH in this work, and attempt to solve this problem.

2.3. RDF archiving benchmarks

BEAR [10] is a benchmark for RDF archive systems that is based on real-world datasets from different domains.
The 58 versions of BEAR-A contain between 30M and 66M triples per version, with an average change ratio of
31%. BEAR-A provides triple pattern queries for three different query atoms for both result sets with a low and a
high cardinality. The BEAR-B dataset contains the 100 most volatile resources from DBpedia Live at three different
granularities (instant, hour and day), and provides a small collection of triple pattern queries corresponding to the
real-world usage of DBpedia. Each version contains between 33K and 43K triples, where the instant granularity has
an average change ratio of 0.011%, hour has 0.304%, and day has 1.252%. Given the relative number of triples and
change ratios between BEAR-A and BEAR-B, we refer to BEAR-A as a dataset with few large versions, and to
BEAR-B as a dataset with many small versions for the remainder of this article.

The BEAR benchmark also provides baseline RDF archive implementations based on HDT [8] and Jena’s [17]
TDB store for the IC, CB, and TB approaches, and the hybrid IC/CB and TB/CB approaches. Just like TailR [18],
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the hybrid approaches are based on snapshots followed by delta chains. Since HDT does not support quads by
default, the TB and TB/CB approaches were not implemented in the HDT baseline implementations. Given the
variety of these approaches in terms of storage strategies, together with their open availability and ease of use, they
form a good basis for comparative analysis when benchmarking, which is why we make use of them during our
experiments.

Due to BEAR covering all query atoms we work with, and it providing baseline implementations for the different
storage strategies, we make use of BEAR for our experiments.

2.4. OSTRICH

As mentioned before, OSTRICH [24] makes use of a hybrid IC/CB/TB storage approach with the goal of pro-
viding a trade-off between storage size and querying efficiency. The main motivation for OSTRICH is to serve as a
back-end of a low-cost Web APIs for exposing RDF archives [26], where query execution must be sufficiently fast,
without requiring too much storage.

Concretely, OSTRICH always starts by storing the initial version as a fully materialized version, following the IC
strategy. This initial version is stored using HDT [8], which enables high compression and efficient querying. Based
on this initial version, all following versions are stored as deltas, following the CB strategy. To solve the problem
of increasing query execution times for increasing numbers of versions, OSTRICH makes use of the aggregated
deltas [16] approach, by making each delta relative to the initial snapshot instead of the previous version. Due to
the storage redundancies that are introduced because of these aggregated deltas, OSTRICH uses a B+tree-based
approach to store all aggregated deltas in a single store. This single store annotates each added and deleted triple
with the delta version in which it exists, thereby following the timestamp-based strategy. To further reduce storage
requirements and query execution times, all triple components inside this store are dictionary-encoded, similar to
the approach followed by HDT.

On top of this storage approach, OSTRICH introduces algorithms for VM, DM and VQ triple pattern queries.
Only triple pattern queries are supported instead of full SPARQL queries, since triple pattern queries are the foun-
dational building blocks for more expressive SPARQL queries. These query algorithms produce streaming results,
where the streams can start from an arbitrary offset, which is valuable for SPARQL query features such as OFFSET
and LIMIT. Additionally, OSTRICH provides algorithms for cardinality estimation for these queries, which are
valuable for query planning within query engines. OSTRICH has been implemented in C/C++, with bindings ex-
isting for Node.JS (JavaScript). The triple pattern index provided by OSTRICH has been demonstrated to be usable
within a full SPARQL query engine such as Comunica [23,25].

Experimental results on OSTRICH with the BEAR benchmark show that this hybrid strategy is more beneficial
than having just a single storage strategy, as it allows efficient execution of all query atoms. The main downside
of this approach is that it leads to scalability issues in terms of ingestion time for many versions. Concretely, the
BEAR-B-hourly dataset – which contains 1,299 versions – starts showing high ingestion times starting around
version 1,100. The reason for this is that the aggregated deltas start becoming too large. As such, we aim to resolve
this problem in this work by improving the hybrid storage strategy from OSTRICH through fundamental changes
to the delta chain structure.

3. Problem statement

As mentioned in Section 1, RDF archiving solutions are not sufficiently capable of handing large RDF archives
with many versions. While the hybrid storage approach as proposed by OSTRICH can handle the largest archives
among all currently existing approaches, it does not scale sufficiently to a large number of versions due to its long
delta chains. Our goal in this work is to investigate if we can build on top of this hybrid storage approach and modify
its delta chain structure to be able to handle RDF archives with more versions.

We formulate our research question as follows: “How can we improve the storage of RDF archives under the
hybrid storage strategy by modification of the delta chain structure?”
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Concretely, we start from the hybrid storage approach from OSTRICH, and we modify its current (forward) uni-
directional delta chain (UDC) into a bidirectional delta chain (BDC). This bidirectional delta chain consists of two
smaller delta chains, with respectively reverse and forward deltas, all pointing to one common intermediary snap-
shot. Since these modifications will reduce the maximum length of a delta chain, without requiring more snapshots,
we expect that this will reduce ingestion time, overall storage size, and query execution time for all query atoms.
Under the assumption of typical RDF archives provided by standard RDF archiving benchmarks, we define the
following hypotheses:

1. Storage size is lower for a BDC compared to a UDC.
2. In-order ingestion time is lower for a BDC compared to a UDC.
3. VM query execution is faster for a BDC compared to a UDC.
4. DM query execution is faster for a BDC compared to a UDC.
5. VQ query execution is faster for a BDC compared to a UDC.

4. Bidirectional delta chain

In this section, we explain our bidirectional delta chain approach. We start by explaining the general idea behind
a bidirectional delta chain. After that, we explain its implication on storage. Finally, we discuss querying algorithms
for the foundational query atoms based on this storage approach.

4.1. Delta chain approaches

In the scope of this work, we distinguish between 6 different delta chain approaches, as can be seen in Table 2.
We decompose these approaches into 2 axes: directionality and aggregation.

Along the directionality axis, we distinguish 3 forms:

1. The simplest form is the forward unidirectional delta chain, where the snapshot comes first, and is followed
by deltas that are relative to the previous delta.

2. The reverse unidirectional delta chain is a variant of this where everything is reversed. Concretely, the snap-
shot comes last, and is preceded by deltas, where each delta is relative to the next delta.

3. These forward and reverse unidirectional approaches can be combined with each other to form a bidirectional
delta chain, where a first set of deltas exists before the snapshot, and a second set of deltas exists after the
snapshot.

Along the aggregation axis, we consider 2 forms:

• In the non-aggregated form, each delta is relative to the delta immediately before or after it.

Table 2

Overview of unidirectional forward, unidirectional reverse, and bidirectional delta chain approaches, both with and without aggregated deltas
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• In the aggregated form [16], each delta is relative to the snapshot before or after it, where other deltas may
occur in-between.

The aggregated delta approach leads to lower version materialization times, since each delta can be directly
applied to a snapshot, as opposed to non-aggregated deltas where multiple deltas need to be combined before a
version can be materialized. As such, the version materialization time for aggregated deltas is O(1) with respect to
the number of versions, while it is O(n) for non-aggregated deltas with respect to the number of versions. This shows
how aggregated deltas lead to better query execution times. The major downside of aggregated deltas is however
that storage size increases due to the redundancies between the different deltas. The longer the delta chain, the larger
these redundancies become.

OSTRICH [24] is an example that follows the unidirectional forward aggregated delta chain approach, while RCS
[28] (non-RDF-based) follows the unidirectional reverse non-aggregated delta chain approach. In this work, we will
investigate the use of the bidirectional aggregated delta chain approach, for reasons explained in the next section.

4.2. Motivations for a bidirectional delta chain

Experiments on the unidirectional forward aggregated delta chain approach from OSTRICH [24] have shown that
this approach leads to ingestion times that increase linearly with chain length, assuming (non-aggregated) deltas
as inputs. This is an expected consequence of the aggregated delta approach, as they grow in size for each new
version. The goal of this work is to investigate how these problems can be solved, without losing the advantages
of aggregated deltas with respect to query execution times. We would not achieve any lower ingestion times by
reversing our delta chain, as the additions and deletions would just be swapped, but would not be smaller. Instead,
we aim to reduce ingestion time by lowering storage through the reduction of the number of required snapshots.

One straightforward way of reducing ingestion time would be to create a new snapshot and delta chain once the
ingestion time or size has crossed a certain threshold. One example of such a threshold could be that a new snapshot
is created once the ingestion time of a delta became larger than the time for ingesting a snapshot. For instance, we
can lower the total ingestion time to half the original time by splitting one delta chain into two delta chains, or even
to one third by splitting it up into three delta chains. In the extreme, each version would form its own snapshot,
which would lead to the independent copies storage strategy, at the cost of increased storage size. As such, there is a
trade-off between ingestion time and storage size, and new delta chains should only be started once ingestion times
become higher than desired.

Since the creation of a snapshot can be costly in terms of storage size, it should be avoided until absolutely
necessary. As explained in the previous paragraph, splitting up a delta chain into two separate delta chains would
lead to two snapshots, each followed by a chain of deltas. We can however reduce the number of required snapshots
by combining the forward and reverse approaches into a bidirectional approach, by allowing two sets of deltas to
make use of the same snapshot. Intuitively, one bidirectional delta chain is equivalent to two forward delta chains,
where the second delta chain is reversed. The snapshots of these two chains are therefore shared, so that it only has
to be created and stored once.

As such, the main advantage of a bidirectional delta chain is that it can more efficiently make use of snapshots.
Instead of only allowing deltas in one direction to make use of it, also deltas in the opposite direction can make
use of it. This is especially advantageous for aggregated deltas, as these grow in size for longer chains. In the scope
of this research, we continue working with a bidirectional aggregated delta chain due to the non-increasing query
execution times for increasing numbers of versions.

One disadvantage of the bidirectional approach is that it complicates ingestion, since we can not build a reverse
delta chain directly, as we can not always know beforehand what a future version will look like. We tackle this
problem in Section 4.4.

4.3. Storage approach

As mentioned before, our goal is to improve storage efficiency of RDF archives. For this, we build on top of the
hybrid storage approach from OSTRICH, and we fundamentally modify this storage approach to use a bidirectional
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Fig. 1. Overview of the main components of our storage approach consisting of a bidirectional aggregated delta chain.

aggregated delta chain instead of a unidirectional aggregated delta chain. Concretely, this means that not only deltas
exist after the snapshot, but also before the snapshot.

Figure 1 shows an overview of the main components of our storage approach. Note in particular the delta chain
on the left side of the snapshot, while OSTRICH only has a single delta chain on the right side of the snapshot. All
other components are inherited from OSTRICH, which we briefly summarize in the next paragraph.

We store the snapshot using HDT [8], due to its highly performant triple pattern queries, cardinality estimates,
and high compression rate. Furthermore, metadata about the archive is stored, containing details such as the total
number of versions. To avoid storage overhead due to redundancies between different aggregated deltas, each delta
chain is compressed into timestamp-based B+tree indexes where additions and deletions are stored separately. This
separation is done to speed up query evaluation since additions and deletions are not always needed at the same
time. To enable efficient triple pattern queries for all possible combinations, each addition and deletion index is
stored three times for different triple components orders (SPO, POS, OSP). To compress each triple component
further, a shared dictionary is used. In order to allow efficient cardinality estimate retrieval for deletions, the SPO
deletion index contains additional metadata about the relative position of each triple inside the snapshot. To enable
cardinality estimates for additions, we make use of a dedicated addition count index. For the sake of brevity, we
omit further details about the components that can be found in the OSTRICH article (Section 5) [24].

4.4. Ingestion approach

In this section, we introduce an approach to enable ingestion of new versions within our bidirectional aggre-
gated storage approach. For this, we build upon the streaming ingestion algorithm and DM query algorithm for
unidirectional forward aggregated delta chains [24], which allows us to insert deltas after the snapshot.

In order to insert deltas before the snapshot, our approach for constructing the reverse delta chain involves a
temporary forward delta chain. This is because we can not start building our reverse delta chain directly, as we can
not predict what triples will be in the snapshot later down the line. For each new version, our temporary forward
delta chain will be built up, and can be queried in the meantime. From the moment that this delta chain becomes too
long, or some other threshold has been exceeded, then an offline fixup algorithm is triggered that will effectively
reverse this delta chain, and place a snapshot at the end, where a new forward delta chain can be built upon when
new versions arrive.

Algorithm 1 shows a sketch of our fix-up algorithm in pseudo-code. First, the aggregated deltas in the chain
will be extracted as non-aggregated deltas by invoking a DM query over the current unidirectional aggregated delta
chain. We store the deletions as additions, and the additions as deletions. Next, we create a new delta chain, and
insert these reversed non-aggregated deltas by invoking the streaming ingestion algorithm to create unidirectional
aggregated delta chains. Once ingestion is done, the existing delta chain is replaced by our new delta chain.

The main advantage of this fix-up approach is that it avoids query unavailability of the archive. The fix-up algo-
rithm can run at any time, preferably when the server is experiencing a lower query load. During the execution of
this process, the temporary forward delta chain is still available, so queries are still possible during this time. Only
after the fix-up process is done, query executions will be delegated to this new reverse delta chain, and the temporary
forward delta chain can be deleted. Since this fix-up process only applies to the first (temporary) delta chain, and
does not touch the second delta chain, it may even run in parallel to other ingestion processes for new versions.
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Algorithm 1 Fix-up algorithm for reversing an existing bidirectional aggregated delta chain

Algorithm 2 Out-of-order ingestion algorithm for creating a bidirectional aggregated delta chain for a predeter-
mined set of versions

4.5. Out-of-order ingestion approach

The previously discussed ingestion approach assumes in-order ingestion of versions, where versions are ingested
as soon as they become available. In some cases, it may occur that all versions are present beforehand, and can be
ingested at the same time. If this occurs, we can simplify ingestion and avoid the fix-up algorithm, by not inserting
versions in their logical order.

Algorithm 2 shows a sketch of our out-of-order algorithm in pseudo-code. Concretely, if we have a set of n
versions then we first determine the middle version �n/2�. For this middle version, we create a fully materialized
snapshot, and assign its proper version label �n/2�. Next, we create our reverse delta chain for all versions < �n/2�,
by invoking the streaming ingestion algorithm to create unidirectional aggregated delta chains targeted at snapshot
�n/2�, and by swapping the addition and deletion labels. Finally, we create our forward delta chain for all versions
> �n/2�, by again invoking the streaming ingestion algorithm to create unidirectional aggregated delta chains
targeted at snapshot �n/2�.

This out-of-order ingestion will typically not be used in a live setting. Instead, it can be used when initializing an
archive when all versions are known beforehand.

4.6. Query algorithms

In this section, we discuss triple pattern query algorithms for the three query atoms discussed in Section 2 (VM,
DM, VQ). For simplicity, we assume the existence of a (bidirectional) delta chain with one snapshot. We consider
multiple snapshots and delta chains future work. We build upon the existing algorithms for unidirectional (aggre-
gated) delta chains [24], and there – by inherit their properties of streaming, offset support, and cardinality esti-
mators. Below, we briefly discuss the relevant parts of these existing algorithms. For more details, we refer to the
OSTRICH article (Section 7) [24].

4.6.1. Version materialization
Version Materialization (VM) allows retrieval of triples in a given version. In summary, VM over a unidirectional

delta chain works by either querying a snapshot directly, if the requested version is a snapshot, or applying a given
delta on the closest preceding snapshot otherwise. In our bidirectional delta chain, a snapshot can not only exist
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Algorithm 3 Delta materialization algorithm for triple patterns that produces a triple stream when the version range
crosses the snapshot boundary

before a delta, but also after a delta. Nevertheless, the algorithm itself remains the same as for a unidirectional delta
chain, as the delta will have to be applied onto the snapshot in both cases. As such, we do not discuss this VM case
any further.

4.6.2. Delta materialization
Delta Materialization (DM) allows differences between two given versions to be retrieved. The DM algorithm

over a unidirectional delta chain distinguishes two cases for this; either the start version is a snapshot or a delta,
where the end version will always be a delta. If the start (or end) version is a snapshot, then the result is simply a
query within the aggregated delta of the end version. Otherwise, the addition and deletion indexes for the two delta
versions are iterated in a sort-merge join-like operation, and only emit the triples that have a different addition/dele-
tion flag for the two versions.

In our bidirectional storage approach, one additional case can occur: when the start and end version correspond
to deltas in the bidirectional delta chain before and after the snapshot, i.e., the DM query crosses the snapshot
boundary. For this, we split up our query into two queries: a DM query from the start version until the snapshot, and
a DM query from the snapshot until the end version. These two queries can be resolved over the two respective delta
chains using the DM algorithm over a unidirectional delta chain. As the OSTRICH DM algorithm guarantees that
the triples from these two queries are sorted (because the are stored in order), we can merge them in a sort-merge
join way (which preserves the order), where triples are only emitted if they don’t exist in both streams (ignoring
the addition/deletion flag). Algorithm 3 illustrates this algorithm in pseudocode. Following the patch notation for
DARCS [22], with o being the start version, e – being the end version and s being the snapshot, our delta split
corresponds to oDe = oD1sD2e.

In order to estimate the cardinality of this third case, the same idea is followed where the counts of the part
of the delta chain before and after the snapshot are added. Just like the existing DM cardinality estimator over a
unidirectional delta chain, this can be an overestimation, since certain triples may occur in both delta chains that
would be omitted from the final result stream.

4.6.3. Version query
A Version Query (VQ) enables querying across all versions, with results being annotated with the versions in

which they occur. VQ over a unidirectional delta chain is done by iterating over the snapshot for a given triple
pattern in a streaming manner. Every snapshot triple is queried within the deletion index. For every discovered
deletion, their respective version annotations are removed from the result. If no such deletion value was found, the
triple was never deleted, so the versions annotation will contain all versions of the store. Once the snapshot stream
has finished, the addition index are iterated in a similar way, where the version annotation of every addition triple is
again updated based on its presence in the deletion index.

Our case is a trivial extension of this algorithm. Instead of checking single addition and deletion streams, two
addition and deletion streams have to be checked. This will produce distinct version annotations, for which we apply
the union.

To estimate the cardinality of the VQ results, the unidirectional delta chain approach can again be extended by
adding the snapshot cardinality with the addition cardinality for both delta chains for the given triple pattern. As
some triples could occur in both delta chains, this can lead to an overestimation.

5. Evaluation

In this section, we evaluate our bidirectional archiving approach by comparing our implementation to native
OSTRICH and other systems.



R. Taelman et al. / Optimizing storage of RDF archives using bidirectional delta chains 715

5.1. Implementation

We have implemented our storage approach and query algorithms as a tool called COBRA (Change-Based Offset-
Enabled Bidirectional RDF Archive). COBRA is an extension of OSTRICH, has been implemented in C/C++, and
is available under the MIT license on GitHub (https://github.com/rdfostrich/cobra). Our implementation uses HDT
[8] as snapshot technology, and makes use of the highly efficient memory-mapped B+Tree implementation Kyoto
Cabinet (http://fallabs.com/kyotocabinet/) for storing our indexes. The delta dictionary is encoded with gzip, which
requires decompression during querying and ingestion.

5.2. Experimental setup

In order to evaluate the ingestion and triple pattern query execution of COBRA, we make use of the BEAR
benchmark (https://aic.ai.wu.ac.at/qadlod/bear.html). To test the scalability of our approach for datasets with few
and large versions, we use the BEAR-A benchmark. We use the first ten versions of the BEAR-A dataset (more
versions cause memory issues with OSTRICH), which contains 30M to 66M triples per version. This dataset was
compiled from the Dynamic Linked Data Observatory. To test for datasets with many smaller versions, we use
BEAR-B with the daily and hourly granularities. For the daily dataset we use 89 versions and for hourly dataset
1,299 versions, both of them have around 48K triples per version. All experiments were performed on a 64-bit
Ubuntu 14.04 machine with a 24-core 2.40 GHz CPU and 128 GB of RAM. Our experimental setup and its raw
results are available on GitHub (https://github.com/rdfostrich/cobra/tree/master/Experiments/), as well as the scripts
that were used to process them (https://github.com/rdfostrich/cobra-bear-results/).

Considering we aim to measure the benefits of the bidirectional aggregated delta chain compared to the unidi-
rectional aggregated delta chain under the hybrid storage strategy, we primarily distinguish between the following
storage approaches:

• OSTRICH: Forward unidirectional aggregated delta chain (Subfig. 2.1)
• COBRA*: Bidirectional aggregated delta chain before fix-up (Subfig. 2.2)
• COBRA: Bidirectional aggregated delta chain after fix-up (Subfig. 2.3)

Fig. 2. The different storage approaches used in our experiments for an arbitrary dataset with six versions.

https://github.com/rdfostrich/cobra
http://fallabs.com/kyotocabinet/
https://aic.ai.wu.ac.at/qadlod/bear.html
https://github.com/rdfostrich/cobra/tree/master/Experiments/
https://github.com/rdfostrich/cobra-bear-results/
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In order to achieve a more complete comparison with other approaches, we also evaluate BEAR’s Jena (IC,
CB, TB and hybrid CB/TB) and HDT-based (IC and CB) RDF archive baseline implementations. We consider
a comparison with other systems such as X-RDF-3X, RDF-TX and Dydra out of scope for this work due to the
major difficulties we experienced with these systems caused by missing implementations or the additional required
implementation effort to support the required query interfaces.

In the scope of this work, we work with at most two delta chains. For simplicity of these experiments, we always
start a new delta chain in the middle version of the dataset (5 for BEAR-A, 45 for BEAR-B Daily, 650 for BEAR-B
Hourly). Note that for the COBRA storage approach, we assume that all versions are available beforehand, so they
can be stored out of order, starting with the middle snapshot. For example, following the out-of-order ingestion
algorithm from Section 4.5, for BEAR-A, this will first lead to the creation of a snapshot for version 5, the creation
of a reverse delta chain for versions 0-4, and finally the creation of a forward delta chain for versions 6-9. In practice,
this may not always be possible, which is why we report on the additional fix-up time during ingestion separately
that would be required when ingesting in order (COBRA*).

To evaluate triple pattern query performance, we make use of the query sets provided by BEAR. BEAR-A pro-
vides 7 query sets containing around 100 triple patterns that are further divided into high result cardinality and low
result cardinality by the benchmark creators. BEAR-B provides two query sets that contain ?P? and ?PO queries.
We evaluate these queries as VM queries for all version, DM queries between the first and all other versions and a
VQ query. In order to minimize outliers, we replicate the queries five times and take the mean results. Furthermore,
we perform a warm-up period before the first query of each triple pattern. Since neither OSTRICH nor COBRA
support arbitrary numbers of snapshots, we limit our experiments to OSTRICH’s unidirectional storage layout and
COBRA’s bidirectional storage layout with a single snapshot.

5.3. Measurements

In this section, we discuss the results of our experiments on ingestion and query evaluation, which we then analyze
in the next section.

5.3.1. Ingestion
Table 3 and Table 4 respectively show the total storage sizes and ingestion times for BEAR-A, BEAR-B Daily,

and BEAR-B Hourly under the different storage approaches.
When purely comparing the COBRA approaches and OSTRICH, it can be observed that COBRA requires less

storage space than OSTRICH for BEAR-A and BEAR-B Hourly, but not for BEAR-B Daily. COBRA* requires
more storage space than both COBRA and OSTRICH with BEAR-A, but it requires less ingestion time. For BEAR-
B Daily, OSTRICH requires less storage, but COBRA* has the lowest ingestion time. For BEAR-B Hourly, CO-
BRA* is lower in terms of storage size and ingestion time than both COBRA and OSTRICH. The outliers that
are apparent for BEAR-B Hourly are compression artefacts for the storage of dictionaries and delta chains using

Table 3

Total storage size in MB for the different datasets. The lowest sizes per dataset are indicated in bold. There is no consistent overall winner

Approach BEAR-A BEAR-B Daily BEAR-B Hourly

Raw (N-Triples) 46,069.76 556.44 8,314.86

Raw (gzip) 3,194.88 30.98 466.35

OSTRICH 4,587.52 16.87 450.59

COBRA 4,066.74 25.69 331.20

COBRA* 5,052.67 21.58 216.95

Jena-IC 32,808.96 415.32 6,233.92

Jena-CB 18,216.96 42.82 473.41

Jena-TB 82,278.4 23.61 3,678.89

Jena-CB/TB 31,160.32 22.83 53.84

HDT-IC 6,829.73 148.61 2,226.45

HDT-CB 3,485.43 6.21 25.14



R. Taelman et al. / Optimizing storage of RDF archives using bidirectional delta chains 717

Table 4

Total ingestion time in minutes for the different datasets. The lowest times per dataset are indicated in bold

Approach BEAR-A BEAR-B Daily BEAR-B Hourly

OSTRICH 2,256 12.36 4,497.32

COBRA 1,300 6.54 529.99

COBRA* 1,019 4.91 337.52

Jena-IC 443 8.91 142.26

Jena-CB 226 9.53 173.48

Jena-TB 1,746 0.35 70.56

Jena-CB/TB 679 0.35 0.65

HDT-IC 34 0.39 5.89

HDT-CB 18 0.02 0.07

Kyoto Cabinet, as storage size may fluctuate slightly based on the available data. In summary, COBRA requires less
ingestion time than OSTRICH in all cases (59% less on average), and it reduces storage size for two out of the three
cases (19% lower on average).

Compared to the HDT and Jena-based approaches, and the original raw representation of BEAR’s delta files in
N-Triples and gzip, we see similar results as shown before in the OSTRICH article (Section 8.3.1) [24]. COBRA,
COBRA*, and OSTRICH reduce storage size compared to the raw gzip representation, expect for BEAR-A. HDT-
CB is consistently smaller, and Jena-CB/TB is also smaller for the BEAR-B datasets. Regarding ingestion time,
OSTRICH and COBRA are overall significantly slower than the alternatives. However, COBRA speeds up ingestion
enough so that it comes close to some of the Jena-based approaches, and sometimes even becomes faster than them.

In order to provide more details on the evolution of storage size and ingestion time of COBRA(*) compared to
OSTRICH, Fig. 3 shows the cumulative storage size for the different datasets, and Fig. 4 shows the ingestion time for
these datasets. Note that COBRA is ingested out of order, which means that the first half of the delta chain is ingested
first in reverse order, and the second half of the delta chain is ingested after that in normal order. These figures show
the impact of the middle snapshots within the bidirectional chain. For BEAR-A, storage size for COBRA lowers
in the second half of the delta chain, which shows that a snapshot with reversed deltas pointing to it (COBRA)
requires less storage space compared to continued use of aggregated deltas (OSTRICH). For BEAR-B Daily, the
storage size significantly increases for the second half of the delta chain, but for BEAR-B hourly it decreases. For
all datasets, COBRA ingestion times reset to low values from the middle version. Especially for BEAR-B Hourly
we see a significant decrease in ingestion time for COBRA compared to OSTRICH. While OSTRICH experiences
major performance issues from around version 1100, the ingestion times of COBRA are much lower, which clearly
shows the benefit of the bidirectional delta chain.

Finally, Table 5 shows the fix-up times, which are measured as a separate offline process, together with their
additional cost relative to out of order ingestion. The fix-up time is the time it would take to transition from the
COBRA* to COBRA storage approach, when the versions cannot be inserted out of order. While this fix-up requires
only 2.39 times more time relative to the overhead of COBRA compared to COBRA* for BEAR-B Daily, it requires
more than 200 times more time for BEAR-A and BEAR-B Hourly, which shows that out-of-order ingestion is still
preferred when possible.

5.3.2. Query evaluation
Figure 5, Fig. 6, and Fig. 7 show the query results on BEAR-A for all approaches for respectively VM, DM

and VQ. Figure 8, Fig. 9, and Fig. 10 show the same for BEAR-B Daily, and Fig. 11, Fig. 12, and Fig. 13 for
BEAR-B Hourly. These query evaluation times are averaged across all query sets for their respective dataset. For
completeness, we included more detailed plots for each query set separately in the appendix.

When purely comparing COBRA and OSTRICH, the summarizing figures show that for VM queries, COBRA is
faster than OSTRICH in BEAR-A, but for the BEAR-B datasets, COBRA is slightly faster than OSTRICH for the
first half of the delta chain, and becomes slower in the second half. For DM, COBRA is always equal or faster than
OSTRICH when querying within the first half of its delta chain, but slower for the second half. For VQ, COBRA is
faster than OSTRICH for BEAR-B Hourly, slightly faster for BEAR-B Daily, and slower for BEAR-A.
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Fig. 3. Cumulative storage sizes for BEAR-A, BEAR-B Daily, and BEAR-B Hourly under the different storage approaches. COBRA requires
less storage space than OSTRICH for BEAR-A and BEAR-B Hourly. The middle snapshot always leads to a significant increase in storage size.
The ingestion of COBRA happens out of order, which means that the middle version is ingested first, up until version 0, after which all versions
after the middle version are ingested in normal order.

When also including the HDT and Jena approaches, we see that for VM queries, HDT-IC is overall faster than all
other approaches, and Jena-based approaches are mostly the slowest. HDT-CB also starts of about as fast as HDT-
IC, but becomes slower for later versions, and even becomes significantly slower than COBRA and OSTRICH for
BEAR-B Hourly that has many versions. For DM queries, HDT-IC is slightly faster than COBRA and OSTRICH.
Again, Jena-based approaches are significantly slower, and HDT-CB again starts off fast, but becomes slower for
later versions. For VQ queries, COBRA and OSTRICH are faster than all other approaches, except for BEAR-A
where the HDT-based approaches achieve similar performance.

5.4. Result analysis

In this section, we discuss the findings of our results regarding ingestion and query evaluation when comparing
the bidirectional delta chain with a unidirectional delta chain, we test our hypotheses, and we discuss the overall
comparison of different archiving approaches.

5.4.1. Ingestion
While the unidirectional delta chain leads to increasing ingestion times for every new version, initiating a new

snapshot (COBRA*) can effectively reset these ingestion times, and lead to overall lower ingestion times. The
downside is that there can be an increase in storage size due to this, for datasets that have few small or large versions
(BEAR-B Daily and BEAR-A). Otherwise for many small versions (BEAR-B Hourly) there is a decrease in storage
size, because the creation of a new snapshot and delta chain outweighs continuing with the aggregated deltas in
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Fig. 4. Ingestion times per version for BEAR-A, BEAR-B Daily, and BEAR-B Hourly under the different storage approaches. COBRA resets
ingestion time from the snapshot version, while ingestion time for OSTRICH keeps increasing. The ingestion of COBRA happens out of order,
which means that the middle version is ingested first, up until version 0, after which all versions after the middle version are ingested in normal
order.

Table 5

Fix-up duration for the different datasets, together with its cost relative to the overhead of COBRA compared to COBRA*

Dataset Time Overheadcost

BEAR-A 9.52 hours 203.27x

BEAR-B Daily 3.91 minutes 2.39x

BEAR-B Hourly 7.82 hours 243.78x
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Fig. 5. Median BEAR-A VM query results for all triple patterns for all versions.

Fig. 6. Median BEAR-A DM query results for all triple patterns from version 0 to all other versions.

Fig. 7. Median BEAR-A VQ query results for all triple patterns.

Fig. 8. Median BEAR-B-daily VM query results for all triple patterns for all versions.

Fig. 9. Median BEAR-B-daily DM query results for all triple patterns from version 0 to all other versions.
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Fig. 10. Median BEAR-B-daily VQ query results for all triple patterns.

Fig. 11. Median BEAR-B-hourly VM query results for all triple patterns for all versions.

Fig. 12. Median BEAR-B-hourly DM query results for all triple patterns from version 0 to all other versions.

Fig. 13. Median BEAR-B-hourly VQ query results for all triple patterns.

terms of storage size. As such, for datasets that have few small or large versions (BEAR-B Daily and BEAR-A), it
is recommended to wait longer before initiating a new snapshot in the delta chain. On the other hand, the decrease
in storage size for BEAR-B Hourly hints that we could have reduced total storage size even more by creating the
snapshot slightly earlier. Given the capabilities and query load of the server and affordable storage overhead, a
certain ingestion size and time threshold could be defined, which would initiate a new snapshot when this threshold
is exceeded.

Once there are two unidirectional delta chains, the first one could optionally be reversed so that both can share
one snapshot through a fix-up process (COBRA). Our results show that this can further reduce storage size for
datasets with few large versions (BEAR-A and BEAR-B Hourly), and even lead to less storage space compared to
the continued use of aggregated deltas (OSTRICH). However, even though there is a reduction of storage size for
many small versions (BEAR-B Daily), this leads to overhead in terms of storage size compared to the unidirectional
delta chain (OSTRICH). This shows that a bidirectional delta chain is more effective for BEAR-A and BEAR-B
Hourly compared to the BEAR-B Daily dataset in terms of storage size, while it is always effective in terms of
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ingestion time. The fix-up process for enabling this reversal does however require a significant execution time. Since
this could easily run in a separate offline process in parallel to query execution and the ingestion of next versions,
this additional time is typically not a problem. As such, when the server encounters a dataset with large versions
(millions of triples per version), then the fix-up approach should be followed.

The results also show that if all versions are known beforehand, they should be ingested out-of-order into a bidi-
rectional delta chain. Because this leads to a significantly lower total ingestion time compared to inorder ingestion
followed by the fix-up process.

5.4.2. Query evaluation
Regarding query performance, our results show that the bidirectional delta chain also has a large impact here

compared to the unidirectional delta chain. Since two shorter delta chains lead to two smaller addition and deletion
indexes compared to one longer delta chain, VM and DM times become lower for the dataset with few large versions
(BEAR-A), since less data needs to be iterated. However, for datasets with many small versions (BEAR-B), we
see that VM times become lower or equal for the first half of the bidirectional delta chain, but become slower for
the second half. We see this behaviour also recurring across all datasets for DM queries. This is because in these
cases we need to query within the two parts of the delta chain, i.e., we need to search through two addition and
deletion indexes instead of just one. For datasets with many small versions (BEAR-B), VQ also becomes faster with
a bidirectional delta chain, but this does not apply when the dataset has few large versions (BEAR-A). This is again
caused by the fact that we now have two delta chains, and two addition and deletion indexes to query in. When
we have many small versions, these two delta chains are worth it, as the benefit of the shared snapshot outweighs
the overhead of the delta chains. However, for few large versions, the overhead of two delta chains is too large for
VQ, and one delta chain performs better. In summary, a bidirectional delta chain is effective for optimizing VM
(assuming few large versions), it can make DM faster for the first half of all versions, but it slows DM down for the
second half, and it is beneficial for VQ (assuming many small versions).

5.4.3. Hypotheses
In Section 3, we defined research hypotheses, which we will now answer based on our experimental results.

In our first hypothesis, we expected storage size to become lower with a bidirectional delta chain compared to
a unidirectional delta chain. While this is true for BEAR-A and BEAR-B Hourly, this is not true for BEAR-B
Daily. As such, we reject this hypothesis. In our second hypothesis, we expected ingestion time to be lower with a
bidirectional delta chain, which was the primary goal of this work. Our results show that this is true. As such, we
accept this hypothesis. Our other hypotheses expect that evaluation times for VM, DM and VQ with a bidirectional
delta chain would be lower. Our results show that each one of them is true in many cases, but they are not valid
across the board, so we reject each of them.

5.4.4. Comparison of archiving approaches
In previous work, it was shown that OSTRICH can speed up VM, DM, and VQ queries on average compared to

other RDF archiving approaches, at the cost of higher ingestion times. Our experimental results for the new bidi-
rectional delta chain approach from COBRA show that it can significantly reduce ingestion time, and sometimes
also ingestion size. Even though there are these reductions, there are still approaches for which ingestion is signifi-
cantly faster (Jena-TB, Jena-CB/TB, HDT-IC, HDT-CB) and storage size is slightly lower (Jena-TB, Jena-CB/TB,
HDT-CB).

The results show that HDT-based approaches can perform exceptionally well in certain cases, but they then
perform relatively much worse in other cases. For instance, HDT-IC performs best in all cases for VM queries, but
this comes at the cost of very high storage requirements. Furthermore, HDT-CB performs really well for all queries,
but becomes continuously slower for more versions in the dataset. Overall, Jena-based approaches are the slowest.
In general, both OSTRICH and COBRA offer a valuable trade-off between these extremes, with COBRA focusing
on reducing the problematically high ingestion times of OSTRICH. OSTRICH and COBRA are thereby never the
optimal solution for all specific cases, but they perform – on average – sufficiently well for all different cases, which
is not the case for the other approaches.
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6. Conclusions

In this work, we improved the storage of RDF archives under the hybrid storage strategy (OSTRICH) by making
use of a bidirectional delta chain. Based on our implementation of this new approach (COBRA), our experimen-
tal results show that this modification leads to more efficient ingestion (59% faster) compared to a unidirectional
delta chain (OSTRICH). This change also reduces total storage size (19% lower) for two out of three datasets. Fur-
thermore, all versioned query types achieve a performance boost (21% faster), except for VQ under the BEAR-A
dataset. COBRA offers a more balanced performance trade-off between the different versioned query types and
ingestion compared to other RDF archiving approaches that may perform better in specific cases, but worse in other
cases. This trade-off, combined with query execution times in the order of 1 millisecond or less, shows that the bidi-
rectional delta chain strategy from COBRA is an ideal back-end for RDF archives in the context of Web querying,
as network latency is typically slower than that.

As such, the bidirectional delta chain (COBRA) is a viable alternative to the unidirectional delta chain (OS-
TRICH), as it reduces its scalability problems during ingestion while still achieving sufficiently fast querying. We
recommend bidirectional delta chains when any of the following is needed (in order of importance):

• Lower ingestion times
• Lower storage sizes

On the other hand, we do not recommend bidirectional delta chains in the following cases:

• Fast VQ is needed over datasets with very large versions: Bidirectional chains slow down VQ when versions
are large.

• Fast VM/DM is needed over datasets with many small versions: Bidirectional chains slow down VM and
DM in the second half for many smaller versions.

• Dataset has only a few small versions: Unidirectional chain should be used until the ingestion of a new
version exceeds the ingestion time of a new snapshot.

These limitations of a bidirectional delta chain may be resolvable in future work through more intelligent strate-
gies on when to convert a unidirectional delta chain into a bidirectional delta chain. Next to this, the beneficial
impact of the bidirectional delta chain opens up questions as to what respect other transformations of the delta chain
in terms of delta directionality and snapshot placement may be beneficial to ingestion time, storage size, and query
performance. First, deltas may inherit from two or more surrounding versions, instead of just one. Second, aggre-
gated and non-aggregated deltas are just two extremes of delta organization. A range of valuable possibilities in
between may exist, such as inheriting from the n largest preceding version. Third, the impact of multiple snapshots
and strategies to decide when to create them still remain as open questions, which we suspect will be crucial for
RDF archiving for indefinitely increasing numbers of versions. Fourth, the creation of multiple snapshots will also
lead to the need for querying across multiple snapshots and delta chains. While the existing VM querying algorithm
can be reused for this, new efficient algorithms for DM and VQ with offset support will be required, as well as
algorithms for providing cardinality estimates.

While these findings show that a bidirectional delta chain can be more beneficial than a unidirectional delta chain
for the same version range, neither approach will scale to an infinite number of versions. Therefore, investigating
creation of multiple snapshots in future work to create new delta chains will be crucial for solving scalability
issues when ingesting (theoretically) infinite numbers of version. While we expect that the creation and querying of
multiple delta chains will be significantly more expensive than a single delta chain, the use of bidirectional chains
can delay their need by a factor of 2 compared to unidirectional delta chains.

We have shown that modifying the structure of the delta chain can be highly beneficial for RDF archiving. This
brings us closer to an efficient queryable Semantic Web that can evolve and maintain its history.
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Appendix A. BEAR-A query evaluation results

In this appendix section, we list all measured BEAR-A query evaluation durations. Each figure contains the
durations for each storage approach, being OSTRICH, COBRA, HDT-IC, HDT-CB, Jena-IC, Jena-CB, Jena-TB
and Jena-CB/TB.

Fig. 14. Average VM query results for S?? triple patterns with a low cardinality for all versions.

Fig. 15. Average VM query results for S?? triple patterns with a high cardinality for all versions.

Fig. 16. Average VM query results for ?P? triple patterns with a low cardinality for all versions.

Fig. 17. Average VM query results for ?P? triple patterns with a high cardinality for all versions.
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Fig. 18. Average VM query results for ??O triple patterns with a low cardinality for all versions.

Fig. 19. Average VM query results for ??O triple patterns with a high cardinality for all versions.

Fig. 20. Average VM query results for SP? triple patterns with a low cardinality for all versions.

Fig. 21. Average VM query results for SP? triple patterns with a high cardinality for all versions.

Fig. 22. Average VM query results for S?O triple patterns with a low cardinality for all versions.
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Fig. 23. Average VM query results for ?PO triple patterns with a low cardinality for all versions.

Fig. 24. Average VM query results for ?PO triple patterns with a high cardinality for all versions.

Fig. 25. Average VM query results for SPO triple patterns for all versions.

Fig. 26. Average DM query results for S?? triple patterns with a low cardinality from version 0 to all other versions.

Fig. 27. Average DM query results for S?? triple patterns with a high cardinality from version 0 to all other versions.
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Fig. 28. Average DM query results for ?P? triple patterns with a low cardinality from version 0 to all other versions.

Fig. 29. Average DM query results for ?P? triple patterns with a high cardinality from version 0 to all other versions.

Fig. 30. Average DM query results for ??O triple patterns with a low cardinality from version 0 to all other versions.

Fig. 31. Average DM query results for ??O triple patterns with a high cardinality from version 0 to all other versions.

Fig. 32. Average DM query results for SP? triple patterns with a low cardinality from version 0 to all other versions.
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Fig. 33. Average DM query results for SP? triple patterns with a high cardinality from version 0 to all other versions.

Fig. 34. Average DM query results for S?O triple patterns with a low cardinality from version 0 to all other versions.

Fig. 35. Average DM query results for ?PO triple patterns with a low cardinality from version 0 to all other versions.

Fig. 36. Average DM query results for ?PO triple patterns with a high cardinality from version 0 to all other versions.

Fig. 37. Average DM query results for SPO triple patterns from version 0 to all other versions.



R. Taelman et al. / Optimizing storage of RDF archives using bidirectional delta chains 729

Fig. 38. Average VQ query results for S?? triple patterns with a low cardinality.

Fig. 39. Average VQ query results for S?? triple patterns with a high cardinality.

Fig. 40. Average VQ query results for ?P? triple patterns with a low cardinality.

Fig. 41. Average VQ query results for ?P? triple patterns with a high cardinality.

Fig. 42. Average VQ query results for ??O triple patterns with a low cardinality.

Fig. 43. Average VQ query results for ??O triple patterns with a high cardinality.
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Fig. 44. Average VQ query results for SP? triple patterns with a low cardinality.

Fig. 45. Average VQ query results for SP? triple patterns with a high cardinality.

Fig. 46. Average VQ query results for S?O triple patterns with a low cardinality.

Fig. 47. Average VQ query results for ?PO triple patterns with a low cardinality.

Fig. 48. Average VQ query results for ?PO triple patterns with a high cardinality.

Fig. 49. Average VQ query results for SPO triple patterns.
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Appendix B. BEAR-B-daily query evaluation results

In this appendix section, we list all measured BEAR-B-daily query evaluation durations. Each figure contains the
durations for each storage approach, being OSTRICH, COBRA, HDT-IC, HDT-CB, Jena-IC, Jena-CB, Jena-TB
and Jena-CB/TB.

Fig. 50. Average VM query results for ?P? triple patterns for all versions.

Fig. 51. Average VM query results for ?PO triple patterns for all versions.

Fig. 52. Average DM query results for ?P? triple patterns from version 0 to all other versions.

Fig. 53. Average DM query results for ?PO triple patterns from version 0 to all other versions.
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Fig. 54. Average VQ query results for ?P? triple patterns.

Fig. 55. Average VQ query results for ?PO triple patterns.

Fig. 56. Average VM query results for ?P? triple patterns for all versions.

Fig. 57. Average VM query results for ?PO triple patterns for all versions.

Fig. 58. Average DM query results for ?P? triple patterns from version 0 to all other versions.

Appendix C. BEAR-B-hourly query evaluation results

In this appendix section, we list all measured BEAR-B-hourly query evaluation durations. Each figure contains
the durations for each storage approach, being OSTRICH, COBRA, HDT-IC, HDT-CB, Jena-IC, Jena-CB, Jena-TB
and Jena-CB/TB.
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Fig. 59. Average DM query results for ?PO triple patterns from version 0 to all other versions.

Fig. 60. Average VQ query results for ?P? triple patterns.

Fig. 61. Average VQ query results for ?PO triple patterns.
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