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A bstract

Abadihasintroduced alogictoexplicatethem eaningoflocalnam esin SDSI,theSim ple
Distributed Security Infrastructure proposed by Rivest and Lam pson. Abadi’s logic does
notcorrespond precisely to SDSI,however;itdrawsconclusionsaboutlocalnam esthatdo
not follow from SDSI’s nam e resolution algorithm . M oreover,its sem antics is som ewhat
unintuitive. This paper presents the Logic ofLocalNam e Containm ent,which does not
su� erfrom thesede� ciencies.Ithasa clearsem anticsand providesa tightcharacterization
ofSDSI nam e resolution. The sem antics is shown to be closely related to that oflogic
program s,leading to an approach to the e� cient im plem entation of queries concerning
localnam es.A com pleteaxiom atization ofthe logicisalso provided.
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1 Introduction

Rivestand Lam pson [RL96]introduced SDSI| a Sim pleDistributed Security Infrastructure|
to facilitatetheconstruction ofsecuresystem s.1 In SDSI,principals(agents)areidenti� ed with
publickeys.In addition toprincipals,SDSIallowsothernam es,such aspoker-buddies.Rather
than having a globalnam e space,these nam esare interpreted locally,by each principal.That
is,each principalassociateswith each nam easetofprincipals.O fcourse,theinterpretation ofa
nam esuch aspoker-buddiesm aybedi� erentforeach agent.However,aprincipalcan \export"
hisbindingsto otherprincipals.Thus,Ron m ay receivea m essagefrom theprincipalhenam es
Joe describing a setofprincipalsJoe associates with poker-buddies. Ron m ay then referto
the principalsJoe associateswith poker-buddies by the expression Joe’s poker-buddies.

Rivestand Lam pson [RL96]givean operationalaccountoflocalnam es;theyprovideanam e-
resolution algorithm that,given a principalk and a nam e n,com putes the set ofprincipals
associated with n according to k. Abadi[Aba98] has provided a logic that, am ong other
things,givesa m ore sem antic accountoflocalnam es. According to Abadi,itspurpose \isto
explain localnam esin a general,self-contained way,withoutrequiring reference to particular
im plem entations." Abadishowsthatthe SDSInam e-resolution algorithm can be captured in
term sofa collection ofsound proofrulesin hislogic.

Abadi’sfocusison axiom s. He constructsa sem antics,notwith the goalofcapturing the
intended m eaning ofhisconstructs,butrather,with thegoalofshowing thatcertain form ulas
arenotderivablefrom hisaxiom s.(In particular,heshowsthatfalse isnotderivable,showing
that his axiom s are consistent.) W hile adequate for Abadi’s restricted goals, his sem antics
validates som e form ulas that we certainly would not expect to be valid. O ne consequence of
thisisthat,while he isable to pinpointsom e potentialconcernswith the logic,the resolution
of these concerns is less satisfactory. For exam ple, he observes that adding two seem ingly
reasonableaxiom sto hislogicallowsusto reach quitean unreasonableconclusion.However,it
isnotobviousfrom the sem antic intuitionsprovided by Abadiwhich (ifeither)ofthe axiom s
is unreasonable, or why it is unreasonable. M oreover, while he proves that this particular
unreasonable conclusion isnotderivable in hisfram ework,as we show,a closely related (and
equally unreasonable)conclusion isin factvalid. Thism eanswe have no assurance thatitor
othersim ilarform ulascannotbederived from Abadi’saxiom s.

W every m uch subscribetoAbadi’sgoalofusingalogicto giveageneralaccountofnam ing.
In thispaper,we provide a logic whose syntax isvery sim ilarto Abadi’s,butwhosesem antics
isquitedi� erentand,webelieve,capturesbetterthem eaning weintend theconstructsto have.
Nevertheless,allbutone ofAbadi’snam espace axiom sare sound in oursystem .

W e rem ark that,in a sense,our task is m uch easier than Abadi’s,since we give the con-
structsin the logic a som ewhatnarrowerreading than hedoes.Abaditendsto intertwine and
occasionally identify issues ofnam ing with issues ofrights and delegation. (Such an identi� -
cation is also im plicitly m ade to som e extent in designs such as PolicyM aker [BFL96].) W e
believethatitisim portantto treattheseissuesseparately.Such a separation allowsusto both

1SD SInow form s the basis for the Sim ple Public K ey Infrastructure (SPK I) standardization work [G ro98].
SPK Isim pli� essom eSD SIfeatures(e.g.,itelim inatesgroups)butaddsm any others.W efocusin thispaperon
the core nam ing featuresofSD SI| thereare som e m inordi� erencesin the way thatSPK Ihaschosen to handle
thesefeatures,butwebelievethatourwork isequally relevantto thethefragm entofSPK Idealing with nam ing.
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give a cleanersem anticsforeach ofthe relevantnotionsand to clarify a num berofsubtleties.
Thispaperfocuseson nam ing,which wecarefully separate from theotherissues;a com panion
paper[HvdM S99]considersauthority and delegation.

W e believe thatourapproach hasa num berofsigni� cantadvantages:

� W ecan stillsim ulatetheSDSI’snam eresolution algorithm ;Abadi’sextraaxiom isunnec-
essary.In fact,ourlogic capturesSDSI’snam e resolution m ore accurately than Abadi’s.
Abadi’s logic can draw conclusions that SDSI’s nam e resolution cannot;our logic,in a
precise sense,drawsexactly thesam e conclusionsasSDSI’snam eresolution algorithm .

� According to oursem anticintuition,oneofAbadi’sproposed additionalaxiom sisin fact
quite unreasonable;itdoesnothold underoursem antics,and itisquite clearwhy.

� W e are able to provide a sound and com plete axiom atization ofourlogic. Thus,unlike
Abadi,we have a proofsystem that corresponds precisely to our sem antics. This will
allow us to prove stronger results than Abadi’s about form ulas that cannot be derived
in ourfram ework.O urcom pletenessproofalso yieldsa (provably optim al)NP-com plete
decision procedureforsatis� ability ofform ulasin thelogic.

� O ur logic is closely related to Logic Program m ing. This allows us to translate queries
about nam es to Logic Program m ing queries,and thus use allthe well-developed Logic
Program m ing technology to dealwith such queries.

� O urapproach openstheroad to a num berofgeneralizations,which allow usto dealwith
issueslike perm ission,authority,and delegation [HvdM S99].

Therestofthispaperisorganized asfollows.In Section 2,wereview Abadi’slogic and,in
the process,describe SDSI’snam ing schem e. W e also pointoutwhatwe see as the problem s
with Abadi’sapproach.In Section 3,wegivethesyntax and sem anticsofourlogic,and present
acom pleteaxiom atization.In Section 4weshow thatourlogicprovidesatightcharacterization
ofSDSInam e resolution. Section 5 deals with the connection between our account ofSDSI
nam eresolution and logic program m ing,and Section 6 concernsSelf,an additionalconstruct
considered by Abadi.Section 7 concludes.

2 SD SI’s N am e Spaces and A badi’s Logic

In this section,we brie y review SDSI’s nam ing schem e and Abadi’s logic,and discuss our
criticism ofAbadi’slogic.Like Abadi,we are basing ourdiscussion on SDSI1.1 [RL96].

2.1 SD SI’s N am e Spaces

SDSIhas localnam es and a set ofreserved nam es,which we refer to as globalnam es. Both
are associated with sets ofprincipals,but the set ofprincipals associated with a localnam e
depends on the principalowning the localnam e space,while the set ofprincipals associated
with a globalnam e doesnot.W e denote the setofglobalnam esby G with generic elem entg,
thesetoflocalnam esby N with genericelem entn,and thesetofkeys(principals)by K with
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genericelem entk.W eassum ethatallthesesetsarepairwisedisjointand thatK isnonem pty.
Globalidenti�ersareeitherkeysorglobalnam es.2

The elem ents ofK [ G [ N are said to be sim ple nam es. W e form principalexpressions

from sim ple nam es inductively. Sim ple nam es are principalexpressions,and ifp and q are
principalexpressions,then sois(p’sq).Abadi’ssem antics(and ours)m akesthelatteroperation
associative,in that((p’sq)’sr)and (p’s(q’sr))have the sam e m eaning. In lightofthis,we
can ignore parenthesization when writing such expressions. The expression p1’s:::pm �1 ’spm
iswritten in SDSIas(ref :p1;:::;pm ).3 W erem ark forfuturereferencethatSDSIhasaspecial
globalnam e denoted \DNS!!",which representsthe rootofthe DNS (Internetm ail)hierarchy;
thisallowsusto expressan em ailaddresssuch asbob@fudge.com asDNS!!’scom’sfudge’sbob.

SDSI allows a principalto issue certi�cates ofthe form n 7�! p,signed with its key. If
k issues such a certi� cate,it has the e� ect ofbinding localnam e n in k’s nam e space to the
principalsdenoted by theprincipalexpression p.4 Noticethatonly principalsissuecerti� cates,
and thatthese certi� catesbind a localnam e (nota globalnam e)to som e setofprincipals.In
general,a localnam e m ay be bound to a unique principal,no principal,or m any principals.
SDSIallows a principalk to issue certi� cates n 7�! p1 and n 7�! p2. This has the e� ect of
binding n to (atleast)theprincipalsdenoted by p1 and p2.

SDSIprovidesa nam e-resolution algorithm forcom puting the setofprincipalsbound to a
nam e. The core ofthe algorithm consistsofa nondeterm inistic procedure REF2. For ease of
exposition,we take REF2 to have fourargum ents: a principalk,a function c thatassociates
with each principalk0a setofbindings(intuitively,onesthatcorrespond to certi� catessigned
by k0),a function � which associateswith each globalnam eg asetofprincipals(intuitively,the
onesbound to g),and a principalexpression p.REF2(k,�,c,p)returnsthe principal(s)bound
to p in k’snam e space,given the bindings� and the certi� catesc.REF2 isnondeterm inistic;
thesetofpossibleoutputsofREF2 istaken to bethesetofprincipalsbound to p in k’snam e
space.REF2 isdescribed in Figure 1.5

2.2 A badi’s Logic: Syntax,Sem antics,and A xiom atization

The form ulasin Abadi’slogic are form ed by starting with a setofprim itive propositionsand
form ulasofthe form p 7�! p0,wherep and p0areprincipalexpressions.M ore com plicated for-

2Note thatAbadiusesG forglobalidenti� er;thus,hisG correspondsto ourG [ K .
3SD SIallowsm tobe0,taking(ref:) tobethecurrentprincipal.In Section 6,wefollow Abadiby considering

an expression Self thatrepresents(ref:).
4SD SIalso allows otherform s ofbinding thatwe do notconsiderhere. O urnotation isalso a sim pli� cation

ofthatused by SD SI.
5O urversion ofREF2 issim ilar,although notidentical,to Abadi’s. Like Abadi’s,itissim pler than thatin

[RL96],in that we do not dealwith a num ber ofissues,such as quoting or encrypted objects,dealt with by
SD SI.O urpresentation ofREF2 di� ers from Abadi’s m ainly in its treatm entofglobalnam es. Abadiassum es
thatREF2 takesonly two argum ents,o and p,where o iseithera globalidenti� er(i.e.,an elem entofG [ K )or
current principal,denoted cp. Although he doesnotwrite c explicitly asan argum ent,he doesassum e that
thereisa sethedenotesassum ptions(o)thatincludesbindingscorresponding to signed certi� cates.In addition,
itincludesbindingsforcp.W edo nothavea distinguished currentprincipal;rather,ifthecurrentprincipalisk,
then foruniform ity we assum e thatallofthe currentprincipal’sbindingsare also described by the bindingsin
c(k).M ore signi� cantly,ifg isa globalnam e,then Abadi’sREF2(o,g)would return g,while ourswould return
som e principalk to which g isbound in �. O urapproach seem sm ore consistentwith the SD SIpresentation of
REF2,butthisdi� erence ism inor,and allofAbadi’sresultshold forourpresentation ofREF2.

3



REF2(k,�,c,p)
ifp 2 K then return(p)
else ifp 2 G

then if�(p)= ; then fail
else return(k0)forsom e k02 �(p)

else ifp isa localnam en in N

then ifc(k)= ; then fail
else forsom e n 7�! q 2 c(k)return(REF2(k,�,c,q))

else ifp isofthe form q’sr
then return(REF2(REF2(k,�,c,q),�,c,r))

Figure 1:ProcedureREF2

m ulasareform ed by closing o� underconjunction,negation,and form ulasoftheform p says �,
where� isa form ula.

Abadiviewsp 7�! p0asm eaning thatp is\bound to" p0.He considerstwo possible inter-
pretationsof\bound to".The� rstisequality;however,herejectsthisasbeing inappropriate.
(In particular,it does notsatisfy som e ofhis axiom s.) The second is that p 7�! p0 m eans p0

\speaks-for" p,in the sense discussed in [ABLP93,LABW 92]. Roughly speaking,this says
that any m essage certi� ed by p0 should be viewed as also having been certi� ed by p. W hile
the \speaking-for" interpretation isthe one favored by Abadi,he doesnotcom m itto it.Note
thatunderAbadi’s\speaking-for" interpretation,itm akessenseto writep 7�! p0forarbitrary
principalexpressions p and p0. However,SDSIallows only local(sim ple)nam es to be bound
to principalexpressions. W e shallm ake a sim ilar restriction in our logic (and,indeed,under
oursem antic interpretation ofbinding,itwould notm akesenseto allow an arbitrary principal
expression to bebound to anotherone.)

The\speaks-for"interpretation intertwinesissuesofdelegation with thoseofnam ing.Aswe
suggested in theintroduction,webelievetheseissuesshould beseparated.W eshallgive 7�! a
di� erentinterpretation thatwebelieveissim plerand m orein thespiritofbinding.W ebelieve
that the \speaks-for" relation of[ABLP93,LABW 92]should have quite di� erent sem antics
than thatofbinding nam esto principals.(W e hopeto return to thisissuein futurework.)

Abadiinterpretsp says � as\theprincipaldenoted by p m akesa statem entthatim plies�".
In thecase wherep isa key (i.e.,principal)k,thiscould m ean thatk signsa statem entsaying
�. Underourm ore restrictive interpretation,thisisexactly how we interpretouranalogue to
says.

In any case,note thatAbaditranslates SDSI’slocalnam e n being bound to p asn 7�! p

and capturesk signing a certi� cate saying n isbound to p by the form ula k says n 7�! p.For
futurereference,itisworth noting that,in orderto capturethebinding ofnam esto principals,
no useism adeofprim itive propositions.

Abadiinterpretsform ulasin hislogic with respectto a tuple (W ;�;�;�). The function �

m apsglobalidenti� ers(G [ K )to subsetsofW .Thefunction � m apsN � W to subsetsofW .
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Finally,� associates with each world (principal) k and prim itive proposition p a truth value
�(p;k).

Abadidoes not provide any intuition for his sem antics, but suggests that W should be
thought ofas a set ofpossible worlds,as in m odallogic. However,he also suggests [private
com m unication,1999]that his sem antics was m otivated by the work ofG rove and Halpern
[G H93],in which thecorrespondingsetcontainspairsconsisting ofa world and an agent.Som e
ofAbadi’sde� nitionsm akem oreintuitivesenseifwethink ofW asa setofagents,whileothers
m ake m ore senseifwethink ofW asa setofworlds.W e elaborate on thispointbelow.

G iven k 2 W and p 2 P ,Abadide� nes[[p]]k inductively,asfollows:

� [[g]]k = �(g),forg 2 G [ K

� [[n]]k = �(n;k)forn 2 N

� [[p1’sp2]]k = [f[[p2]]k0 :k02 [[p1]]kg

Here we have used a notation corresponding to the interpretation ofthe \worlds" in W as
agents.Usingthisinterpretation wem ay think of[[p]]k asthesetofprincipalsbound toprincipal
expression p according to k.Theclausefor[[p1’sp2]]k then saysthatifk0isoneoftheprincipals
referred to by k asp1,then k usesp1’sp2 to referto any principalreferred to by k0asp2.

Abadialso de� neswhatitm eansfora form ula � to betrueatworld k 2 W ,written k j= �,
inductively,by

� k j= p i� �(p;k)= true,ifp isa prim itive proposition

� k j= � ^  i� k j= � and k j=  

� k j= :� i� k 6j= �

� k j= p 7�! p0i� [[p]]k � [[p0]]k

� k j= p says � i� k0j= � forallk02 [[p]]k.

These clauses de� ning j= are quite intuitive ifone interprets W to be a setofworldsand
considers[[p]]k to be the setofworldsconsistentwith whatprincipalp hassaid atworld k.In
particular,underthisinterpretation,the clause forsays can be read asstating thatp says �

if� holds in allworlds consistent with what p has said. The clause for 7�! also has quite a
plausiblereadingunderthe\speaks-for"interpretation ofthisconstruct:itstatesthatp0speaks
forp ifallworldsconsistentwith whatp hassaid areconsistentwith whatp0hassaid,i.e.,p is
constrained to speak consistently with whatp0 hassaid. However,itseem sratherdi� cultto
extend thisintuitive reading to encom passthe inductive de� nition of[[p]]k. In particular,itis
farfrom clearto uswhatintuitive understanding to assign to the clause for[[p1’sp2]]k on this
reading.

O n the other hand,note that ifwe interpret the worlds as agents,then we can think of
k j= � assaying that� istruewhen localnam esareinterpreted according to agentk.Butthis
reading oftheclauses,when com bined with theintuitivereading of[[p]]k asthesetofprincipals
thatk refersto using p,also hasitsdi� culties. Intuitively,when n isbound to p in principal
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Re exivity: p 7�! p

Transitivity: (p 7�! q)) ((q 7�! r)) (p 7�! r))
LeftM onotonicity: (p 7�! q)) ((p’sr)7�! (q’sr))
G lobality: (p’sg)7�! g ifg isa globalidenti� er
Associativity: ((p’sq)’sr)7�! (p’s(q’sr))

(p’s(q’sr))7�! ((p’sq)’sr)
Linking: (p says (n 7�! r)) ((p’sn)7�! (p’sr))

ifn isa localnam e
Speaking-for: (p 7�! q)) ((q says �)) p says �)

Figure 2:Abadi’saxiom sforlinked localnam espaces

k’slocalnam espace,theprincipalsthatk refersto using p should bea subsetoftheprincipals
thatk refersto using n.Abadiinterpretsn being bound to p asn 7�! p;thisholdswith respect
to principalk when [[p]]k isa superset of[[n]]k.Thisisprecisely the opposite ofwhatwe would
expect.Thus,neithertheinterpretation ofW asa setofworldsnortheinterpretation ofW as
a setofagentsgivesa fully satisfactory justi� cation forAbadi’ssem antics.Aswe shallsee,in
oursem antics,theinterpretation ofa principalexpression p according to an agentwillbea set
ofagents,butwe usethe reverse ofAbadi’scontainm entto representbinding.

Abadiprovidesan axiom system forhislogic,which hasthree com ponents:

1. Thestandard axiom sand rulesofpropositionallogic.

2. Thestandard axiom and ruleform odallogic forthe says operator:

(p says (� )  ))) ((p says �)) (p says  ))

�

p says �

3. New axiom sdealing with linked localnam e spaces,shown in Figure 2.

He showsthatthisaxiom atization issound,butconjecturesitisnotcom plete.

2.3 N am e R esolution in A badi’s Logic

Abadiprovesa num berofinteresting resultsrelating hislogic to SDSI.First,heshowsthatin
a precise sense hislogic can sim ulate REF2. He providesa collection ofnam e-resolution rules
NR and provesthe following results:6

P roposition 2.1:Given a collection ofcofbindingscorresponding to signed certi�catesand a

set� ofbindingsofglobalnam esto keys,letE betheconjunction oftheform ulask says n 7�! q

6The results stated here are a variant ofthose stated in Abadi’s paper,since our version ofREF2 di� ers
slightly from his.Nevertheless,the proofsofthe resultsare essentially identical.
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for each certi�cate n 7�! q 2 c(k) and the form ulas g 7�! k for each k 2 �(g). Then E )

((k’s p)7�! k1) is provable with the nam e resolution rules NR ifand only ifREF2(k;�;c;p)
yieldsk1.

P roposition 2.2:The nam eresolution rulesare sound with respectto thelogic.Thatis,given

E asin Proposition 2.1 and any principalexpression p,ifE ) (p 7�! k)isprovable using NR
then E ) (p 7�! k)isalso provable in the logic.

These results show that any bindings ofnam es to principals that can be deduced using
REF2 can also bededuced using Abadi’slogic.However,Abadishowsthathislogicisactually
m orepowerfulthan REF2,by giving two exam plesofconclusionsthatcan bededuced from his
logic butnotusing REF2:

Exam ple 2.3: Using the G lobality, Associativity, and Transitivity axiom s,ifk and k0 are
keys,weim m ediately getk’s(Lampson’sk0)7�! k0.Thisresultdoesnotfollow from theREF2
algorithm .Thatis,REF2(k;�;c;Lampson’sk0)doesnotnecessarily yield k0forarbitrary cand
� (in particular,itwillnotdo so ifLampson isnotbound to anything in c).

Exam ple 2.4: Suppose c consists of the four certi� cates that correspond to the following
form ulas: k says (Lampson 7�! k1),k says (Lampson 7�! k2),k1 says (Ron 7�! Rivest),and
k2 says (Rivest 7�! k3)(where k,k1,k2,and k3 are keys). Using the Speaking-foraxiom ,it
isnothard to show thatwe can conclude thatk’s(Lampson’s Ron)7�! k3.Itiseasy to show
thatREF2 cannotreach thisconclusion;thatis,REF2(k;�;c;Lampson’s Ron)doesnotyield
k3 forany �.7

In reference to Exam ple 2.3,Abadi[Aba98]says that \it is not clear whether [these con-
clusions]are harm ful,and they m ight in fact be useful". In general,he views it as a feature
ofhislogic thatitallowsreasoning aboutnam eswithoutknowing theirbindings[privatecom -
m unication,1999]. W hile we agree that,in general,reasoning aboutnam es withoutknowing
their bindings is a powerfulfeature,we believe it is im portant to m ake clear exactly which
conclusionsaredesirableand which arenot.Thisiswhata good sem anticscan provide.Under
our sem antics,neither ofthese two conclusions are valid. In fact,our logic draws precisely
the sam e conclusions as REF2. O fcourse,the conclusions ofExam ples 2.3 and 2.4 are valid
underAbadi’ssem anticsbut,aswe observed earlier,Abadi’ssem anticsisnotreally m eantto
beused asa guideto which conclusionsareacceptable(and,indeed,asweshallsee,itvalidates
a num berofconclusionsthatdo notseem so acceptable).

Abadialso considersthe e� ect ofextending hisaxiom system . In particular,he considers
adding the following two axiom s:

� the converse ofG lobality:g 7�! (p’sg)

7SPK Icerti� catesand SD SIcerti� cateshavea slightly di� erentsyntacticform .A SPK Icerti� cateissued by k
to bind n to p could beexpressed in thelogicask says (k’sn 7�! p).Abadihasrem arked [privatecom m unication
1999],thatifwe rewrite theexam pleusing assertionsin thisform ,thecorresponding conclusion ofthisexam ple
would notfollow in hislogic.W ehavefollowed theSD SIform atforcerti� catesin thispaper,butnotethatafter
som e m inorchangesto the de� nitions,allthe resultsin Sections3{5 would stillapply to SPK Icerti� cates.
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� a generalization ofLinking: (p says (p1 7�! p2))) (p’sp1 7�! p’sp2),foran arbitrary
principalp1 (instead ofa localnam e).

Thegeneralization ofLinking isin factsound underAbadi’ssem antics.Theconverse ofG lob-
ality isnot,butonly because we m ay have [[p]]k = ;. Note that[[p]]k = ; i� k j= p says false;
thus,the following variant ofthe converse ofG lobability is sound under Abadi’s sem antics:
:(p says false)) (g 7�! (p’sg)).

Thisisquiterelevantto ourpurposesbecauseAbadishowsthatifweadded thetwo axiom s
above to his system ,then from k says (DNS!!7�! k),we can conclude DNS!!7�! k. Thus,
justfrom k saying thatDNS!!isbound to k,itfollowsthatDNS!!isindeed bound to k.Thisis
particularlydisconcertingunderAbadi’s\speaks-for"interpretation,whereDNS!!7�! kbecom es
\k speaksforDNS!!". W e certainly do notwantan arbitrary principalto speak forthe nam e
server!

Abadiprovesa resultshowing thatsuch conclusionsarenotderivablefrom hypothesesofa
certain type in hislogic (which doesnothave thesetwo axiom s).

P roposition 2.5:[Aba98]Letk and k0be distinctglobalnam es;let� be a form ula ofthe form

(k0says (n1 7�! p1))̂ :::̂ (k0says (nk 7�! pk)),wheren1;:::;nk arelocalnam esand p1;:::;pk
are principalexpressions;let be a form ula ofthe form (k says  1)^ :::̂ (k says  m ),where
 1;:::; m are arbitrary form ulas. Then � ^  ) (k07�! k)isnotvalid.8

W hile Proposition 2.5 providessom eassurancethatundesirableform ulasare notderivable
in the logic,itdoesnotprovide m uch. Indeed,ifwe allow the  to include the form ula :(k0

says false),then the resultno longerholds. In fact,itfollowsfrom ourearlierdiscussion that
the form ula

(k says (DNS!!7�! k))^ :(k says false)) (DNS!!7�! k)

isvalid.M oreover,itdoesnotseem sounreasonabletoallow conjunctssuch as:(k says false)
aspartof .W ecertainly wantto beableto usethelogicto beableto say thatifa principal’s
statem entsare notblatantly inconsistent,then certain conclusionsfollow.

3 T he Logic ofLocalN am e C ontainm ent

In this section we propose the Logic ofLocalNam e Containm ent (henceforth LLNC) as an
alternative to Abadi’slogic. LLNC interpretslocalnam esassetsofprincipalsand interprets
SDSIcerti� catesasstating containm entrelationshipsbetween thesesets.W ede� nethesyntax
in Section 3.1. In Section 3.2 we describe two distinct sem antics for the logic. Section 3.3
presentsa com plete axiom atization.

3.1 Syntax

LLNC hassyntacticelem entsthatareclosely related to thesyntacticelem entsofAbadi’slogic.
However,ournotation di� ersslightly from Abadi’sto help em phasize som e ofthe di� erences
in intuition.

8Abadi’sresultactually says\� ^  ) (k0 7�! k)isnotderivable";sincehisaxiom atization issound,butnot
necessarily com plete,the claim thatitisnotvalid isstronger,and thatiswhatAbadi’sproofshows.
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Again, we start with keys K ,globalnam es G , and localnam es N , and form principal
expressionsfrom them .Theform ulasofourlanguage are form ed asfollows:

� Ifp and q are principalexpressionsthen p 7�! q isa form ula.

� Ifk 2 K and � isa form ula then k cert� isa form ula.9

� If�1 and �2 areform ulas,then soare:�1 and �1^�2.Asusual,�1_�2 isan abbreviation
for:(:�1 ^ :�2)and �1 ) �2 isan abbreviation for:�1 _ �2.

W ewriteL forthesetofallform ulas.(Forsim plicity,weom itprim itivepropositions,although
we could easily add them .They play no role in Abadi’saccountofSDSInam es,norwillthey
in ours.)

W e read theexpression p 7�! q as\p containsq";we intend foritto capture the factthat
allthe keys bound to q are also bound to p. However,our intuitions about the m eaning of
p 7�! q arequitedi� erentfrom Abadi’s.In particular,wedonotwish tointerpretp 7�! q as\q
speaksforp." W econsiderthe\speaksfor"relation asbeingaboutrightsand delegation,which
requiresa m ore sophisticated sem anticsthan we wish to considerhere. (See [HvdM S99]fora
logic forreasoning aboutrightsand delegation.) Theexpression p 7�! q should beunderstood
assim ply asserting a containm entrelationship between thedenotationsofprincipalexpressions
p and q;thisisexactly whatoursem anticswillenforce.

W e read the expression k cert � as \k hascerti� ed that �." Thiscorrespondsroughly to
Abadi’sk says �.Therearetwo signi� cantdi� erences,however.Foronething,wedonotallow
arbritrary principalexpressionson the left-hand side;only keysm ay certify a form ula �. For
another,ourinterpretation ofcertism orerestrictivethan Abadi’ssays,in thatcertistreated
quite syntactically;itrefersto an actualcerti� cate issued by a principal,while says considers
logicalconsequences ofsuch certi� cates. As a consequence,whereas says satis� es standard
propertiesofm odaloperators(e.g.,closure underlogicalconsequence),certdoesnot.

3.2 Sem antics

O ursem anticsisdesigned to m odeltheSDSIprinciplethatprincipalsbind nam esin theirlocal
nam e space to values by issuing certi� cates. The interpretation ofa localnam e depends on
the principaland the certi� cates that have been issued. As the principalm ay rely on others
foritsinterpretation oflocalnam es,the certi� catesissued by otherprincipalsalso play a role.
Theinterpretation ofglobalnam esand keyswillbeindependentofboth theprincipaland the
certi� catesthathave been issued.

A world isa pairw = (�;c),where� :G ! P(K )and c:K ! P(L)(whereP(X )denotes
thesetofsubsetsofX )and [k2K c(k)is� nite.Intuitively,thefunction � interpretsglobal(or
� xed)nam esassetsofkeys.Theintended interpretation ofthe function cisthatitassociates

9ForouraccountofSD SInam ing,itwould su� ceto restrictthisclauseto form ulasoftheform k certn 7�! p

wheren 2 N and p 2 P :oursem anticswilltreatm oregeneralcerti� catesasirrelevanttothem eaningofprincipal
expressions.W e allow the m ore generalform forpurposesofdiscussion and because we envisage generalizations
ofthe logic in which othertypesofcerti� cateswillbe required.

9



with every key k the set ofform ulas c(k) that have been certi� ed using this key. That is,if
� 2 c(k)then,intuitively,a certi� cate asserting � hasbeen signed using k.10

Form ulasofthe logic willbe interpreted in a world with respectto a key. Intuitively,this
key indicatesthe principalfrom whoseperspective weinterpretprincipalexpressions.

To interpret localnam es,we introduce an additionalsem antic construct. A localnam e

assignm entwillbe a function l:K � N ! P(K )associating each key and localnam e with a
setofkeys.Intuitively,l(k;n)isthe setofkeysrepresented by principalk’slocalnam e n.W e
write LNA forthe setofalllocalnam e assignm ents.

G iven a world w = (�;c),a localnam e assignm entl,and a key k,we m ay assign to each
principalexpression p an interpretation [[p]]w ;l;k,a setofkeys.Thede� nition ism uch like that
ofAbadi’s[[p]]k:

� [[k0]]w ;l;k = fk0g,ifk02 K isa key,

� [[g]]w ;l;k = �(g),ifg 2 G isa globalnam e,

� [[n]]w ;l;k = l(k;n),ifn 2 N isa localnam e,

� [[p’sq]]w ;l;k =
S

f[[q]]w ;l;k0 jk
02 [[p]]w ;l;kg,forprincipalexpressionsp;q 2 P .

O urintuitionsfor[[p]]w ;l;k areessentially thesam easforthe\agent-based"readingofAbadi’s
logic,discussed above.Thatis,[[p]]w ;l;k isthesetofkeysassociated with theexpression p in k’s
localnam e space,when localnam esare interpreted according to l. W ith respectto principal
k,the expression p’sq denotesthe setofprincipalsthatprincipalsreferred to by k asp refer
to asq.

W enow de� newhatitm eansforaform ula� tobetrueataworld w = (�;c)with respectto
a localnam e assignm entland key k,written w;l;k j= �,by induction on the structureof�.11

� w;l;k j= p 7�! q if[[p]]w ;l;k � [[q]]w ;l;k

� w;l;k j= k0cert� if� 2 c(k0)

� w;l;k j= :�1 ifnotw;l;k j= �1

� w;l;k j= �1 ^ �2 ifw;l;k j= �1 and w;l;k j= �2.

Note that the sem antics ofcert reinforces its syntactic nature. To determ ine ifk0 cert � is
true at(w;l;k),we check whethera certi� cate hasbeen issued in world w by k0 certifying �.
M oreover,as we shallsee,while we allow any form ula to be certi� ed by k,the only form ulas
whose certi� cation hasa nontrivialsem antic im pactare those ofthe form n 7�! p,where n is
a localnam e.W e return to thisissue below.

10W e m ake the sim plifying assum ption that certi� cates do not have expiration dates. It is not di� cult to
extend the logic to take into account certi� cate expiration;see [HvdM 99]. The assum ption that [k2 K c(k) is
� nite ism eantto enforce the intuition thatonly � nitely m any certi� cates are issued. None ofour laterresults
depend on thisassum ption,butitseem sreasonable given the intended application ofthe logic.

11Note that our sem antics is thus in the spirit ofthat ofG rove and Halpern [G H93],in that the truth ofa
form ula dependson both an agentand som e featuresofthe world (captured by w and l).
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W e do notconsiderallpairsw;las being appropriate on the left-hand side ofj= . Ifw =
(�;c),we expectthe localnam e assignm entlto respectthe certi� catesthathave been issued
in c. Thatis,ifc(k)includesthe binding n 7�! p,we would expectthatl(k;n)would include
allthe keys bound to p in k’s nam e space. The question is whether there can be other keys
bound to n in k’s nam e space beyond those forced by the certi� cates. How we answer this
question dependson ourintuitionsforc.Forexam ple,wecould view casthesetofcerti� cates
received by oneoftheprincipals.Thiswould beparticularly appropriateifwewanted to reason
aboutthe knowledge and beliefofthe agents,an extension we plan to explore in future work.
W ith thisviewpoint,we could view lasconsisting ofallthe bindings,including onesthatthe
principaldoes notknow about. Thus,lwould at least have allthe bindingsforced by c,but
perhapsothersaswell. Alternatively,we could view c asconsisting ofallthe certi� catesthat
have been issued. In this case,we would want lto be in som e sense m inim al,and have no
bindingsbeyond those forced by the certi� catesin c.W e now presenttwo di� erentsem antics,
which re ecteach ofthese two intuitions. W e then show that,asfarasvalidity isconcerned,
the sem anticsare equivalent;thatis,they have thesam e prooftheory.

A localnam e assignm ent lis consistent with a world w = (�;c) if,for allkeys k,local
nam esn,and principalexpressionsp,ifthe form ula n 7�! p isin c(k),then w;l;k j= n 7�! p.
Intuitively,assignm entsthatarenotconsistentwith a world providean inappropriatebasisfor
the interpretation oflocalnam es,since the certi� catesissued by principalsare notnecessarily
re ected in their localbindings. W e obtain our� rstsem antics,called the open sem antics,by
restricting to consistent localnam e assignm ents. W e write w;l;k j= o � ifw;l;k j= � and l

is consistent with w. The form ula � is o-satis�able ifthere exists a triple w;l;k such that
w;l;k j= o � and � is o-valid,denoted j= o �,ifthere does not exist a triple w;l;k such that
w;l;k j= o :�.

Although oursyntax allowsk to certify arbitrary form ulas,itiseasy to seethat,according
to the sem antics just introduced (as wellas the one we are about to introduce), only the
certi� cation ofform ulasofthe form n 7�! p hasany im pacton consistency;allotherform ulas
certi� ed bykareignored.Thereisagood reason forthisrestriction.W eareim plicitly assum ing
thatwhen k0 certi� es n 7�! p,thatvery actcauses allthe keys bound to p to also be bound
to n in k’snam e space. Thus,ifn 7�! p 2 c(k),then we wantn 7�! p to be true in (w;l;k).
Butifk certi� esa form ula like k1’sn 7�! k3 where k1 6= k,then we cannotconclude thatthis
form ula is true in (w;l;k) unless we are prepared to m ake additionalassum ptions about k’s
truthfulness. W e feelthatifsuch assum ptionsare to be m ade,then they should be m odeled
explicitly in the logic,nothidden in thesem antics.

Itdoesseem reasonable to extend thenotion oflbeing consistentwith w to requirethatif
k certi� es a form ula  which is a Boolean com bination ofform ulas ofthe form n 7�! p then
(w;l;k)j=  .However,once we allow m ore generalBoolean com binations(in particular,once
we allow disjunctions),there willbe problem s m aking sense out ofthe intuition ofour next
sem antics,thatthereare\nobindingsbeyond thoseforced by thecerti� catesin c".W econsider
thisissuenext.

According to the open sem antics,it is possible for a localnam e n ofprincipalk1 to be
bound to a key k2 even when no certi� cate concerning n has been issued. Arguably,this is
notin accordance with the intentionsofSDSI.To bettercapture these intentions,we de� ne a
second sem antics,thatrestrictsthe nam ebindingsto thoseforced by the certi� catesissued.
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To do so,we � rst establish that the open sem antics satis� es a kind of\m inim alm odel"
result. De� ne the ordering � on the space LNA of localnam e assignm ents by l1 � l2 if
l1(k;n)� l2(k;n)forallk 2 K and n 2 N .Itisreadily seen thatLNA isgiven thestructureof
a com plete lattice [Bir67]by thisrelation.Say thata localnam e assignm entlism inim alin a
setoflocalnam e assignm entsL ifl2 L and l� l0foralll02 L.

T heorem 3.1:Given a world w,thereexistsa uniquelocalnam eassignm entlw m inim alin the

setofalllocalnam e assignm entsconsistentwith w.M oreover,ifp isa principalexpression and

k1 and k2 are keys,then w;lw ;k1 j= o p 7�! k2 i�,for alllocalnam e assignm ents lconsistent

with w,we have w;l;k1 j= o p 7�! k2.

Theproofofthisresult(which,likethatofallthetechnicalresultsin thispaper,isdeferred to
the appendix)usesstandard techniquesfrom the theory of� xed points.

W enow de� neoursecond sem antics,called theclosed sem antics.Itattem ptsto capturethe
intuition thattheonly bindingsin lshould bethoserequired by thecerti� catesin c,using the
m inim alassignm entprom ised by Theorem 3.1.W ewritew;k j= c � ifw;lw ;k j= �.W esay that
� isc-satis�able ifthere existsa world w and key k such thatw;k j= c � and that� isc-valid,
denoted j= c �,ifw;k j= c � forallworldsw and principalsk. Note thatby Theorem 3.1,the
assignm entlw isconsistentwith w,so c-satis� ability im plieso-satis� ability.Thus,ifj=o � then
j= c �.Aswe shallsoon see (Theorem 3.5),som ewhatsurprisingly,the converse holdsaswell.

3.3 A C om plete A xiom atization

W estartthissection bypresentingasound and com pleteaxiom atization forLLN C with respect
to theopen sem antics.W ethen provethattheopen and closed sem anticsarecharacterized by
thesam evalid form ulas,so thattheaxiom atization isalso sound and com pletewith respectto
the closed sem antics.

Theaxiom atization dependsin parton whetherthesetK ofkeysis� niteorin� nite.Figure3
describestheaxiom system AX inf forthe case whereK isin� nite.

Itisinteresting to com paretheaxiom sin AX inf to Abadi’saxiom s.Although we interpret
7�! assupersetand heinterpretsitassubset,Re exivity,Transitivity,Left-M onotonicity,and
Associativity,hold in both cases,foressentially the sam e reasons. The switch from subsetto
supersetm eans that the Converse ofG lobality holds in our case. G lobality does not hold in
generalbecause the denotation ofp’sg m ay be em pty ifthe denotation ofp isem pty (as we
observed,thisisalsowhy theConverseofG lobality doesnothold in generalforAbadi).In fact,
forourlogic,p’sg 7�! g holdswhenevertheinterpretation ofp isnonem pty.W eusep’sk 7�! k

asa canonicalway ofdenoting thattheinterpretation ofp isnonem pty.Thisexplainstheform
ofthe G lobality axiom .Since the interpretation ofa key isalwaysnonem pty,we also getK ey
G lobality.

K ey Linking is our analogue ofAbadi’s Linking axiom . O fcourse,we use cert whereas
Abadiuses says;in addition,only keys can certify form ulas for us. W hile this axiom shows
thatthere are som e sim ilarities between cert and says,there are som e signi� cantdi� erences.
W e haveno analogue ofAbadi’sSpeaking-foraxiom and,unlikesays,certdoesnotsatisfy the
standard axiom and ruleofm odallogic:(k cert(� )  ))^ (k cert�)doesnotim ply k cert 
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PropositionalLogic: Allinstancesofpropositionaltautologies
Re exivity: p 7�! p

Transitivity: (p 7�! q)) ((q 7�! r)) (p 7�! r))
LeftM onotonicity: (p 7�! q)) ((p’sr)7�! (q’sr))
Associativity: ((p’sq)’sr)7�! (p’s(q’sr))

(p’s(q’sr))7�! ((p’sq)’sr)
K ey G lobality: (k’sg)7�! g ifk 2 K and g 2 G [ K

G lobality: (p’sk 7�! k)) (p’sg 7�! g)ifk 2 K ; g 2 G [ K

Converse ofG lobality: g 7�! (p’sg)ifg 2 K [ G

K ey Linking: (k cert(n 7�! r))) ((k’sn)7�! (k’sr))
ifn isa localnam e

Nonem ptiness: (a) p 7�! k1 ) p’sk 7�! k

(b) :(p 7�! q)) q’sk 7�! k

(c) p’sq 7�! k1 ) p’sk 7�! k

(d) (p’sk 7�! k^ k07�! p)) (p 7�! k0)
K ey Distinctness: :(k1 7�! k2)ifk1 and k2 aredistinctkeys
M odusPonens: From � and � )  infer :

Figure 3:Theaxiom system AX inf

and k cert� isnotvalid even if� isvalid.Interestingly,Abadidoesnotusethesepropertiesof
Speaking-forin proving thathisnam e resolution rulesNR,used to capture REF2,are sound.
As a result,(with very m inor changes) we can show that the nam e resolution rules are also
sound forLLNC,and hence we can prove analoguesofPropositions2.1 and 2.2. However,we
can actually prove a m uch stronger result: whereas Abadi’s logic is able to draw conclusions
aboutbindingsthatdonotfollow from REF2,LLNC capturesREF2exactly (seeTheorem 4.1).

AX inf hastwo axiom sthatdo notappearin Abadi’saxiom atization:K ey Distinctnessand
Nonem ptiness. K ey Distinctness just captures the fact that we interpret keys as them selves.
The � rstthree partsofNonem ptinesscapture variouswaysthatan expression can be seen to
benonem pty.Forexam ple,part(a)saysthatifp isbound to (i.e.,isa supersetof)a key,then
itsinterpretation m ustbe nonem pty and part(b)saysthatifp isnota supersetofq,then q

m ustbenonem pty.Part(d)ofNonem ptinesssaysthatifp isnonem pty and k0isbound to p,
then p isbound to k0,i.e.,p and k0have exactly the sam einterpretation.

IfK is � nite we need to add two further axiom s to AXinf. Let AX �n consist ofallthe
axiom sand rulein AX inf togetherwith:

W itnesses: :(p 7�! q)) _k2K (:(p 7�! k)^ (q 7�! k))
(p’sq)7�! k1 ) _k2K ((p 7�! k)^ (k’sq 7�! k1))

CurrentPrincipal: _k2K (nk 7�! lk , k’snk 7�! lk)
wherenk 2 N and lk 2 K foreach k 2 K .

The two axiom s that m ake up W itnesses essentially capture our interpretation of7�! as
containm ent.They tellusthatfactsaboutcontainm entofprincipalexpressionscan bereduced
to factsaboutkeys.Forexam ple,the � rstone saysthatifp doesnotcontain q,then there is
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a key bound to q thatisnotbound to p.CurrentPrincipalcapturesthefactthatsom ekey in
K m ustbe the currentprincipal;ifk is the currentprincipal,then for alllocalnam es n and
keysk0,n 7�! k0, k’sn 7�! k0holds. (Thisisactually true notjustforlocalnam es,butfor
allprincipalexpressions;itsu� cesto state the axiom justforlocalnam es.)

W hile the propertiescaptured by these two axiom s continue to hold even ifK is in� nite,
they can no longer be expressed in the logic,since we cannot take a disjunction over allthe
elem ents in K . Interestingly,we can drop Nonem ptiness and G lobality as axiom s in AX �n.
Thesepropertiesalready follow from the otherpropertiesin the presenceofW itnesses.

Asthe following resultshows,these axiom system scom pletely characterize validity in the
logic with respectto theopen sem antics.

T heorem 3.2: AX inf (resp.,AX �n) is a sound and com plete axiom atization ofLLNC with

respectto the open sem antics ifK isin�nite (resp.,K is�nite).

In the course ofproving Theorem 3.2,we also prove a \� nite m odel" result,which we cull
outhere.Letj�j,the length of�,be the totalnum berofsym bolsappearing in �.Thisresult
holdsboth when K is� nite and when K isin� nite.

P roposition 3.3: LetK � be the keys thatappear in � and letC�(k) consistofallbindings
n 7�! p such thatk certn 7�! p isa subform ula of�.If� issatis�able with respectto the open

sem antics,then for allsets K 0 ofkeys such thatK � � K 0 and jK 0j� m in(jK j;2� j�j2),there
isa world w = (�;c),localnam e assignm entl,and principalk 2 K 0such thatw;l;k j= o � and

(a) l(k0;n)� K 0 for allk02 K and n 2 N ,(b) l(k0;n)= ; ifk0 =2 K 0,(c) �(g)� K 0 for all

g 2 G ,(d)�(g)= ; ifg does notoccur in �,and (e)c(k)� C�(k)for allkeysk.

C orollary 3.4: The problem ofdeciding ifa form ula � 2 LLN C is satis�able with respectto

the open sem anticsisNP-com plete (whether K is�nite or in�nite).

P roof: The lowerbound isim m ediate from the factthatwe can trivially em bed satis� ability
for propositionallogic into satis� ability for LLNC.For the upperbound,given �,choose K0

such thatjK 0j= m in(jK j;2� j�j2)and K 0� K �. Then guessw;l;k asin Proposition 3.3 and
check whetherw;l;k j= o �. Proposition 3.3 saysthatthe guessisonly polynom ialin j�j;itis
clearthatchecking whetherw;l;k j= o � can also be done in tim e polynom ialin �. Note that
forj�j� jK j(which islikely to includeallcasesofpracticalinterest,given thatK willtypically
bea very large set),the polynom ialdoesnotdepend on jK j.

Aswe suggested earlier,the closed sem anticsand the open sem anticsare characterized by
exactly the sam eaxiom s.

T heorem 3.5: The sam e form ulas are c-valid and o-valid;i.e.,for allform ulas �,we have

j= o � i� j= c �.

W e rem ark that this result is sensitive to the language under consideration. It m ay no
longerhold ifwe m ove to a m oreexpressive language.
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C orollary 3.6: AX inf (resp.,AX �n) is a sound and com plete axiom atization ofLLNC with

respectto the closed sem antics when K isin�nite (rep.,�nite).

C orollary 3.7: The problem ofdeciding ifa form ula � 2 LLN C is satis�able with respectto

the closed sem anticsisNP-com plete (whether K is�nite or in�nite).

Letusnow return to the contentiousaxiom sdiscussed by Abadi. Converse ofG lobality is
valid in LLN C ,as we observed earlier. The generalization ofLinking considered by Abadi,
restricted to besyntactically wellform ed,am ountsto

(k cert(p1 7�! p2))) (k’sp1 7�! k’sp2):

In general,thisisnotvalid,sinceoursem anticsignorescerti� catesstating p1 7�! p2 when p1 is
nota localnam e.Thus,weavoid the\unreasonable" conclusionsthatcan bedrawn from these
axiom s.In particular,itdoesnotfollow in ourlogic that(k cert(DNS!!7�! k))) DNS!!7�! k.
However,the reason itdoesnotfollow in LLNC isquite di� erentfrom the reason itdoesnot
follow in Abadi’slogic: since DNS!!isa globalnam e,a certi� cate such ask cert (DNS!!7�! k)
hasno im pacton theinterpretation ofglobalnam es.Thiscapturestheintuition thatk should
notbetrusted when m aking assertionsaboutbindingsnotunderitscontrol.Ifwewerewilling
to trust k on everything,then concluding that k is bound to DNS!!after k certi� es that it is
would notseem so unreasonable.

Thefollowing form ula isalso notvalid in LLNC:

(:(k certfalse)^ (k cert(DNS!!7�! k)))) DNS!!7�! k:

(Thisform ula correspondsto the one thatwe noted earlier is valid in Abadi’s logic.) Failure
to issue a certi� cate stating false has no m ore im pact on globalnam es than does any other
behavior ofk. Nor would a precondition asserting that the interpretation ofk is non-em pty
validate the form ula,since this is true in every world. W e can in fact prove the following
generalization ofAbadi’sProposition 2.5,which providesa strongerstatem entofthe safety of
ourlogic than Abadi’sresult.

P roposition 3.8: Let � be any c-satis�able boolean com bination of form ulas of the form

k cert �,and let� be any boolean com bination ofform ulas ofthe form p 7�! q where neither

p nor q contains a localnam e. Then j= c � ) � i� j=c � .

Inform ally,Proposition 3.8saysthatfactsaboutglobalnam esarecom pletely independentof
factsaboutcerti� cates;issuing certi� catescan haveno im pacton theglobalnam eassignm ent.
Aswe observed earlier,the analogousresultdoesnothold forAbadi’slogic.

4 N am e R esolution in LLN C

In thissection,we show thatLLNC captures REF2 exactly. Indeed,we show thatitdoesso
forseveraldistinctsem anticinterpretations.De� netheorder� on worldsby (�0;c0)� (�;c)if

1. �0(g)� �(g)forallglobalnam esg,and
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2. c0(k)� c(k)forallkeysk.

Thatis,w 0� w when w 0 contains m ore certi� cates than w and the bindingsto globalnam es
in w are a subsetofthose in w 0.IfE isa setofform ulasand � isa form ula,we write E j= o �

ifforallworldsw,localnam e assigm entslconsistentwith w and allkeysk,ifw;l;k j= o  for
all in E then w;l;k j= o �. Sim ilarly,E j= o � ifforallworldsw and allkeysk,ifw;k j= c  

forall in E then w;k j= c �.

T heorem 4.1: Suppose k1;k2 are principals, w = (�;c) is a world, and p is a principal

expression. LetE w be the setofallform ulas g 7�! k for allglobalnam es g and keysk 2 �(g)
and the form ulas k cert � for allkeysk and form ulas � 2 c(k). The following are equivalent:

1. k1 2 REF2(k2;�;c;p),

2. w;k2 j= c p 7�! k1,

3. w 0;k2 j= c p 7�! k1 for allworlds w
0� w,

4. E w j= c k2’sp 7�! k1,

5. E w j= o k2’sp 7�! k1.

Thistheorem givesa num berofperspectiveson nam eresolution in LLNC.Theequivalence
between (1)and (2)in thistheorem tellsusthatREF2 issound and com plete with respectto
key binding,according to thesem anticsofLLNC.Thatis,REF2(k;�;c;p)yieldsk0i� p 7�! k0

isforced to betrueby thebindingsofglobalnam esin � and thecerti� catesin c.Thus,viewed
asa speci� cation ofthem eaningofSDSInam es,theclosed sem anticsand REF2 areequivalent.

Inform ally,we have viewed REF2 asa procedure thatisrun by an om niscientagentwith
com plete inform ation about the interpretation ofglobalnam es and the certi� cates that have
been issued.Itisalso possibleto understand REF2 asperform ing a com putation based on the
lim ited inform ation available to a particularprincipal.Supposethattheworld w expressesthe
lim ited inform ation this principalhas about the binding ofglobalnam es and the certi� cates
thathave been issued.Supposethatw 0describesthe actualbindingsofglobalnam esand the
certi� cates thathave been issued. Assum ing thatallofthe principal’sinform ation iscorrect,
then w � w 0. Thus,the setofw 0� w isthe setofallworldsw 0 thatare consistentwith the
inform ation available to theprincipal.(W e could form alizethisusing theK ripkesem anticsfor
the logic ofknowledge in a distributed system [HM 90].) The equivalence between (2)and (3)
essentially showsthatitdoesn’tm atterwhetherweview theprincipalashaving totalorpartial
inform ation.

The im plication from (1) to (4) in Theorem 4.1 is analogous to Abadi’ssoundnessresult,
Proposition 2.2. O fcourse,the converse im plication gives us com pleteness,which,as Abadi
him selfobserved,does not hold for Abadi’s logic (since it validates conclusions that do not
follow from REF2). Interestingly,although,as we have seen,there are signi� cant di� erences
between LLN C and Abadi’slogic,an exam ination ofAbadi’ssoundnessproofreveals thatit
doesnotuse the Speaking-forrule,the unrestricted form ofG lobality,orthe standard axiom
and rule for the m odaloperator says,which are the m ain pointsofdi� erence with ourlogic.
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Thisobservation saysthatthe proofofthe im plication from (1)to (4)isessentially the sam e
forLLN C and forAbadi’slogic.

Itisinstructiveto understand why theform ulasconsidered in Exam ples2.3 and 2.4,which
give conclusions in Abadi’s logic beyond those derivable by REF2, are not valid in LLNC.
It is easy to see why the form ula k’s (Lampson’s k0) 7�! k0 from Exam ple 2.3 (which, by
Associativity and Transitivity,isequivalentto (k’sLampson)’sk07�! k0)isnotvalid in LLNC.
Thisissim ply becausetheantecedentof(ourversion of)G lobality doesnotalwayshold.Now
consider the form ula in Exam ple 2.4. The proofthat this is valid in Abadi’s logic uses the
Speaking-for axiom ,which does not hold for us (ifwe replace says by cert). To see that it
is not valid in LLNC,consider a world w = (�;c) containing only the certi� cates forced by
the form ulas (i.e., c(k) = fLampson 7�! k1;Lampson 7�! k2g, c(k1) = fRon 7�! Rivestg,
c(k2)= fRivest 7�! k3g).Then itiseasy to seethatw;k 6j= k’s(Lampson’s Ron)7�! k3,since
[[k’s(Lampson’s Ron)]]w ;lw ;k = ; whereas[[k3]]w ;lw ;k = fk3g.

5 Logic P rogram m ing Im plem entations of N am e R esolution

Q ueries

Thereaderfam iliarwith thetheory oflogicprogram m ingm ay havenoted acloseresem blanceof
theresultsand constructionsoftheprecedingsectionsto the(now standard)� xpointsem antics
for logic program s developed originally by van Em den and K owalski[EK 76]. Indeed,it is
possibletotranslateoursem anticsintothefram ework oflogicprogram m ing.In fact,weprovide
a translation that does not require the use offunction sym bols and thus produces a Datalog
program ,a restricted typeoflogicprogram thathassigni� cantcom putationaladvantagesover
unrestricted logicprogram s.O urtranslation allowsustotakeadvantageofthesigni� cantbody
ofresearch on theoptim ization ofDatalog program s[Ull88,Ull89].

The idea is to translate queries to form ulas in a � rst-orderlanguage over a vocabulary V

which consists ofa constant sym bolfor each elem ent in K [ G [ N and a ternary predicate
sym bolname. Intuitively,name(x;y;z) says that,in the localnam e space ofkey x,the basic
principalexpression (i.e.,key,globalnam eorlocalnam e)y isbound to key z.

Using name,foreach principalexpression p and pairofvariablesx;y,wede� nea � rst-order
form ula �x;y(p)that,intuitively,correspondsto the assertion \y 2 [[p]]x," by induction on the
structureofp:

1. �x;y(p)= name(x;p;y)when p 2 K [ G [ N .

2. �x;y(q’sr)= 9z(�x;z(q)^ �z;y(r)),wherez 6= x;y.

Recallthata Herbrand structure over the vocabulary V isa � rst-orderstructure thathas
asitsdom ain the setofconstantsym bolsK [ G [ N in V and interpretseach constantsybol
asitself.Such a structurem ay berepresented asa setoftuplesoftheform name(x;y;z),where
x;y;z 2 K [ G [ N .Thesubsetrelation on such setspartially orderstheHerbrand structures.

W e say thata Herbrand structureM overV represents a world w = (�;c)and localnam e
assignm entlif,forallx;y;z 2 K [ G [ N ,we have name(x;y;z)2 M i� either

1. x;y;z 2 K and z = y,or
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2. x 2 K ,y 2 G and z 2 �(y),or

3. x 2 K ,y 2 N and z 2 l(x;y).

Intuitively,M representsw and lifitencodesallthe interpretationsofbasic principalexpres-
sionsgiven by w and l.The following result,whosestraightforward proofisleftto the reader,
shows that in this case M also captures the interpretation ofallother principalexpressions,
and expressesthe correctnessofourtranslation ofprincipalexpressions.

P roposition 5.1: IfM represents w and lthen, for allprincipalexpressions p and x;y 2

K [ G [ N ,we have M j= �x;y(p)i� x;y 2 K and w;l;x j= p 7�! y.

W e now show how a logic program can be used to capture the relationsip between w and
lw . For each world w = (�;c),we de� ne a theory (setofsentences)�w thatcharacterizes w;
�w consistsofthefollowing sentences:

1. a sentence name(k1;k2;k2),foreach pairofkeysk1;k2 2 K ,and

2. thesentence name(k1;g;k2),foreach pairofkeysk1;k2 2 K and globalnam eg 2 G such
thatk2 2 �(g),

3. the sentence 8y(�k;y(q)) name(k;n;y)),foreach key k and binding n 7�! q in c(k).

Aftersom eequivalence-preserving syntactictransform ations(m oving theexistentialsin the
body ofthese sentencesto the front),the theory �w isa de�nite Horn theory,i.e.,itconsists
ofform ulasoftheform 8x(B ) H ),whereB isa (possibly em pty)conjunction ofatom s (that
is,form ulasoftheform name(x;y;z)ory = z)and H isan atom .W ell-known resultsfrom the
theory oflogicprogram m ingshow thatsuch atheory � hasaHerbrand m odelM � m inim alwith
respectto thecontainm entordering on Herbrand structures.M oreover,thism inim alHerbrand
m odelcapturesthem inim alnam eassignm entsforw.

T heorem 5.2:The m inim alHerbrand m odelM w of�w represents w and lw .

Using Proposition 5.1,we im m ediately obtain the following corollary.

C orollary 5.3: For allx;y 2 K [ G [ N and principalexpressions p,we have M w j= �x;y(p)
i� x;y 2 K and w;x j= c p 7�! y.

Because �w is a de� nite Horn theory,it corresponds to a logic program . M oreover,for
existentialqueries,i.e.,queries � that are sentences form ed from atom ic form ulas using only
conjunction,disjunction and existentialquanti� cation (butnotnegation),wehavethat� entails
� i� M� j= �. This enables us to exploit logic program m ing technology to obtain e� cient
im plem entations ofseveraltypes ofqueries,corresponding to di� erent choices ofbound and
freevariablesin thepredicate\name".W em ay even form com plex queriesnotcorrespondingin
any directway to thecapacitiesoftheprocedureREF2.Exam plesofthisincludethefollowing:

1. thequery name(k1;n;k2)returns\yes" ifk2 isbound to thelocalnam en according to k1;
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2. the query name(X ;n;k)returnsthe setofkeysX such thatk isin n according to X ;

3. the query name(k1;X ;k2) returns the set of global and local nam es X containing k2

according to k1.

4. the query name(k1;n;X )^ name(k2;n;X )returnsthe setofkeysX thatk1 and k2 agree
to beassociated with localnam en.

M any m orepossibilitiesclearly exist.Theseobservationsshow the advantage ofviewing nam e
resolution in a logic program m ing fram ework.

6 Self

Abadiconsidersan extension ofhislogicobtained by addingaspecialbasicprincipalexpression
Self,intended to representSDSI’sexpression (ref:).(W e rem ark thatSelf isessentially the
sam e asI in the logic ofnam ing considered in [G H93].) Intuitively,Self denotesthe current
principal.Thesem anticsgiven to Self by Abadiextendsthede� nition ofthesetofprincipals
associated with a principalexpression by taking [[Self]]a = fag foreach a 2 W . Thissu� ces
to validate the following axiom .

Identity: Self’sp 7�! p p 7�! Self’sp
p’sSelf 7�! p p 7�! p’sSelf

Theseaxiom svery reasonably capturethe intuitionsthatSelf refersto the currentprincipal.

However,not allconsequences ofthis sem antics forSelf are so reasonable. For exam ple,
the following isvalid underAbadi’ssem antics:

(kP says US 7�! Self)^ (kP says US 7�! kV P )
) kP says ((US says false)_ (Self 7�! kV P ))

(1)

Interpreting kP asthekey ofthepresidentoftheUS and kV P thekey ofthevice-president,this
isclearly unreasonable.Itshould notfollow from the factthe the presidentsaysthatboth he
and the vice-presidentspeak forthe US thataccording to the president,eitherthe US speaks
nonsenseorthe vice presidentspeaksforthe president.

Abadi’ssuggested sem anticsforSelf worksm uch betterin thecontextofthelogic LLNC.
Supposeweextend thislogicto includeSelf,and likeAbadi,de� ne[[Self]]k = fkg forkeysk 2
K .Thisagain validatestheIdentityaxiom sabove.Togetcom pleteness,wejustneed toadd one
axiom in addition to Identity,which basically saysthatSelf actslike a key (cf.Nonem ptiness
(d)):

Self-is-key Self 7�! p^ p’sk 7�! k ) p 7�! Self:

LetAX self

inf
(resp.,AX self

�n
)be the resultofadding Identity and Self-is-key to AX inf (resp.,

AX �n).LetLLNCs bethe language thatresultswhen we add Self to the syntax.

T heorem 6.1: AX
self

inf
(resp.,AX

self

�n
)is a sound and com plete axiom atization ofLLNCs with

respectto the open sem antics ifK isin�nite (resp.,K is�nite).
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Propositions 3.3 and Theorem 3.5 hold with essentially no change in prooffor LLNCs;it
followsthatAX self

�n
(resp.,AX self

inf
)isalso com pletewith respectto theclosed sem anticsand the

satis� ability problem isNP-com plete.

Interestingly,the proofofcom pletenessshowsthatonce we add Identity and Self-is-key to
theaxiom s,weno longerneed CurrentPrincipalasan axiom in the� nitecase.Hereisa sketch
ofthe argum ent: From Identity we get that Self’s k 7�! k is provable for any key k. Now
applying W itnesses,we get that _k2K Self 7�! k is provable. Together with Self-is-key,this
says thatSelf isone ofthe keys in K . Identity (together with Transitivity) tells usthatfor
thatkey k thatisSelf,n 7�! k0, k’sn 7�! k0holds,giving usCurrentPrincipal.

Note thatwith oursem anticsforSelf,thecounterintuitive conclusion (1)doesnotfollow.
From kP cert US 7�! Self and kP cert US 7�! kV P itfollowsthat[[US]]kP � fkP ;kV P g.Thus,
we have neither[[US]]kP = ; norfkV P g � [[US]]kP ,which would be required to geta conclusion
sim ilarto thatdrawn by Abadi’slogic.

7 C onclusions

W e have introduced a logic LLNC for reasoning about SDSI’s localnam e spaces and have
argued that it has som e signi� cant advantages over Abadi’s logic. Am ong other things, it
providesa com pletecharacterization ofSDSI’sREF2,hasan elegantcom pleteaxiom atization,
and itsconnectionswith LogicProgram m ing lead to e� cientim plem entationsofm any queries
ofinterest.

W e believe that som e ofthe dim ensions in which Abadi’s logic di� ers from SDSIwarrant
furtherinvestigation.Forexam ple,undersom esensibleinterpretations,theconclusionsreached
by Abadi’slogicin Exam ple2.4arequitereasonable.O nesuch interpretation isthatwhilelocal
nam esm ay bebound to m orethan onekey,they areintended to denotea single individual.If
k knowsthatk1 and k2 are two keysused by the one individualLam pson,and Lam pson uses
k1 to certify thathislocalnam eRon isbound to thenam eRivest,and also useshiskey k2 to
certify thathislocalnam e Rivest isbound to k3,then itisvery reasonable to conclude that
k’sLampson’sRon isbound to k3.Anotherinterpretation supporting thisconclusion would be
thatsays aggregatesthecerti� catesissued using a num berofdistinctkeys(possibly belonging
to distinct individuals) m uch in the way that the notion ofdistributed knowledge [FHM V95]
from the literature on reasoning about knowledge aggregates the knowledge of a collection
ofagents. W e believe that our sem antic fram ework,which,unlike Abadi’s,m akes the set of
certi� catesissued explicit,providesan appropriatebasisforthe study ofsuch issues.

O ur sem antic fram ework also lends itself to a num ber of generalizations, which we are
currently exploring. These include reasoning about the beliefs of principals and reasoning
aboutperm ission,authority,and delegation.W e hopeto reporton thiswork shortly.

A P roofs

In thisappendix,weproveallthetechnicalresultsstated in them ain text.Foreaseofexposi-
tion,we repeatthestatem entsoftheresultshere.
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T heorem 3.1: Given a world w,there exists a unique localnam e assignm entlw m inim alin

the setofalllocalnam e assignm entsconsistentwith w.M oreover,ifp isa principalexpression

and k1 and k2 arekeys,then w;lw ;k1 j= o p 7�! k2 i�,foralllocalnam eassignm entslconsistent

with w,we have w;l;k1 j= o p 7�! k2.

P roof: Thisresultcan be established using standard resultsfrom the theory of� xed points.
Suppose (X ;� ) is a com plete partialorder. Denote the least upper bound ofa set Y � X

by tY . A m apping T : X ! X is said to be m onotonic if for allx � y in X we have
T(x)� T(y).Such a m apping T issaid to becontinuousifforallin� niteincreasing sequences
x0 � x1 � :::in X we have T(tfxi : i2 N g)= tfT(xi) : i2 N g. Note that continuity
im plies m onotonicity. To establish continuity ofa m onotonic m apping T,it su� ces to show
that T(tfxi : i2 N g)� tfT(xi) : i2 N g,since the opposite containm ent is im m ediate
from m onotonicity.

For a � xed expression p,world w and key k,the expression [[p]]w ;l;k is easily seen to be
m onotonic in l,i.e.,ifl� l0then [[p]]w ;l;k � [[p]]w ;l0;k.M oreover,itisalso continuousin l.

Lem m a A .1: Suppose l0 � l1 � :::isan increasing sequence oflocalnam e assignm ents and

letl! = tm 2N lm .For allprincipalexpressions p,we have [[p]]w ;l! ;k =
S

m 2N
[[p]]w ;lm ;k.

P roof:By a straightforward induction on the structureofp.

G iven theworld w = (�;c),wede� nean operatorTw on thespaceoflocalnam eassignm ents
LNA. For a localnam e assignm ent l,we de� ne Tw (l) to be the localnam e assignm ent such
thatforallk 2 K and n 2 N ,the setTw (l)(k;n)isthe union ofthe sets[[p]]w ;l;k such thatthe
form ula n 7�! p isin c(k).Thefollowing lem m a isfollowseasily from Lem m a A.1.

Lem m a A .2: The m apping Tw isa continuousoperator on (LNA;� ).

Thefollowing lem m a isalm ostim m ediate from the de� nitions.

Lem m a A .3: A localnam e assignm entlisconsistentwith a world w i� Tw (l)� l.

Suppose(X ;� )isa com plete partialorderwith m inim alelem ent? .An elem entx 2 X is
said to be a pre-�xpointofan operator T on X ifT(x)� x;x isa �xpointofT ifT(x)= x.
G iven an operatorT on X ,de� neasequenceofelem entsT ",where isan ordinal,asfollows.
For the base case,letT " 0 = ? . For successor ordinals + 1,de� ne T "  + 1 = T(T " ).
Forlim itordinals,de� ne T "  = tfT " � : � < g. A well-known result(see [LNS82]for
a discussion ofitshistory)statesthatifT iscontinuousthen then thissequencesconvergesto
theleastpre-� xpointofT,thatconvergencehastaken placeby  = !,and thatT "! isin fact
a � xed pointofT. Thus,we obtain asa corollary ofLem m a A.2 and Lem m a A.3 thatthere
existsa m inim allocalnam eassignm entconsistentwith w,and thatthislocalnam eassignm ent
equalsTw " !.The second halfofTheorem 3.1 isim m ediate from the earlierobservation that
[[p]]w ;l;k ism onotonic in l.

T heorem 3.2: AX �n (resp.,AX inf) is a sound and com plete axiom atization ofLLNC with

respectto the open sem antics ifK isin�nite (resp.,K is�nite).
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P roof: W e startwith the com pletenessproofforAX inf,so thatwe assum e thatK isin� nite.
W ethen show how todealwith AX �n.Asusual,itsu� cestoshow thatif� isAX inf-consistent,
then � is satisfable. In fact,we puta little extra work into our proofthat � is satis� able so
thatwe can prove Proposition 3.3 aswell.

Let Sub(�) consist of allsubform ulas of �. W e say that a principalexpression p0 is a
variant ofp ifp 7�! p0 and p0 7�! p are both provable using only Re exivity,Associativity,
and Transitivity. The left-associative variant ofa principalexpression p is the one where we
associate allterm s to the left. Thus, ((n1’s n2)’s n3)’s n4 is the left-associative variant of
n1’s((n2’sn3)’sn4).

De� ne P to bethesm allestsetofprincipalexpressionssuch that

1. ifp 7�! q isin Sub(�)then p and q are in P ,

2. ifk cert(n 7�! p)2 Sub(�)then k’sn and k’sp are in P ,

3. ifp 2 P and p0isthe left-associative variantofp,then p02 P ,

4. P isclosed undersubexpressions,so thatifp’sq 2 P ,then so are p and q,

5. ifk 2 P isa key and n 2 P isa localnam e,then k’sn 2 P .

ForProposition 3.3,itisnecessary to getan upperbound on the size ofP in term sofj�j.

Lem m a A .4: jP j< 2� j�j2.

P roof: Let jpjbe the totalnum ber ofexpressions in G [ K [ N that appear in p,counted
with m ultiplicity.An easy proofby induction on structureshowsthata principalexpression p
hasatm ostjpjsubexpressions,atleastone ofwhich m ustbe in G [ K [ N . Forevery other
subexpression q,there isa uniqueleft-associative variantq0,which hasatm ostjq0j= jqj� jpj

subexpressions,each ofwhich isassociated totheleft.Thus,startingwith aprincipalexpression
p,the least set closed under clauses 3 and 4 above contains at m ost jpj2 elem ents. Now a
straightforward induction on thestructureof� showsthattheleastsetP 0closed underclauses
1-4 above hasatm ostj�j2 expressions. Finally,itiseasy to see thatclosing o� under5 gives
usP ,sincethesetthatresultsafterclosing o� under5 isstillclosed under1{4.M oreover,this
� nalstep addsatm ostj�j2 expressionsk’sn,since both k and n m ustbesubexpressionsof�.

Letk0 besom ekey notoccurring in P .W eusek0 both to expressem ptinessofexpressions
in P and asthe\currentprincipal".De� neP1 to bethesetofprincipalexpressionsP [ fk0g[

fp’sk0 : p 2 P g.LetE beconsistoftheform ulasp’sk0 7�! k0 foreach p 2 P .Note thatall
principalexpressionsoccurringin theform ulasin E arein P1.LetS bean AX inf-consistentset
containing� and,forevery form ula 2 Sub(�)[E ,either or: .Since� isAX inf-consistent,
there m ustbesom eAX inf-consistentsetS ofthisform .

De� ne S+ = C l(S;P1)to bethe sm allestsetofform ulascontaining S closed underRe ex-
ivity,Transitivity,LeftM otonocity,ConverseofG lobality,G lobality,and Nonem ptiness,in the
sensethat
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(ClR) ifp 2 P1,then p 7�! p 2 S+ ,

(ClT) ifp 7�! q and q 7�! r are both in S+ ,then p 7�! r 2 S+ ,

(ClLM ) ifp 7�! q 2 S+ ,p’sr 2 P1,and q’sr 2 P1,then p’sr 7�! q’sr 2 S+ ,

(ClCG ) ifp’sg 2 P1 forg 2 K [ G then g 7�! p’sg 2 S+ ,

(ClG ) ifp’sk 7�! k 2 S+ forsom ekey k and p’sg 2 P1,whereg 2 K [G ,then p’sg 7�! g 2 S+ ,

(ClK L) ifk cert(n 7�! p)2 S+ then (k’sn 7�! k’sp)2 S+ ,

(ClK ) ifp 7�! k02 S+ and p’sk 2 P1,then p’sk 7�! k 2 S+ ,

(ClN) if:(p 7�! q)2 S+ and q’sk 2 P1,then q’sk 7�! k 2 S+ ,

(ClC) ifp’sq 7�! k1 2 S+ and p’sk 2 P1,then p’sk 7�! k 2 S+ ,

(ClNE) ifp’sk 7�! k and k07�! p are both in S+ ,then p 7�! k02 S+ ,

(ClK D) ifk and k0aredistinctkeysin P ,then :(k 7�! k0)2 S+ ,

(ClLV) Ifp0istheleft-associative variantofp 2 P ,then p 7�! p02 S+ and p07�! p 2 S+ .

Itiseasy toseethatS+ isAX inf-consistent,sinceS isand each oftheclosurerulesem ulates
an axiom in AX inf.O urgoalnow istoshow thatthereexistsatriplew;l;k such thatw;l;k j=  

forall 2 S (and thus,in particular,w;l;k j= �).

Lem m a A .5: Ifk0 appears in the form ula p 7�! q 2 S+ ,then k0 appears in both p and q.

P roof:An easyinduction on theconstruction ofS+ ,usingthefactthatallprincipalexpressions
occurring in S+ are in P1 and k0 appears only as the right m ost expression in a principal
expression in P1.

By Lem m a A.5,ifp 7�! q 2 S+ and one ofthe expressionsp;q isin P (and thusdoesnot
m ention k0) then so is the other. De� ne a binary relation � on P by de� ning p � q ifboth
p 7�! q and q 7�! p are in S+ . Itisim m ediate from transitivity and re exivity that� isan
equivalence relation on P .G iven p 2 P ,we write[p]forthe equivalence classofp under� .

W e classify the expressionsin P as follows. Say thatan expression p in P isem pty (with
respectto S+ )if:(p’sk0 7�! k0)isin S+ .Say thatp iskey-equivalentifitisnotem pty and
k 7�! p isin S+ forsom ekey k (by (ClNE)thisim pliesp � k).Intuitively,theinterpretation of
an em pty expression willbetheem pty setand theinterpretation ofa key-equivalentexpression
p such that k 7�! p 2 S+ willbe fkg. Ifp is neither em pty nor key-equivalent,we say it is
open. Clearly,every expression in P is either em pty,key-equivalent,or open. M oreover,by
(ClLM )and (ClT),ifp � q then p isem pty,key-equivalent oropen i� q is. In particular,we
m ay sensibly referto open � -equivalence classesofexpressionsin P .

LetO bethesetofopen equivalenceclassesofexpressionsin P .NotethatifK � � K consists
ofallthekeysin K thatappearin �,then therearefewerthan 2� j�j2� jK �jequivalenceclasses
ofopen expressions. For each class c 2 O ,let kc be a fresh key. Intuitively,the key kc will
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act as a canonicalrepresentative ofthe keys in the interpretation ofan expression p 2 c,in
thesensethattheinterpretationsofp’sq and kc’sq willbethesam eforcertain expressionsq.
SinceK isin� nite,weareguaranteed thatwecan always� nd keyskc,buttheargum entworks
even ifK is� nite,aslong asjK j� 2� j�j2.(W e also need to have a key in K nK � to bek0.)

De� ne S� to beconsistofS+ togetherwith,forallc2 O ,

1. the form ula kc 7�! kc,and

2. the form ulasp 7�! kc,whereforsom e q 2 cwe have p 7�! q 2 S+ .

It is easy to show that k0 does not appear in any form ula in S� � S+ : Clearly k0 does not
appearin the form ulaskc 7�! kc added by clause 1.Ifp 7�! q isa form ula added by clause 2,
then there issom e equivalence classcand expression q 2 c such thatp 7�! q 2 S+ .Since c is
an equivalence class ofexpressionsin P ,none ofwhich contain k0,the expression q doesnot
contain k0.Itfollowsfrom Lem m a A.5 thatp doesnotcontain k0.Since S� � S+ containsno
form ulasinvolving k0,S� also satis� esthe property stated forS+ in Lem m a A.5.

De� ne thelocalnam eassignm entlasfollows.G iven a key k and localnam en,

1. l(k0;n)= fk02 K jn 7�! k02 S�g,

2. l(k;n)= fk02 K jk’sn 7�! k02 S�g ifk 2 P ,

3. l(k;n)= fk02 K jp’sn 7�! k02 S� and p 2 cg ifk = kc forsom ec2 O ,

4. l(k;n)= ; forallotherk.

De� ne the world w = (�;c) by taking �(g)= fk 2 K jg 7�! k 2 S�g and de� ning c(k),
for each key k,to be the set ofform ulas n 7�! p such that(k cert (n 7�! p))2 S. Note for
futurereferencethatthereexistsa � nitesubsetK1 ofK such thatl(n;k)� K 1,l(n;k)= ; for
k =2 K 1,�(g)� K 1,and �(g)= ; ifg doesnotappearin �. Indeed,K 1 consists ofthe keys
thatappearin S,k0,and thekeyskc forc2 O .

LetI(p)= fk 2 K jp 7�! k 2 S�g.

Lem m a A .6: Ifp 2 P ,then p isem pty i� I(p)= ;.

P roof: Ifp is notem pty,then it is either key-equivalent or open. Ifit is key-equivalent,we
have already observed thatthere m ustexistsom e key k0such thatp 7�! k02 S�,so I(p)6= ;.
Ifitisopen,suppose itisin equivalence classc. Then p 7�! kc 2 S�,since p 7�! p 2 S+ by
(ClR).Again,itfollowsthatI(p)6= ;.

Conversely,suppose thatI(p)6= ;. Thus,p 7�! k 2 S� forsom e key k. Ifp 7�! k 2 S+ ,
then by (ClK ),p’sk0 7�! k0 2 S+ ,so p isnotem pty.Ifp 7�! k =2 S+ ,then k = kc,and thereis
som eq 2 csuch thatp 7�! q 2 S+ .Sinceq isopen,q cannotbeem pty,so q’sk0 7�! k0 2 S+ .
M oreover,by (ClLM ),p’s k0 7�! q’s k0 2 S+ . Thus,by (ClT),p’s k0 7�! k0 2 S+ ,so p is
nonem pty.

Lem m a A .7: For allexpressions p 2 P ,we have [[p]]w ;l;k0 = I(p).
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P roof: W e proceed by induction on jpj(as de� ned in Lem m a A.4). The claim is im m ediate
from the de� nitions in case p is a globalnam e or a localnam e. Suppose that p is a key k1.
Then [[p]]w ;l;k0 = fk1g. Since k1 7�! k1 2 S� by construction,it follows that k1 2 I(k1). It
rem ainsto show thatI(k1)� fk1g.Suppose(k1 7�! k)2 S�.By Lem m a A.5,we cannothave
k = k0.SinceS+ isAX inf-consistentand closed under(ClK D),ifk 2 P we m usthave k1 = k.
The rem aining possibility for k,that it equals kc for som e c 2 O ,cannot happen. For ifso,
only thesecond clauseofthede� nition ofS� could explain (k1 7�! k)2 S�.Butthen we have
(k1 7�! q)2 S+ forsom e q 2 c.Thiscontradictstheassum ption thatcisan equivalence class
ofopen expressions.

Finally,supposethatjpj> 1.Letp0betheleft-associative variantofp.Itisclearfrom the
sem antics that[[p]]w ;l;k0 = [[p0]]w ;l;k0. M orover,(ClLV)and (ClT)guarantee thatI(p)= I(p0).
Thus,it su� ces to prove that I(p0) = [[p0]]w ;l;k0. Suppose that p0 = q’s r. The de� nition of
length guarantees that jp0j= jpj> jqj,so the induction hypothesis applies to q. Since p0 is
associated to the left,r 2 G [ K [ N .

Supposethatr = g 2 G [ K .Note that[[q’sg]]w ;l;k0 = ; if[[q]]w ;l;k0 = ; and [[q’sg]]w ;l;k0 =
[[g]]w ;l;k0 if[[q]]w ;l;k0 6= ;.W e considerthesetwo casesseparately.

Suppose � rstthat [[q]]w ;l;k0 = ;,so [[p0]]w ;l;k0 = ;. By the induction hypothesis,I(q)= ;.
To show thatI(p0)= ;,we show thatp0isem pty. Suppose not. Then (p0)’sk0 7�! k0 2 S+ .
Since S+ contains either q’s k0 7�! k0 or :(q’s k0 7�! k0) and S+ is AX inf-consistent,by
Nonem ptiness(c),Associativity,and Transitivity,we m usthave q’sk0 7�! k0 2 S+ .Thus,q is
notem pty.By Lem m a A.6,I(q)6= ;,a contradiction.Hence,p0isem pty.Itnow followsfrom
Lem m a A.6 thatI(p0)= ;,asdesired.

Considernextthe case where [[q]]w ;l;k0 6= ;,so [[p0]]w ;l;k0 = [[q’sg]]w ;l;k0 = [[g]]w ;l;k0. To show
that[[p0]]w ;l;k0 = I(p0),we show thatI(p0)= I(g). The resultthen followsfrom the induction
hypothesis.

By the induction hypothesis,I(q)6= ;,so by Lem m a A.6,q isnotem pty. Itfollowsfrom
(ClG ) that q’s g 7�! g 2 S+ . Suppose that k 2 I(g). Ifk 2 P1,then g 7�! k 2 S+ ,so by
(ClT),q’sg 7�! k 2 S+ and k 2 I(p0).Ifk = kc forsom e c2 O ,then g 7�! q02 S+ forsom e
q02 c.Thus,p07�! q02 S+ by (ClT)and we obtain thatp07�! k 2 S� by construction ofS�.
Thus,I(g)� I(p0).

Forthe opposite containm ent,note thatby (ClCG )we have g 7�! q’sg 2 S+ .Arguing as
above,we obtain using (ClT)thatI(g)� I(p0).Thiscom pletesthe proofthatI(p0)= I(g).

Itrem ainsto dealwith thecasethatp0hasoftheform q’sn,wheren isa localnam e.There
arethreepossibilities:q isem pty,key-equivalentoropen.Ifq isem pty,then by Lem m aA.6and
the induction hypothesis,I(q)= ; and [[q]]w ;l;k0 = ;. Itfollows that[[p0]]w ;l;k0 = ;. M oreover,
using Nonem ptiness(c),Associativity,and Transitivity asabove,itfollowsthatp0isem pty and
hence by Lem m a A.6,I(p0)= ;,asdesired.

Ifq is key-equivalent,say q � k1,then q 7�! k1 2 S+ and k1 7�! q 2 S+ . Using K ey
Distinctness and the consistency ofS+ ,it easily follows that I(q)= fk1g. By the induction
hypothesis,[[q]]w ;l;k0 = fk1g.Thus,[[p0]]w ;l;k0 = l(k1;n).By construction,l(k1;n)= I(k1’sn)=
I(p0),asdesired.

Finally,suppose that q is open. Ifk 2 I(p0),then it is im m ediate from the construction
that that q 7�! k[q] 2 S� and k 2 l(k[q];n). By the induction hypothesis,k[q] 2 [[q]]w ;l;k0,so
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k 2 [[p0]]w ;l;k0 = [k02[[q]]
w ;l;k0

l(k0;n).Thus,I(p0)� [[p0]]w ;l;k0 ifp
0isopen.

For the opposite containm ent,suppose that k 2 [[p0]]w ;l;k0. Thism eans thatthere is som e
key k0 such that k0 2 [[q]]w ;l;k0 and k 2 l(k0;n). By the induction hypothesis,k0 2 I(q),so
q 7�! k0 2 S�. Ifk0 2 P1,then q 7�! k0 2 S+ and (k0)’s n 7�! k 2 S+ . (Since q 2 P and
q 7�! k02 S�,we cannothave k0= k0,by Lem m a A.5.) By (ClLM ),q’sn 7�! (k0)’sn 2 S+ ,
so by (ClT) we get q’s n 7�! k 2 S+ . Hence,k 2 I(p0). Ifk0 = kc,where c is an open
equivalence class,then from q 7�! k0 2 S� it follows that q 7�! q0 2 S+ for som e q0 2 c.
From k 2 l(kc;n) it follows that (r0)’s n 7�! k 2 S� for som e r0 2 c. By construction ofS+

we m usthave (r0)’s n 2 P1,and since r0 � q0,we have q0 7�! r0 2 S+ . By (ClT) we obtain
q 7�! r02 S+ ,and hence by (ClLM )thatq’sn 7�! (r0)’sn 2 S+ . Now notice thatitfollows
from q’sn 7�! (r0)’sn 2 S+ and (r0)’sn 7�! k 2 S� thatq’sn 7�! k 2 S�. Ifk 2 P1,thisis
im m ediatefrom (ClT).Incasek = kd forsom eopen classd,wehave(r0)’sn 7�! t 2 S+ forsom e
t 2 d. Butthen q’sn 7�! t 2 S+ by (ClT);by de� nition ofS� we getthatq’sn 7�! k 2 S�.
Thiscom pletesthe proof.

Lem m a A .8: For allform ulas  2 Sub(�)[ E ,we have  2 S i� w;l;k0 j= o  .

P roof: W e � rst show that by induction on the structure of 2 Sub(�)[ E that  2 S i�
w;l;k0 j=  ,and then show thattheassignm entlisconsistentwith w.

It is im m ediate from the construction ofw that w;l;k0 j=  i�  2 S for  ofthe form
k cert(n 7�! p).

If has the form p 7�! q,note that w;l;k0 j= p 7�! q i� [[p]]w ;l;k0 � [[q]]w ;l;k0 i� (by
Lem m a A.7) i� I(p)� I(q). Thus,itsu� cesto show that I(p)� I(q)i� p 7�! q 2 S+ ,for
p;q 2 P .

The\if" direction isim m ediatefrom (ClT):Ifk 2 I(q)then q 7�! k 2 S�,so by (ClT)and
the construction ofS�,p 7�! k 2 S� and thusk 2 I(p).

Forthe\only if" direction,supposeby way ofcontradiction thatI(p)� I(q)butp 7�! q =2

S+ .Then,by construction,:(p 7�! q)2 S+ .W e considerthree cases,depending on whether
q isem pty,key-equivalent,oropen.

Note� rstthatqcannotbeem pty::(p 7�! q)2 S+ ,soby(ClN)wehaveq’sk0 7�! k0 2 S+ .

Suppose that q is key-equivalent,with k 7�! q 2 S+ . Ifp 7�! k 2 S+ then,by (ClT),
p 7�! q 2 S+ ,butthis is not possible because S+ is AX inf-consistent. Thus p 7�! k =2 S+ .
Sincek 2 P ,p 7�! k =2 S�,and thusk 2 I(p)� I(q),giving usthe desired contradiction.

Finally,suppose q is open. By construction,q 7�! k[q] 2 S�. M oreover,we cannot have
p 7�! k[q] 2 S�,for then there would exist r � q such that p 7�! r 2 S+ . Using (ClT),
it would follow that p 7�! q 2 S+ ,which is im possible since S+ is AX inf-consistent. Thus,
k[q]2 I(p)� I(q),giving therequired contradiction,and com pleting theproofin thecase that
 isoftheform p 7�! q.

If is ofthe form : 0 or  1 ^  2,the resultis im m ediate from the induction hypothesis
(in thelattercase,weneed thefactthatif 1^  2 2 Sub(�)[ E ,then in fact ^  2 2 Sub(�),
so  1; 2 2 Sub(�)and theinduction hypothesisapplies).Thiscom pletesthe induction proof.

To show thatthe assignm entlisconsistentwith w,supposethatn 7�! p 2 c(k).Then,by
construction,k cert(n 7�! p)2 S.By (ClK L),wehavek’sn 7�! k’sp 2 S+ .By whatwehave
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justshown w;l;k0 j= k’s n 7�! k’s p. It follows that w;l;k j= n 7�! p. Thus,lis consistent
with w.

Thus,wehave shown that� issatis� able,com pleting theproofofTheorem 3.2 in the case
thatK isin� nite.Thesam eargum entworkswithoutchangeifK is� nitebutjK j� 2� j�j2.(A
consequenceofthisisthatwedonotneed tousetheaxiom sW itnessesand CurrentPrincipalto
deriveavalid form ula� in AX �n if2� j�j2 � jK j.) M oreover,theproofshowsthatProposition 3.3
holdsifjK j� 2� j�j2.

Now supposethatK � 2� j�j2.W e show thatif� isAX �n-consistent,then � issatis� able.
Theproofisin the spiritofthatin the case ofAX inf,butsim pler.

Now letP betheleastsetofprincipalexpressionscontaining allprincipalexpressionsthat
appearin � and closed undersubexpressions.LetF consistofallform ulasoftheform p 7�! k0

and k’s p 7�! k0,where p 2 P and k;k02 K . Let S be an AX �n-consistent setcontaining �

and,forevery form ula  2 Sub(�)[ F ,either or: .Since� isAX �n-consistent,therem ust
besom e AX �n-consistentsetS ofthisform .

Therem ustbesom ekey k0 2 K such thatforevery localnam ein P and key k 2 K ,wehave
n 7�! k 2 S i� k0’sn 7�! k 2 S.Forotherwise,foreach key k,thereissom elocalnam enk and
key kk such thateitherboth nk 7�! kk and :(k’snk 7�! kk)arein S orboth :(nk 7�! kk)and
k’s nk 7�! kk are in S. Thism eans thatS is inconsistent with the axiom CurrentPrincipal.
De� ne the localassignm entlso thatl(k;n)= fk0:k’sn 7�! k02 Sg. Sim ilarto the case for
AX inf,de� netheworld w = (�;c)by taking �(g)= fk 2 K jg 7�! k 2 S+ g and de� ning c(k),
foreach key k,to bethe setofform ulasn 7�! p such thatk cert(n 7�! p)2 S.

Now we have thefollowing analogue to Lem m a A.8.

Lem m a A .9: For allform ulas  2 Sub(�)[ F ,we have  2 S i� w;l;k0 j= o  .

P roof: Again we � rstshow thatby induction on the structure of 2 Sub(�)[ E that 2 S

i� w;l;k0 j=  ,and then show thatthe assignm entlisconsistentwith w.

It is im m ediate from the construction ofw that w;l;k0 j=  i�  2 S for  ofthe form
k cert(n 7�! p).

W e next show that the result holds if is ofthe form p 7�! k0,for p 2 P ,by induction
on the structure ofp. W e strengthen the induction hypothesis to also show that w;l;k0 j=
k’sp 7�! k0 i� k’sp 7�! k 2 S. Ifp is a key k1,then w;l;k0 j= k1 7�! k0 i� k0= k1 and by
Re exivity and K ey Distinctness,k1 7�! k02 S i� k1 = k0.Sim ilarly,w;l;k0 j= k’sk1 7�! k0i�
w;l;k0 j= k1 7�! k0i� k1 7�! k02 S i� k’sk1 7�! k02 S,by Transitivity,K ey G lobality,and
Converse ofG lobality (using thefactthatS isAX �n-consistent).

Ifp isa globalidenti� erg,w;l;k0 j= g 7�! k0i� g 7�! k02 S by the de� nition of�. The
argum entfork’sg 7�! k0isidenticalto thecase thatp = k.

Ifp is the localnam e n,then w;l;k0 j= n 7�! k0 i� k0 2 l(k0;n) i� k0’s n 7�! k0 2 S i�
n 7�! k02 S,by choiceofk0.Sim ilarly,w;l;k0 j= k’sn 7�! k0i� k02 l(n;k)i� k’sn 7�! k02 S.

Finally,ifp isofthe form q’sr,then w;l;k0 j= q’sr 7�! k0 i� there existsa key k00 such
thatw;l;k0 j= q 7�! k00 and w;l;k0 j= (k00)’s r 7�! k0 i� (by the induction hypothesis)there
exists a key k00 such that q 7�! k00 2 S and (k00)’s r 7�! k0 2 S i� q’s r 7�! k0 2 S. The
\only if" direction ofthelastequivalencefollowsusing LeftM onotonocity and Transitivity;the
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\if" direction follows from W itnesses. The argum ent for k’s (q’s r)7�! k0 is identical,using
Associativity:w;l;k0 j= k’s(q’sr)7�! k0i� thereexistsa key k00such thatw;l;k0 j= k’sq 7�!
k00 and w;l;k0 j= (k00)’s r 7�! k0 i� there exists a key k00 such that k’s q 7�! k00 2 S and
(k00)’sr 7�! k02 S i� k’s(q’sr)7�! k02 S.

W e now continue with ourinduction in the case thatp 7�! q.Note thatw;l;k0 j= p 7�! q

i� w;l;k0 j= q 7�! k0im pliesw;l;k0 j= p 7�! k0forallk02 K i� (by the induction hypothesis)
q 7�! k02 S im pliesp 7�! k02 S i� p 7�! q 2 S.The\only if"direction ofthelastequivalence
followsim m ediately from Transitivity;the \if" direction followsfrom W itnesses.

W e com plete the induction proofby observing thatif isofthe form : or 1 ^  2,the
resultfollowsim m ediately from the induction hypothesis.

To show that lis consistent with w,suppose that n 7�! p 2 c(k). By construction,this
m eansthatk cert (n 7�! p)2 S.By K ey Linking,we m ustalso have k’sn 7�! k’sp 2 S.By
whatwehavejustshown,w;l;k0 j= k’sn 7�! k’sp.Itfollowsthatw;l;k j= n 7�! p.Thus,lis
consistentwith w.

Thiscom pletes the proofofTheorem 3.2 in the case thatK is� nite. Note thatsince we
can assum e withoutlossofgenerality thatjK j� 2� j�j2 here (otherwise the argum entforthe
case thatK isin� niteapplies)theproofalso showsthatProposition 3.3 holds.

T heorem 3.5: The sam e form ulas are c-valid and o-valid;i.e.,for allform ulas �,we have

j= o � i� j= c �.

P roof:W eshow that:� iso-satis� ablei� :� isc-satis� able,which isequivalentto theclaim .
Thedirection from c-satis� ability to o-satis� ability isstraightforward:Sinceforevery world w
the localnam e assignm entlw isw-consistent,itfollows from w;k j= c :� thatw;lw ;k j= o :�.
Thus,itrem ainsto show thatif:� iso-satis� able,then itisc-satis� able.

So suppose that:� is o-satis� able. By Proposition 3.3,there is a world w = (�;c),local
nam e assignm entl,and principalk such thatw;l;k j= o :� and a � nite subsetK0 ofK such
thatl(k0;n)� K 0forallk02 K and n 2 N ,and �(g)� K 0forallglobalnam esg.By standard
propositionalreasoning,:� isequivalentto a disjunctivenorm alform expression in which the
atom sare ofthe form p 7�! q and k1 cert  ,where p and q are principalexpressions,k1 isa
key,and  isa form ula.Ifw;l;k j= o :� then oneofthedisjuncts� issatis� ed,i.e.,w;l;k j=o �.
Supposethat� isthe conjunction ofthe form ulasin the setA [ B ,where

1. A isa setofform ulasofthe form p 7�! q or:(p 7�! q),

2. B isa setofform ulasoftheform k1 cert or:(k1 cert ).

Let K � be the set ofkeys that appear in the form ula � together with K 0 and k. Let N �

be the set oflocalnam es that appear in �. De� ne the world w0 = (�0;c0) as follows. Take
theinterpretation ofglobalnam es�0to beequalto �,theinterpretation ofglobalnam esin w.
De� ne c0 by taking the set ofcerti� cates c0(k0) to be the em pty ifk0 =2 K � and to consist of
c(k0)togetherwith allcerti� catesofthe form n 7�! pk00;� ifk

02 K �,n 2 N �,and k002 l(n;k0),
where pk00;� isa principalexpression ofthe form (k00)’s(k00)’s :::(k00)thatdoesnotappearin
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�. (Clearly we can m ake the expression su� ciently long so asto ensure itdoesnotappearin
�.) Clearly [k02K c(k0)is� nite.

W e show thatw 0;k j= c �. Itfollows from this thatw0;k j= c :�. Note � rstthat from the
factthatc(k0)� c0(k0)forallk0,itfollowsthatw 0;k j= c k

0cert  forallform ulask0cert  in
B .M oreover,if:(k0cert )isin B then,sincethe expressionspk00;� on theright-hand sideof
the certi� cates in c0(k0)� c(k)do notappearin � itfollows thatw 0;k j= c :(k0cert  ). Thus
w 0;k j= c B .

Itrem ainsto show thatthe form ulasin A aresatis� ed.To show this,we show that

lw 0(n;k0)= l(n;k0)foralln 2 N � and k02 K �. (2)

Iteasily followsfrom (2),the factthatallkeysin � are in K 0,and the factthatglobalnam es
havethesam einterpretation in w and w 0that[[p]]w 0;l

w 0;k0 = [[p]]w ;l;k0 forallprincipalexpressions
p occurring in A and allkeysk02 K �.Thisin turn iseasily seen to im ply thatw 0;k j= c A.

It rem ains to prove (2). It is alm ost im m ediate from the de� nition ofl0 that lw 0(n;k0) �
l(n;k0) for alln 2 N � and k0 2 K �. For the opposite containm ent, we prove by induction
on j that (Tw 0 " j)(n;k0) � l(n;k0) for allj 2 N , n 2 N �, and k0 2 K �. The base case
j = 0 is trivial. For the induction step,suppose that j = j0+ 1 and k00 2 (Tw 0 " j)(n;k0).
Thus, k00 2 (Tw 0(Tw 0 " j0))(n;k0), which m eans that k00 2 [[p]]w 0;T

w 0"j0;k0 for som e principal
expression p such that n 7�! p 2 c0(k0). There are two possibilities: (1) n 7�! p 2 c(k0) or
(2) n 7�! p 2 c0(k0)� c(k0). In case (2),p m ustbe ofthe form pk1;� so [[p]]w 0;T

w 0"j0;k0 = fk1g

and k1 = k00. Butin thiscase,by construction,k002 l(n;k0). In case (1),using the induction
hypothesis and the fact that globalnam es and keys in p have the sam e interpretation in w

and w 0 (thisinterpretation being a subsetofK 0),we get that[[p]]w 0;T
w 0"j0;k0 � [[p]]w ;l;k0. Thus,

k002 [[p]]w ;l;k0.Because lisw-consistentand n 7�! p 2 c(k0),we again obtain thatk002 l(n;k0),
asrequired.

Since lw 0(n;k0)isthe union ofthe (Tw 0 " j)(n;k0),itfollows thatlw 0(n;k0)= l(n;k0). This
com pletestheproofof(2).

P roposition 3.8: Let � be any c-satis�able boolean com bination ofform ulas of the form

k cert �,and let� be any boolean com bination ofform ulas ofthe form p 7�! q where neither

p nor q contains a localnam e. Then j= c � ) � i� j=c � .

P roof: Clearly j= c � im pliesj= c � ) � . For the converse,suppose by way ofcontradiction
thatj= c � ) � and there isa world w = (�;c)and a principalk such thatw;k j=c :� .Since
� isassum ed to be c-satis� able,there existsa world w0= (�0;c0)and a principalk0such that
w 0;k0j= c � . Letw00 be the world (�;c0). Then a straightforward induction showsthatforall
principalexpressionsp notcontaining a localnam e,we have [[p]]w 00;l

w 00;k = [[p]]w ;lw ;k.M oreover,
forallkeysk1 and form ulas�,wehavew 00;k j= c k1 cert� i� w0;k0j= c k1 cert�.Itfollowsthat
w 00;k j= c � ^ :� ,giving usourdesired contradiction.

T heorem 4.1: Suppose k1;k2 are principals, w = (�;c) is a world, and p is a principal

expression. Let E w be the set of allthe form ulas g 7�! k for allglobalnam es g and keys

k 2 �(g) and the form ulas k cert � for allkeys k and form ulas � 2 c(k). The following are

equivalent:
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1. k1 2 REF2(k2;�;c;p),

2. w;k2 j= c p 7�! k1,

3. w 0;k2 j= c p 7�! k1 for allworlds w
0� w,

4. E w j= c k2’sp 7�! k1,

5. E w j= o k2’sp 7�! k1.

P roof: The presentation ofREF2 in Figure 1 is stillslightly inform al,com bining recursion
and nondeterm inism .To m akeitfully precise,de� nea com putation tree ofREF2 to bea � nite
tree labelled by expressionsofthe form \k1 2 REF2(k2;�;c;p)",such that ifN is a node so
labelled,then one ofthe following fourconditionsholds:

1. p isa key k,we have k = k1 = k2,and N isa leafofthe tree,

2. p isa globalnam e g and k1 2 �(g),

3. p is a localnam e n and c(k2)contains a form ula n 7�! q and N has exactly one child,
labelled \k1 2 REF2(k2;�;c;q)",

4. p is ofthe form q’s r and N has exactly two children,labelled \k 2 REF2(k2;�;c;q)"
and \k1 2 REF2(k;�;c;r)",forsom e key k.

W etakek1 2 REF2(k2;�;c;p)to m ean thatthereexistsa com putation treeofREF2 with root
labelled \k1 2 REF2(k2;�;c;p)".

G iven a world w = (�;c) and m 2 N ,let lm = Tw " m . The following result establishes
a correspondence between the stages ofthe com putation oflw and the com putation trees of
REF2.Theproofisby a straightforward induction on m ,with a subinduction on thestructure
ofp.

Lem m a A .10: Forallm 2 N ,keysk1;k2,worldsw = (�;c),and principalexpressionsp,we
have k1 2 [[p]]w ;lm ;k2 i� there existsa com putation tree ofREF2 ofheightatm ostm whose root

islabelled \k1 2 REF2(k2;�;c;p)".

Using the fact thatlw = tflm : m 2 N g,Lem m a A.1,and Lem m a A.10,we obtain the
equivalence between (1)and (2).

Theproofoftheim plication from (2)to(3)isbyastraightforward induction on thestructure
ofp;that is,for � xed w0 � w,we show by induction on the structure ofp that ifw;k2 j= c

p 7�! k1 then w 0;k2 j= c p 7�! k1. The opposite im plication from (3) to (2) is trivial,since
w � w. For the im plication from (3) to (4),suppose that (3) holds and (4) does not. Then
for som e world w 0 and key k we have w 0;k j= c E w and w 0;k j= c :(k2’s p 7�! k1). The
latterim pliesw 0;k2 j= c :(p 7�! k1). Since w 0;k j= c E w ,itfollowsthatw 0� w. Thus,by (3),
w 0;k2 j= c p 7�! k1,contradicting ourassum ption.Theim plication from (4)to(3)isim m ediate,
sincew 0;k2 j= c E w forallw 0� w.Finally,theequivalencebetween (4)and (5)isjusta special
case ofTheorem 3.5.
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P roposition 5.1: IfM represents w and lthen for allprincipalexpressions p and x;y 2

K [ G [ N we have M j= �x;y(p)i� x;y 2 K and w;l;x j= p 7�! y.

P roof: By a straightforward induction on the structure ofp. The base cases, where p 2

K [ G [ N ,are im m ediate from the de� nition of\represents" and the sem antics ofthe logic.
Theinductivecase,wherep = q’sr,isim m ediatefrom thesem anticsand thede� nition ofthe
translation.

T heorem 5.2: The m inim alHerbrand m odelM w of�w represents w and lw .

P roof:(Sketch)Theproofproceedsby showing a directcorrespondencebetween theconstruc-
tion ofthe m inim alHerbrand m odelof�w and the� xpointconstruction oflw.

The theory oflogic program m ing [Llo87]associates with the Horn theory �w an operator
�w on thespaceofHerbrand m odelson thevocabulary V ,de� ned by name(x;y;z)2 �w(M )if
thereexistsa substitution instanceofa form ula in �w oftheform B ) name(x;y;z)such that
M j= B .TheleastHerbrand m odelM w of�w isthen equalto �w " ! =

S

m 2N
�w " m ,where

�w " 0 = ; and �w " m + 1= �w(�w " m )form � 0.

Let Tw be the operator on localnam e assignm ents de� ned in the proofofTheorem 3.1.
Using Proposition 5.1 to handle the rules in �w corresponding to certi� cates,we m ay then
show by a straightforward induction on m that for allm � 1,the Herbrand m odel� " m

represents the world w and the localnam e assignm ent Tw " m . Itfollows that M w = � " !

representslw = Tw " !.

T heorem 6.1: AX
self

inf
(resp.,AX

self

�n
)isa sound and com plete axiom atization ofLLNCs with

respectto the open sem antics ifK isin�nite (resp.,K is�nite).

P roof: The argum entisvery sim ilarto thatin the proofofTheorem 3.2. Firstsupposethat
K isin� nite.

W e add the following clausesto the de� nition ofP :

6. Self 2 P ,

7. ifn 2 P isa localnam ethen Self’sn 2 P .

W e also add thefollowing clausesto thede� nition ofS+ ,corresponding to thenew axiom sfor
Self.

(ClSP) ifSelf’sp 2 P then Self’sp 7�! p 2 S+ and p 7�! Self’sp 2 S+ ,

(ClPS) ifp’sSelf 2 P then p’sSelf 7�! p 2 S+ and p 7�! p’sSelf 2 S+ ,

(ClSE) ifSelf 7�! p 2 S+ and p’sk 7�! k 2 S+ then p 7�! Self 2 S+ .

Lem m a A.5 stillapplies.Thede� nitionsfollowing thislem m a,up to and including thatof
S� are unchanged. However,the construction ofthe m odelchanges slightly. W e no longer
use k0 to represent the \current principal",instead,we use the key k� that the construction
associateswith Self.Thiscould beeitherakey in P1 oroneofthekeyskc forc2 O ,depending

31



on whetherSelf iskey-equivalentoropen.Note thatwe cannothave Self em pty (thanksto
the Identity axiom ).IfSelf iskey-equivalent,then by (ClK D)itisequivalentto atm ostone
key k 2 P . In this case, we de� ne k� = k. IfSelf is open we de� ne k� to be kc,where
c= [Self].

W e now de� ne w and lexactly asbefore,exceptthatwe now setl(k0;n)= ;,since we no
longerusek0 asthe \currentprincipal." Thefollowing lem m a isthe analogue ofLem m a A.7.

Lem m a A .11: For allexpressions p 2 P ,we have [[p]]w ;l;k� = I(p).

P roof: The proofis very sim ilar to that ofLem m a A.7;we just describe the m odi� cations
required.Thebasecasesforp a globalnam e ora key are identical.

W hen p = n isa localnam e,we proceed asfollows. There are two possibilities,depending
on whether k� 2 P or not. Suppose � rst that k� 2 P . Then we have k� � Self and,by
(ClLM )and (ClSP),k�’sn � Self’sn � n.Itthen followsby (ClT)and construction oflthat
n 7�! k 2 S� i� k�’sn 7�! k 2 S� i� k 2 l(k�;n),asrequired.

Ifk� = kc forcan open class,weproceed asfollows.Ifk 2 I(n),then weconsidertwo cases,
depending on whetherk 2 P1.Ifk 2 P1,then n 7�! k 2 S+ and itfollowsthatSelf’sn 7�! k

by (ClSP) and (ClT).Since Self � Self it is im m ediate that k 2 [[p]]w ;l;k�. Alternatively,if
k = kd,ford 2 O ,then we have n 7�! q 2 S+ forsom e q 2 d.By (ClSP)and (ClT)itfollows
thatSelf’sn 7�! q 2 S+ ,henceSelf’sn 7�! k 2 S�.Asbefore,thisim pliesthatk 2 [[n]]w ;l;k�.

For the opposite inclusion,suppose that k 2 [[n]]w ;l;k�. Since we are assum ing that Self
is open,there m ust be som e q � Self such that q’s n 7�! k 2 S�. By (ClLM ),we have
Self’sn 7�! q’sn 2 S+ .Itfollowsusing (ClT)thatSelf’sn 7�! k 2 S�,hence n 7�! k 2 S�.
Thiscom pletesthe argum entforthebase case ofn a localnam e.

Thereisnow an additionalbasecaseforp = Self.Here,notethat[[Self]]w ;l;k� = fk�g.W e
therefore need to show thatSelf 7�! k 2 S� i� k = k�.W hen k� 2 P1,we have Self � k�,so
Self 7�! k 2 S� i� k� 7�! k,and the claim followsby (ClK D)and (ClT)asin the base case
forkeys. The alternative isthatk� = kc forc= [Self]2 O . Since have Self 7�! kc 2 S� by
construction ofS�,itrem ainsto prove thatifSelf 7�! k 2 S� then k = kc. Now we cannot
have Self 7�! k 2 S� fork 2 P1,forthen by the argum entabove thatSelf isnonem pty and
(ClSE),wehavek 7�! Self 2 S+ ,contradicting theassum ption thatcisopen.Thus,wem ust
have k = kd forsom e d 2 O .In thiscase,there existsq 2 d such thatSelf 7�! q 2 S+ .Since
d isopen,wehaveq’sk0 7�! k0 2 S+ ,henceq 7�! Self 2 S+ by (ClSE).Thus,Self � q,and
itfollowsthatd = c,hence k = k� asrequired.Thiscom pletesthe argum entforthe base case
wherep = Self.

The inductive case is exactly as before, except that we need to consider the new case
p’sSelf.Here,wenotethat[[p’sSelf]]w ;l;k� = [[p]]w ;l;k�.Thus,by theinduction hypothesis,we
are required to prove thatp 7�! k 2 S� i� p’sSelf 7�! k 2 S�.Thisfollowsusing (ClPS)and
(ClT).

The rem ainder ofthe proofin the case that K is in� nite proceeds as before,using k� in
place ofk0.

IfK is � nite,the proofis even closer to that for the logic without Self. As sketched in
them ain text,becauseS isconsistent,itfollowsfrom Identity,W itnesses,and Self-is-key that
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there m ust be som e key k� 2 K such that Self 7�! k� 2 S. For this key k�,we m ust have
k�’sn 7�! k 2 S i� n 7�! k 2 S. Thus,k� playsthe role ofk0 in the earlierargum ent. (Note
thatwe now no longerneed CurrentPrincipalto ensure the existence ofk0.) The restofthe
argum entisunchanged.)
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