
Journal of Computer Security 16 (2008) 1–61 1
IOS Press

Synthesising verified access control systems through
model checking

Nan Zhang a, Mark Ryan a,∗ and Dimitar P. Guelev b

a School of Computer Science, University of Birmingham
E-mail: {nxz,mdr}@cs.bham.ac.uk
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
E-mail: gelevdp@math.bas.bg

We present a framework for evaluating and generating access control policies. The framework contains
a modelling formalism called RW, which is supported by a model checking tool. RW is designed for
modelling access control policies, and verifying their properties. The RW language is very expressive,
allowing us to model complex access conditions which can depend on data values, other permissions, and
agent roles.

A property expresses the capability of a coalition of agents to achieve a goal, which may include
reading and overwriting certain information. Given a model built based on a policy and a property, the
model-checking algorithm decides whether the goal defined by the property is achievable by the coalition
within the permissions the policy provides. In the case that the goal is achievable, the algorithm outputs
strategies which may be used by the coalition to achieve the goal.

The unachievability of legitimate goals may suggest that the policy does not provide the users enough
permissions to carry out their actions. The achievability of malicious goals may reveal certain security
holes in the policy. When malicious goals are achievable, the resulting strategies help to provide clues
on amending the policy. The tool implements the algorithm and thus performs the RW model-checking.
It can also convert a policy written in the RW language into a policy file in XACML. An access control
system can then be built on the converted policy file.

1. Introduction

The importance of access control is growing rapidly in a world where comput-
ers are ever-more interconnected. Access control policies are authorisation strategies
upon which access control systems are built. For an access control system to be ef-
fective, it is important to ensure that its access control policy is properly defined. The
policy of an access control system must fit the services that the system intends to pro-
vide. The fitness of an access control policy consist of two aspects. First, the policy
should provide users enough permissions to carry out their actions and achieve their

*Corresponding author: Mark Ryan, School of Computer Science, University of Birmingham,
Birmingham B15 2TT, UK. Tel.: +44 121 414 7361; Fax: +44 121 414 4281. E-mail: M.D.Ryan@
cs.bham.ac.uk

0926-227X/08/$17.00 2008 – IOS Press and the authors. All rights reserved

2 N. Zhang et al. / Synthesising verified access control systems through model checking

legitimate goals. Secondly, at the same time, the policy should prohibit malicious
goals from being reached.

Modern researchers tend to use tool-based approaches to evaluate access control
policies, because the complexity of access control policies often makes reasoning
about them by hand infeasible. Fisler, Krishnamurthi, Meyerovich and Tschantz [14]
have created Margrave, a software suite for analysing role based access control poli-
cies. Halpern and Weissman [19] have demonstrated how a fragment of first-order
logic can be used to represent and reason about access control policies. Schaad and
Moffett [29] used Alloy [22,23] to specify a RBAC-style model [28], ARBAC97-
style extensions [27] and a set of separation of duty properties [26].

However, what has long been neglected by much previous work is the analysis and
detection of security holes in policies caused by interactions of rules, co-operations
between agents and multi-step actions. It is not enough to know:

• whether a single rule behaves correctly, but that all rules, working together,
behave correctly;

• what a single agent can do by herself, but what a set of agents can achieve
through co-operations, including perhaps overwriting each other’s privileges;

• what an agent can do in a single action, but what he can achieve through a
sequence of actions, especially when agents can change permissions to give
themselves or others privileges.

To see the importance of these observations, consider the following example.

EXAMPLE 1.1. Consider a conference paper review system. It consists of a set of
agents which are programme-committee (PC) members and a set of papers to be
reviewed by the PC members. The following rules apply:

1. The chair of the PC assigns papers to PC members for reviewing.
2. PC member a can read PC member b’s review for a paper p provided p is not

assigned to a.
3. If two PC members, a and b, are both assigned paper p for reviewing, a can

read b’s review for p only if a has already submitted its own review for p. This
is also true for b.

4. Having been assigned a paper p, PC member a can give up being reviewer for p
before the reviewing is finished.

The purpose of having these rules is to prevent a reviewer’s opinion on a paper
from influencing another reviewer’s. Although each of these rules seems to be sound,
the intention of rule 3 can be easily breached by several agents working together
through multiple steps of actions. Given a paper p, three PC members a, b, and c,
with c being the chair, see the following two strategies available for a and c to work
together to breach the intention of rule 3.

STRATEGY 1.1. (1) c assigns p to b for reviewing (permitted by rule 1).

N. Zhang et al. / Synthesising verified access control systems through model checking 3

(2) a reads b’s review for p (permitted by rule 2).
(3) c assigns p to a for reviewing (permitted by rule 1).

STRATEGY 1.2. (1) c assigns p to both a and b for reviewing (permitted by rule 1).
(2) Before a submits his review for p, he resigns as reviewer for p (permitted by

rule 4).
(3) a reads b’s review for p (permitted by rule 2).
(4) c assigns p to a for reviewing again (permitted by rule 1).

Each single step of the above two strategies is legitimate. However, the strate-
gies enable a behaviour which was not intended to be permitted by the rules. Three
reasons have caused this problem:

1. Interactions of rules. Although rule 3 explicitly prohibits a reviewer from read-
ing another reviewer’s review for the same paper assigned to both of them,
rule 2 and rule 4 provide opportunities for the agents to by-pass it.

2. Co-operations between agents. Although a cannot breach rule 3 by himself,
with the help of c, they can act together through an indirect way to get around
of rule 3. This co-operation involves the consignment of the privilege of re-
viewing p to a by c.

3. Multi-step actions. Although a cannot breach rule 3 in a single step, he, with
the help of c, can violate it following a sequence of actions.

Generally speaking, Example 1.1 shows how a set of naively designed access con-
trol policy can exhibit security holes. Such holes typically cannot be identified by
the imagination of designers; scarcely can they be detected by most of traditional
approaches, such as static analysis [2,10] and policy-querying [14].

The framework presented in this paper includes a tool which uses a model-
checking algorithm to evaluate the fitness of access control policies. Given an access
control policy, the tool builds a model, M , based on the rules of the policy. It then
uses the model-checking algorithm to check whether M preserves certain security
properties. Using model-checking to evaluate access control policy has a number of
advantages over other approaches:

• Because a model, M , is built based on the policy, it enables us to under-
stand the policy as a whole. Any change made on a single rule or caused by
adding/deleting a rule will be reflected on M . This makes the study of interac-
tions of rules easier.

• Model-checking’s ability to perform temporal reasoning is suitable for explor-
ing possible consequences of multi-step actions.

Along with the advantages of model-checking, the algorithm considers coalition
of agents instead of a single agent when the checking is performed. The modelling
formalism that we use (the RW formalism) considers permissions as data that are

4 N. Zhang et al. / Synthesising verified access control systems through model checking

subject to permissions. This consideration makes it possible to explore the conse-
quences of changing of the agents’ privileges. Therefore, potential attacks caused by
co-operations between agents may also be uncovered.

The framework consists of:

The RW access control formalism. This is our modelling formalism, which is used
to model access control policies. This formalism is based on propositional
logic. A novelty of this formalism is its built-in abilities to express permissions
about permissions (sometimes known as meta-policy [7]). The RW (Read and
Write) formalism considers permissions as data the same way as it considers
ordinary data in a system. Thus, permissions are objects of reading and writing
actions just as other ordinary data are.

The RW access control policy description and specification language. This is a
machine-readable language which is used to express access control policies
modelled in the RW formalism and properties to be verified against the model.
A property is a query, asking, given a set of agents and a goal, whether the
agents can achieve the goal by carrying out strategies consisting of permissible
reading and overwriting actions in each step. Goals amount to either learning
about the state of the system to which the policy applies, or changing it to
satisfy certain conditions, or some logical combinations of these.

The RW model-checking algorithm. This algorithm takes a model of a policy and
a property as input and answers whether the property holds on the model. The
algorithm uses the technique of symbolic model-checking [25]. If the property
holds, which means the agents can achieve the goal, the algorithm outputs
strategies that may be used by the agents to achieve the goal. For legitimate
goals, the achievability shows that the policy provides enough permissions to
the users. However, for malicious goals, the achievability may reveal certain
weaknesses in the policy. In these cases, the strategies that are output provide
clues regarding to how to amend the policy.

AcPeg. This is a tool written in Java, which implements the above algorithm to per-
form the checking. The tool can be obtained from [33]. It can also translate
the policy-description in the RW language into a policy file in XACML [15].
The policy file in XACML can then be used to implement a real access control
system. A relational database, which is assumed to contain the access-control-
relevant data of the system, must be set up for helping to make access decisions
based on the translated XACML policy file.

The RW formalism, the mathematical form of the description part of the RW lan-
guage and a decision procedure are presented in [16]. Given a set of access control
policy, a goal, and a set of agents, the decision procedure can figure out whether there
are strategies available for the agents to achieve the goal, however, without demon-
strating what the strategies are. The algorithm presented in Section 5 is developed on
the basis of that decision procedure in order to extract the strategies. In the cases of

N. Zhang et al. / Synthesising verified access control systems through model checking 5

malicious goals, the resulting strategies may give us clues that how the goals can be
achieved and thus how the policy can be amended accordingly. The algorithm, the
specification part of the RW language, and AcPeg’s model-checking ability are pre-
sented in [35]. The description-part of the RW language in machine-readable form,
AcPeg’s translating ability and related issues are presented in [34]. The current paper
integrates the contents of the three papers plus some new developments and results
that have not been presented before.

Structure of the paper

Related work is discussed in Section 2. The formal definition of the RW formalism
is introduced in Section 3 as well as the description part of the RW language. How
to write properties in the RW language is explained in Section 4. The RW model-
checking algorithm is presented in Section 5. The implementation of the algorithm
and experimental results are discussed in Section 6. The translation from RW to
XACML is explained in Section 7. Conclusions are drawn in Section 8.

2. Related work

Automatic analysis of access control policies has attracted much attention of re-
searchers in recent years. Throughout the rest of this section, we discuss some current
approaches and compare them with our work. We also explain why the widely-used
verficiation tools – Alloy, SMV and Mocha – are not suitable for our work, and as a
result the creation of our own tool becomes necessary.

Fisler, Krishnamurthi, Meyerovich and Tschantz [14] focus on verification and
change-impact analysis of role-based access control policies written in XACML.
They have a tool called Margrave, which reads XACML, translating them into multi-
terminal decision diagrams (MTBDDs) to answer queries. MTBDDs are a more gen-
eral form of BDDs. Unlike a BDD which only has two terminals, 0 and 1, a MTBDD
can have a set of terminals. Because XACML policy evaluation may lead to the re-
sult of permit, deny and not-applicable, MTBDDs are more suitable for translating
XACML policies than BDDs. Margrave verifies whether a rule preserves a property
by taking a query which expresses the property as input and output the answer to the
query. It does not perform model-checking. It simply traverses the MTBDD which
represents the rule, using the information provided in the query and seeing which
terminal it gets to.

Change-impact analysis is also an important aspect of their work. Margrave can
take two rules that span a set of changes as input, and output a summary of the
differences.

Two big advantages of their approach are performance and scalability. According
to their experimental data, most of verification tasks take no longer than 10 millisec-
onds (ms), however converting rules to MTBDD form takes from 70 ms to 335 ms.

6 N. Zhang et al. / Synthesising verified access control systems through model checking

Memory consumption is about 4.7 Mbytes. Because MTBDDs scale up quite well,
their tool is quite capable to handle large cases.

However, the problems raised by interactions of rules, multi-step actions and co-
operations between agents are not mentioned in their work.

Schaad and Moffett [29] demonstrate how to use Alloy to check that separation-
of-duty constraints may be breached when policies are changed by administrative
policies defined in the ARBAC97 model. We also had considered using Alloy as our
modelling formalism and the Alloy analyser as our checking tool. However, because
Alloy does little temporal reasoning, if we use Alloy, we have to hard code system
states and transition relations explicitly by ourselves. From our experience, we found
that this makes a model in Alloy very complex and the checking very slow. Alloy’s
lacking of temporal reasoning makes it unsuitable for our work.

Guttman, Herzog, Ramsdell and Skorupka [18] present a systemic way to analyse
access control policies in the Security-Enhanced Linux system (SELinux). They de-
velop a highly abstract model of the SELinux operating system access control mech-
anism. In this model, the system configuration determines a transition system which
represents possible information flows. Properties of the system take the form of in-
formation flew security goal statements which describe the objectives that SELinux
is intended to achieve. The goal statements are written in LTL [13]. They have tools
which take the transition system and produce input for NuSMV [8]. The analysis then
can be done by model checking. Their approach is also known as rigorous automated
security management, which also applies to network security management [17].

We had considered using the input language of SMV to express access control
policies, CTL [20] to specify properties and SMV to model-check. This seemed pos-
sible to us because in the RW formalism, resources and various relations in an access
control system are represented by propositional variables. These propositional vari-
ables can all be defined as boolean variables in SMV. The abilities of an agent to read
and write a resource can be represented by two boolean variables. The conditions
defining the situations under which the resource can be accessed can be defined as
logical formulas which update the boolean variables’ values. The property we want
to check is reachability; that is, given a goal and a group of agents, whether there are
strategies available for the agents to achieve the goal. This sense of reachability may
also be expressed by CTL formulas. SMV’s ability of temporal reasoning also seems
suitable for the checking of reachability. However, despite all these similarities, we
cannot use SMV. The strategies we are looking for consist of overwriting steps and
sampling steps. An overwriting step produces only one possible outcome, while a
sampling step produces two possible outcomes, which can be � or ⊥, according to
the value of the variable being sampled. Each of the two outcomes becomes an ori-
gin of a new path extending to the future. For a strategy to work, the goal has to
succeed on all paths resulting from the user choices no matter the sampling outcome
is � or ⊥. CTL only has the universal quantifier A and the existential quantifier E
over paths. It cannot be used to express the idea that a goal succeeds on all paths
satisfying the user’s choices.

N. Zhang et al. / Synthesising verified access control systems through model checking 7

Since our approach of model-checking involves considering activities of agents,
it seems that ATL [4] and its model checker Mocha [3] are good candidates for our
work. However, we had to give up the idea of using them. We have experience of
using ATL and Mocha to model-check access control policies [32]. From that expe-
rience, we learned that using Mocha to analyse big systems is very slow. Moreover,
a program in Mocha is composed of one or more than one module. A module de-
fines a number of variables and several atoms. Each atom declares variables that it
controls, reads and awaits. It is natural to use a module to represent the behaviors
of the policies of an access control system with atoms in the module to represent
agents’ activities permitted by the policies. However, the problem is that, in a Mocha
program, each variable defined in a module can only be controlled by at most one
atom, which means only one atom has the ability to change its value. This constraint
implies that if we use the Mocha program to represent an access control system, the
value of each variable in the system can only be modified by one agent. In practice,
we found this is very inconvenient.

3. The RW formalism and its description language

3.1. Definition

DEFINITION 3.1. Let L(P) be the set of the propositional logic formulas built
from the propositional variables in the set P . An access control system S is a tu-
ple 〈Σ, P ,r,w〉, where Σ is a set of agents, P is a set of propositional variables
and the mappings r,w : P × P(Σ) → L(P) specify the immediate access rights of
coalitions of agents.

According to this definition, states of S are valuations of the variables in P . An
agent a ∈ Σ is allowed to read and overwrite variable p iff the current state of the
system s satisfies the propositional logic formula r(p, {a}) and w(p, {a}), respec-
tively. We assume that access rights are exercised by one agent at a time in this paper
for the sake of simplicity and write r(p, a) instead of r(p, {a}), and similarly for w.
Thus the formulas r(p, a),w(p, a) ∈ L(P) define the conditions under which a is
permitted to read and overwrite the value of p. They are functions on S’s states.

3.2. Example – a conference paper review system

The example access control system is an extension of the conference paper review
system introduced in Example 1.1.

EXAMPLE 3.1. A conference paper review system includes fixed sets of agents and
papers. Some of the agents are authors of the papers and/or participate in the con-
ference Programme Committee (PC). The PC has a chair. Rules in the policy which
applies to this system include:

8 N. Zhang et al. / Synthesising verified access control systems through model checking

1. Whether an agent is a PC member, or is the chair, or is an author of a paper is
readable by all the agents. Authorship of papers cannot be changed.

2. The PC chair appoints agents to be PC members. A PC member can resign her
membership.

3. The PC chair can assign a paper to a PC member for reviewing, provided the
PC member is not the paper’s author.

4. Whether a PC member is a reviewer of a paper is readable by all the PC mem-
bers except the author(s) of the paper.

5. A reviewer of a paper can assign the paper to be sub-reviewed by another agent
who is not an author of the paper and has not been assigned the same paper by
another reviewer.

6. A reviewer of a paper can give up being reviewer, unless he has already ap-
pointed a sub-reviewer for the paper.

7. Whether a PC member is a sub-reviewer of a paper is readable by all the PC
members except the author(s) of the paper.

8. A sub-reviewer of a paper can give up being sub-reviewer, unless he has already
submitted the review for the paper.

9. Whether a review for a paper has been submitted is readable by all the PC
members, except the author(s) of the paper.

10. A reviewer or a sub-reviewer can only submit a review once.
11. A PC member a can read a review for a paper p, provided the review has been

submitted and a is not p’s author and does not have a review outstanding for p.
12. A reviewer or a sub-reviewer may update the content of her review before she

submits it.

To model this example in the RW formalism two classes need to be defined:
Agent and Paper. The former is the set of agents. The latter is the set of papers.
To model relations between these two sets, we need a number of predicates from
which the set of propositional variables, P , is built. For a, b ∈ Agent, p ∈ Paper,
P includes:

author(p, a) a is an author of p,
pcmember(a) a is a PC member,
chair(a) a is the chair of the PC,
reviewer(p, a) p is assigned to PC member a for reviewing,
subreviewer(p, a, b) p is assigned by PC member a to sub-

reviewer b,
submittedreview(p, a) a review for p has been submitted by

(sub-)reviewer a,
review(p, a) the reviewing result for p from a, for simplicity

represented as a boolean indicating ‘accept’ or
‘reject’.

N. Zhang et al. / Synthesising verified access control systems through model checking 9

For each p ∈ P , a ∈ Agent, the formulas r(p, a) and w(p, a) are defined using

variables in P and logical connectors: ¬ (negation), ∧ (conjunction), ∨ (disjunction),

→ (implication), ∃ (existential quantification) and ∀ (universal quantification), as

follows. (For two agents a and b, a = b denotes that a and b are the same agent,

� denotes the boolean value true, Σ denotes the set Agents, and ‘�’ denotes ‘is

defined as’.)

r(author(p, a), x) � �
r(pcmember(a), x) � �
r(chair(a), x) � �
w(author(p, a), x) � ⊥ rule 1
w(pcmember(a), x) � chair(x) ∨ (pcmember(x) ∧ a = x) rule 2

r(reviewer(p, a), x)
� pcmember(x) ∧ ¬author(p, x) rule 4

w(reviewer(p, a), x)

�
((chair(x) ∧ pcmember(a) ∧ ¬author(p, a))

∨
(pcmember(x) ∧ x = a ∧ reviewer(p, x)
∧ ¬(∃ b ∈ Σ subreviewer(p, x, b))

))
rules 3, 6

r(subreviewer(p, a, b), x)
� (pcmember(x) ∧ ¬author(p, x)) ∨ x = b ∨ x = a rule 7

w(subreviewer(p, a, b), x)

�

(reviewer(p, x) ∧ ¬author(p, b)
∧ x = a

)
∧ ¬∃ d ∈ Σ

(subreviewer(p, a, d)
∨ subreviewer(p, d, b)

)

∨
(

(subreviewer(p, a, x) ∧ x = b)

∧ ¬submittedreview(p, x)

)

 rules 5, 8

r(submittedreview(p, a), x)

� pcmember(x) ∧ ¬author(p, x) rule 9
w(submittedreview(p, a), x)

�
(((x = a)∧(∃ b ∈ Σ subreviewer(p, b, x)

∨ reviewer(p, a)

))
∧ ¬submittedreview(p, x)

)
rule 10

10 N. Zhang et al. / Synthesising verified access control systems through model checking

r(review(p, a), x)

�

(pcmember(x) ∧ ¬author(p, x)
∧submittedreview(p, a)

)

∧

reviewer(p, x)
→ submittedreview(p, x)
∧ (∃ b ∈ Σ subreviewer(p, b, x)
→ submittedreview(p, x))

∨ x = a

 rule 11

w(review(p, a), x)

�
(

(x = a ∧ ¬submittedreview(p, x))∧(
∃ b ∈ Σ subreviewer(p, b, x) ∨ reviewer(p, x)

))
rule 12

In this example, what is not explicitly permitted is prohibited.

3.3. Discussions on the RW formalism

The RW formalism uses propositional variables to represent data, relations be-
tween data, and even permissions in an access control system. Rules in the access
control policy adopted by the system are expressed by logical formulas built from
the variables. The RW formalism is able to model a wide range of access control
policies because of its abilities to express the following important concepts/features
in access control systems.

Conditional authorisations. According to [12], this is the principle that protection
requirements need to depend on the evaluation of conditions, normally includ-
ing agents’ roles, identities and so on. The ability of expressing conditional
authorisation by logical formulas is a central feature of the RW formalism.

Permissions about permissions. Permissions about permissions are the permis-
sions which can change other agents’ permissions. In some literature, they
are also called ‘administrative policies’ [27] or ‘meta-policies’ [7]. The RW
formalism’s ability to express permissions about permissions lies in the fact
that it regards permissions as data along with other ordinary data in a system.
For example, in the modelling of Example 3.1, w(reviewer(p, a), x) defines
the permission for changing reviewer(p, a), which, itself, expresses a’s per-
mission for reviewing p.

Delegation mechanisms. Delegation is the ability of one agent to give part or all its
privileges to another so that the latter can carry out actions on behalf of the for-
mer [6]. Delegation may be used to help avoid the problem of root bottleneck,
that is, the need for root or superuser to be involved in transfer of responsibili-
ties. The RW formalism’s ability to express delegation is demonstrated by the
way that a reviewer can appoint sub-reviewers in Example 3.1.

N. Zhang et al. / Synthesising verified access control systems through model checking 11

Constraints. Constraints are important to most access control systems. In fact,
sometimes, it is argued that constraints are the principal motivation behind
the RBAC models [28]. Constraints can be expressed by the RW formalism
because they can be modelled as relations between data of the system rep-
resented by the propositional variables and are integrated into the formulas
representing authorisation rules.

3.4. The description language

The RW language is a machine-readable language designed for expressing ac-
cess control policies modelled in the RW formalism and properties to be verified.
A complete model written in the RW language consists of three parts: a program,
a run-statement and a specification.

〈Model〉 ::= 〈Program〉[〈RunStatement〉][〈Specification〉]

The program describes the access rules. The run-statement specifies the size of
the classes defined in the program. During the check, sets of those sizes will be
created, thus defining a concrete instance on which the property will be evaluated.
The specification is the property to be verified. In this subsection, we discuss issues
about the syntax and the semantics of the program. We leave the discussion of the
run-statement and the specification to Section 4.

3.4.1. Example 3.1 written in the RW language
Before formally discussing the syntax and the semantics of the description part,

we shall see, in Fig. 1, the RW script for the policy defined in Example 3.1.

3.4.2. Syntax and semantics of the description part
A complete definition of the syntax can be found in Appendix A. Here, following

the script in Fig. 1, we explain how a description is written in the RW language.
The program description starts with the keyword AccessControlSystem,

followed by an identifier to name the model. Identifiers begin with a letter and
can include letters, digits, “-” and “_”. They are case-sensitive. The keyword
AccessControlSystem and the identifier ‘conference’, form the title of this
description.

What follows is the body of the description, which consists of a variable-definition
and a policy-definition. The variable-definition defines classes and parameterised
predicates. The policy-definition defines access rights of each agent on the variables
defined in the variable-definition.

A class definition starts with the keyword Class, followed by any number of
identifiers, which are interpreted as names of sets of objects. They must start with a
capital letter. The class of agents is predefined and has the name Agent. That is why
the example in Fig. 1 has only one class defined, which stands for the set of papers.

12 N. Zhang et al. / Synthesising verified access control systems through model checking

AccessControlSystem Conference
Class Paper;
Predicate author(paper: Paper, agent: Agent),

pcmember(agent: Agent), chair(agent: Agent)!,
reviewer(paper: Paper, agent: Agent),
subreviewer(paper: Paper, appointer:Agent,

appointee: Agent),
submittedreview(paper: Paper, agent: Agent),
review(paper: Paper, agent: Agent);

author(p, a){ read : true;
}
chair(a){ read: true;
}
pcmember(a){ read : true;

write : (chair(user) | (pcmember(user) & a=user));
}
reviewer(p, a){

read : pcmember(user) & ~author(p, user);
write : (chair(user) & pcmember(a) & ~author(p,a))

| ((pcmember(user) & user=a & reviewer(p,user))
& ~(E b: Agent [subreviewer(p,user,b)]));

}
subreviewer(p, a, b){

read : (pcmember(user) & ~author(p,user)) | user=b
| user=a;

write : (reviewer(p,a) & ~author(p,b) & user=a
& ~(E d: Agent [subreviewer(p,a,d) |

subreviewer(p,d,b)]))
| (subreviewer(p,a,b) & ~submittedreview(p,b)

& user=b);
}
submittedreview(p, a){

read : pcmember(user) & ~author(p, user);
write : (user=a) & ((E b: Agent [subreviewer(p, b, user)])

| reviewer(p, user)) & ~submittedreview(p, user);
}
review(p, a){

read : pcmember(user) & ~author(p, user)
& submittedreview(p, a)
& (((reviewer(p, user)
-> submittedreview(p, user))

and (E b: Agent [subreviewer(p, b, user)]
-> submittedreview(p, user))) | user=a);

write : user=a & ((E b: Agent [subreviewer(p, b, user)])
| reviewer(p,a))

& ~submittedreview(p, user);
}
End

Fig. 1. The RW script for the policy defined in Example 3.1.

N. Zhang et al. / Synthesising verified access control systems through model checking 13

The predicate-definition starts with the keyword Predicate, followed by any
number of predicates. Each predicate defines a logical relation. A predicate consists
of a name and several parameters, whose types must be the defined classes. Parame-
ter names must be distinct. Parameter names must start with lowercase letters. For
example, the predicate-definition

author(paper : Paper,agent : Agent)

defines a parameterised predicate whose name is author. It has two parameters.
The name of its first parameter is paper. Its type is the defined class Paper.
The second parameter’s name is agent and its type is the defined class Agent.
By this definition, predicate author creates a relation between each element in
the set Paper and each element in the set Agent. For each p ∈ Paper and
a ∈ Agent, author(p, a) is a propositional variable which can be true or false,
denoting whether a is an author of p or not. Any predicate marked by a ‘!’ is a con-
stant predicate which means among all the variables built from this predicate, only
one of them is true and its value is unchangeable. Thus, chair(agent : Agent)!
specifies that only one agent can be the chair of the PC.

The policy-definition consists of a number of rule-definitions. Each rule-definition
begins with a parameterised predicate and should contain a pair of logical formulas
labelled by the keywords read and write. These formulas define the conditions
under which the agent, denoted by the keyword user, can read and overwrite the
truth value of the variable represented by the instanced predicate. If one of the formu-
las or both formulas are omitted, the corresponding read or (and) write permission(s)
is (are) also unavailable. Parameters in the brackets of the predicate can be used
freely only within the block enclosed by the curly brackets. Thus each block creates
a local name space. Variables defined in quantified formulas can only be used inside
the quantified formulas. They are invisible from outside. For example, the following
block (taken from Fig. 1)

pcmember(a){
read : true;
write : (chair(user) | (pcmember(a) and a=user));

}

defines that whether an agent a is a PC member is readable by all the agents, and is
writable by the chair of the PC or by a himself. As the writing rule defines, the chair
can set pcmember(a) to be true, or false, meaning that the chair can both promote a
to be a PC member and revoke a’s membership. However, in the case of a himself,
he can overwrite the truth value of pcmember(a) only when he is already a PC
member, meaning that he can preserve his membership or resign his membership. a
cannot promote himself to be a PC member.

The logical connectives in a formula have their conventional meanings as they are
used in Example 3.1. The program description ends at the keyword End.

14 N. Zhang et al. / Synthesising verified access control systems through model checking

4. Properties and their RW specifications

4.1. Run-statement

A system described by the program in the description part is only a template. To
perform model-checking, a concrete instance based on the template needs to be con-
structed. This task is done through a run-statement. The syntax of the run-statement
is:

〈RunStatement〉 ::= “run for” 〈NumberClassPair〉 (“,” 〈NumberClassPair〉)*,
〈NumberClassPair〉 ::= 〈Integer〉 〈ClassName〉.

When a run-statement is executed, the tool assigns each defined class a fixed number
of elements. These elements are then used to instantiate the relations defined by the
parameterised predicates. Once these two steps are finished, a concrete model with
fixed size is established, on which model-checking is performed. Models of other
sizes are not considered by the checking. Although large models may contain errors
that small models cannot display, small models are still extremely useful for finding
errors [23].

For the system defined by the program in Fig. 1, if the following line

run for 3 Paper, 4 Agent

is put after the keyword End, AcPeg will assign three elements to the set Paper and
four elements to the set Agent when the statement gets executed. As a result, the set
Paper becomes {p1, p2, p3}, and the set Agent becomes {a1, a2, a3, a4}. Then, all
the defined predicates are instantiated. For example, the predicate author(paper :
Paper,agent : Agent) is instantiated to twelve propositional variables: from
author(p1, a1) to author(p3, a4). After the population, the total number of the
propositional variables in P is 104.

4.2. Strategies and guessing strategies

A strategy is a sequence of actions by which a coalition A of agents achieves a
goal. Each action in the sequence is performed by an agent in A. We assume that
an agent a performs actions only if he knows that he has permissions. (This is for-
malised in 5.6.1.)

A guessing strategy is similar to a strategy, except that it is not required that the
agent knows he can perform each action. In this case, the agent is willing to take a
risk that the action will be denied. The difference between a strategy and a guessing
strategy is clarified using the following example.

EXAMPLE 4.1. Following Definition 3.1, we define an access control system
S〈Σ, P ,r,w〉, where P = {u, x, y, z} and Σ = {a}. For each p ∈ P , mappings
r(p, a) and w(p, a) are summarised by Table 1.

N. Zhang et al. / Synthesising verified access control systems through model checking 15

Table 1

Mappings r(p, a) and w(p, a) for the access control system in Example 4.1

u x y z

r ⊥ � � �
w ⊥ ¬u u x ∨ y

Suppose the agent a has the goal to set z’s value to false. There is no strategy to
achieve this because a does not know the value of u, and therefore does not know
whether to try setting x to false or to try setting y to false. But there is a guessing
strategy, in which a ‘guesses’ the value of u and proceeds accordingly.

4.3. Properties

Following the run-statement, a property can be specified. A property is a query,
taking the form of

check {Ł ‖ϕ → A : ψ},

where Ł defines a number of quantified variables used in ϕ, ψ and A; ϕ (optional)
is a list of conditions based on which the goal, defined by ψ, is to be achieved; and
A defines a coalition of agents who work together, intending to achieve the goal.
What this query asks is: Are there strategies or guessing strategies – depending on
the mode of checking – available for the agents in A, such that, by following the
strategies or guessing strategies, they can achieve the goal defined by ψ on the basis
of the conditions defined by ϕ.

A strategy is a sequence of reading and overwriting steps where in each step,
there is an agent in A who knows she is permitted to take the action and so takes
the action. What they read and overwrite are variables in P which stand for data,
relations between data and permissions. A guessing strategy is similar to a strategy
except that, following a guessing strategy, when an agent in A intends to read a
variable, she does not need to have the proper permission. She can just read it. This
reflects the possibility that intruders may acquire the information they need from
other sources and thus in the course of reaching their goal, they may guess out the
value of the data they need. AcPeg performs both modes of checking, where, in one
mode, it searches for strategies, and, in the other, for guessing strategies.

In what follows, we shall explain the nature of Ł, ϕ, ψ, A separately, and finally
we shall see a few example queries.

4.3.1. Quantified variable definition
Quantified variables in Ł are defined on the classes defined in the class-definition.

They can be existential or universal, declared using ‘E’ and ‘A’ respectively. Quan-
tified variables defined in the same class may represent the same element during the
course of a checking, unless the keyword disj is used.

16 N. Zhang et al. / Synthesising verified access control systems through model checking

4.3.2. Conditions
Conditions defined in ϕ serve as pre-requirements on which the checking is based.

Each condition is a variable in the set P . It can be positive or negative. Conditions
in ϕ are connected by logical conjunction (∧). For a p ∈ P which occurs in ϕ, we
summarise its possible forms and their meanings in the following list. (� stands for
the boolean value true and ⊥ stands for false.)

p∗ p’s value is constant during the checking. However, this value is
unknown by the agents in A,

(¬)p! p is �(⊥) at the beginning of the checking and there is at least an
agent in A who knows p is �(⊥) at the beginning of the checking,

(¬)p∗! p is �(⊥) constantly during the course of the checking and there is
at least an agent in A who knows p is �(⊥) at the beginning of the
checking.

The forms (¬)p! and (¬)p∗! qualify the agents’ knowledge states. If a predicate is
marked by a ‘!’ (constant predicate) in the predicate-definition, the user should ex-
plicitly mark the supposed constantly true variable by ‘*!’ in the condition (see the
condition in Query 4.2). Otherwise the checker does not know which variable is
constantly true and thus ignores this constraint of cardinality.

Note that the exclamation mark (‘!’) is used in two ways in our notation. In the
predicate definition (see 3.4.2) it is used to mark a constant predicate. In the con-
ditions described in this section, it is used to specify that the value of a variable is
known by the agents in A.

4.3.3. Goals
A goal defined by ψ can be a simple goal or a nested goal. A simple goal is

a combination consisting of conjunction and disjunction of three kinds of atomic
goals. These are making goals, realising goals and reading goals, written using ‘{ }’,
‘〈 〉’ and ‘[]’, respectively. If l1, l2 and l3 are propositional formulas belonging to
the set L(P) defined in Definition 3.1, {l1} is the goal of making l1 true; 〈l1〉 is the
goal of realising that l1 is true; and [l1] is the goal of finding out the truth value of l1,
whatever this value is. ‘Making’ goals mean changing the system state to bring about
certain conditions. ‘Reading’ goals are to extract information about the system state.
‘Realising’ goals are auxiliary and are used to allow the construction of conditionals
such as 〈l1〉 and {l2} or 〈not l1〉 and {l3}, which means: achieve either l2 or l3
according to whether l1 is true or false. A single ‘realising’ goal 〈l1〉 is unlikely to
be useful, because l1 may simply turn out to be false.

A nested goal is a goal which is composed by subgoals. The depth of nesting is
unlimited. Generally, it has the form

check
{

Ł ‖ ϕ → A1 :
(
ψ1 AND A2 : (ψ2 . . . AND An : (ψn) . . .)

)}
,

where ψ1, ψ2, . . . , ψn are simple goals. Its meaning is: Are there strategies or guess-
ing strategies available for agents in A1, A2, . . . , and An, such that, if conditions in

N. Zhang et al. / Synthesising verified access control systems through model checking 17

ϕ are true, the agents in A1 can achieve a state in which the goal ψ1 is satisfied, and
(in that state) the agents in A2 can achieve the goal ψ2, . . . , and finally the agents
in An can achieve the goal ψn. What this nested goal describes is a sequencing of
actions performed by the agents in A1, A2, . . . , and An. However, this sequencing is
achieved only if the conditions defined in ϕ do not enable agents in Ai make other
subgoals true while on the way of achieving ψi.

4.3.4. Coalition of agents
In the case of a simple goal, A defines the coalition who intends to achieve the

goal ψ. In the case of a nested goal, each Ai defines the coalition who is to achieve ψi.

4.3.5. Example queries written in the RW language
In what follows we shall see a few queries (together with run-statements) written

in the RW language for the system defined by the program in Figure 1.

QUERY 4.1.

run for 3 Paper, 4 Agent
check {E a: Agent, p: Paper || ~chair(a)*!

-> {a}:{reviewer(p,a)}}

The query asks: Are there strategies or guessing strategies available for a ∈
Agent such that, on knowing the fact that he is not the chair of the PC, a can
promote himself to be a reviewer of a paper p. Curly brackets are used to enclose a
to denote the set of acting agents.

QUERY 4.2.

run for 3 Paper, 4 Agent
check {E disj a,c: Agent, p: Paper || chair(c)*!

-> {c}:{reviewer(p,a)}}

The query asks: Are there strategies or guessing strategies available for c ∈
Agent such that, on knowing the fact that she is the chair of the PC, c can pro-
mote another agent a to be a reviewer of a paper p.

QUERY 4.3.

run for 1 Paper, 3 Agent
check {E disj a,b,c: Agent, p: Paper || chair(c)*! &
~submittedreview(p,a)! & submittedreview(p,b)*! &
~author(p,a)*! & pcmember(a)*! & ~reviewer(p,a)! &
~subreviewer(p,b,a)*! & ~subreviewer(p,c,a)*! &
~subreviewer(p,a,a)*!
-> {a}:([review(p,b)] AND
{a,c}:({submittedreview(p,a)}))}

18 N. Zhang et al. / Synthesising verified access control systems through model checking

This query is a one-level nested query which essentially asks for the strategy in-
troduced in Strategy 1.1. The conditions are used deliberately to create a situation
where such a strategy can be found. In particular, the conditions

~subreviewer(p,b,a)*! & ~subreviewer(p,c,a)*!
& ~subreviewer(p,a,a)*!

are used because rule 11 defined in Example 3.1 requires that to read a paper’s review,
a PC member must not have an outstanding review for the paper.

QUERY 4.4.

run for 1 Paper, 3 Agent
check {E disj a,c :Agent || chair(c)*! and ~chair(a)*!
and ~pcmember(a)!
-> {c}:({pcmember(a)} AND {a}:({~pcmember(a)} AND
{c}:({pcmember(a)}
AND {a}:({~pcmember(a)} AND {c}:({pcmember(a)})))))}

This is a five-level nested query which asks: Are there strategies or guessing strate-
gies available for a, c ∈ Agent such that on knowing that c is the chair of the PC,
a is not the chair and initially a is not a PC member, c can promote a to be a PC
member, then a can resign his membership, then c can promote a again, and then a
can resign and finally c can promote a once more.

5. RW model-checking

5.1. The RW model-checking problem

Given a query Q, such as the one defined in 4.3, the task of the RW model-
checking algorithm is to figure out whether the strategies or guessing strategies
queried by Q exist, and if they exist, output at least one of them.

5.2. Assumptions made by the algorithm

Given an access control system S〈Σ, P ,r,w〉, a query Q, which includes the con-
ditions ϕ, the goal ψ and the group of agents A, the algorithm finds a strategy by
modelling the accumulation of A’s knowledge about the state of S while A carries
out the strategy. Each step of the strategy is either reading the value of a p ∈ P or
overwriting the value of a p ∈ P by an agent in A. The assumptions made by the
algorithm in modelling the accumulation of A’s knowledge while the carrying out of
a non-guessing strategy are:

N. Zhang et al. / Synthesising verified access control systems through model checking 19

1. While carrying out the strategy, the agents are assumed to completely know the
policy of S. A common principle in secure system design is to avoid relying
on ‘security by obscurity’. Thus, we must assume that the attacker knows any
information about the design of the system that he could know.

2. At the beginning of executing a strategy, A holds no knowledge about the initial
state of S, except for the values of the variables marked by ‘!’ in ϕ.

3. While carrying out the strategy, at each step only an agent in A acts.
4. For a p ∈ P and an a ∈ A, while carrying out the strategy, no matter a over-

writes p’s value or samples p’s value, a does so only if a knows that he is
permitted to do so. In other words, a overwrites p’s value only if w(p, a) is true
and a knows w(p, a) is true. It is the same when a samples a variable in P .
The reason we made this assumption is that, we model the fact that a performs
actions only if he knows he can. A strategy must guarantee the achievability
of ψ, therefore, in each of its step, the agents must know the action of the step
can be performed.

5. While carrying out the strategy, if an agent a in the set A overwrites or samples
a variable p, a knows the resulting value of p. If a knows the value of p, the
coalition A also knows it, because we assume agents in A can communicate
with each other outside of the model.

6. While carrying out the strategy, an agent a samples a variable p only if p’s
value is not known by the coalition A. In other words, a samples p only if p
has not been sampled or overwritten before. There is no point of sampling it if
its value is already known.

In searching for a guessing strategy, the algorithm assumes agents in A can sample
every variable even if they are not permitted to do so by the policy defined in S.

5.3. The transition system

The algorithm is built around the knowledge of the state of the system S that
the considered coalition A has at each step of implementing its strategy. Obviously
there is a set of knowledge states each of which is sufficient for A to regard its
goal as achieved. This is so when A knows that the formulas in some appropriate
combination of the involved making goals are true, enough is known to work out
the truth values of the formulas in the reading goals, etc. We denote the set of the
knowledge states from which A can deduce that its goal is achieved by KG. Each
step of a strategy takes A from a knowledge state to a possibly richer one until a
state in KG is reached. A knowledge state combines knowledge of the initial state of
the system, that is, the state of the system at the beginning of executing a strategy,
and knowledge of its current state. Assignments contribute the knowledge of the
current value of the assigned variable, which has been just given to it. This means that
learning and changing the system are done simultaneously. Sampling steps contribute
A’s knowledge on both the current and the initial value of the sampled variable.

20 N. Zhang et al. / Synthesising verified access control systems through model checking

Overwriting without sampling in advance destroys the prospect to learn the initial
value of the variable. Strategies are supposed to take A from its initial knowledge
state kinit to one in KG from which its goal is deemed as achieved.

To describe A’s knowledge on p, we use four knowledge variables. For each
p ∈ P , we have

v0p is true if A knows the initial value of p,
t0p is true if A knows initially p is true,
vp is true if A knows the current value of p,
tp is true if A knows currently p is true.

When overwriting p to true, vp and tp both become true, but v0p and t0p do not
change, because overwriting does not contribute A’s knowledge on p’s initial value.
When overwriting p to false, vp becomes true; tp becomes false; both v0p and t0p
do not change. When sampling p, v0p and vp both become true and t0p and tp both
become false if p turns out to be false, or t0p and tp both become true if p turns
out to be true. Since the contents of t0p and tp are irrelevant when p is unknown,
and the initial value of a variable is known only if the current value is known too,
there are indeed only 7, and not 24 knowledge states about each variable p. However
it is easier to explain our algorithm in terms of v0p, t0p, vp and tp as independent
variables.

A knowledge state is given by the quadruple (V0, T0, V , T), where

V0 = {p ∈ P | v0p is �}, T0 = {p ∈ P | t0p is �},

V = {p ∈ P | vp is �}, T = {p ∈ P | tp is �}.

We show the effects that the above three kinds of transitions have on the knowledge
states when a variable p is overwritten and sampled by an agent in Fig. 2.

Therefore, by modelling the accumulation of A’s knowledge, we build a transi-
tion system over the access control system in question. Three kinds of transitional
relations can be identified – overwriting-to-true, overwriting-to-false and sampling,
each of which carries the knowledge states of A from one to another until A has
confidence to deduce the goal is reached from its current knowledge state. Once A
reaches a knowledge state from which it can deduce the goal is reached, we con-
sider that its goal has been reached. Fig. 3 illustrates the above process, however in
a simplified situation where only one variable p is considered.

Note the transition relation for overwriting are deterministic; the relation for sam-
pling is not. A strategy should lead A to the goal through both possible outcomes of
a sampling.

To find such a strategy which leads A from kinit to KG the algorithm works back-
wards by inverting the process described above. Before discussing the backwards
reachability computation, we shall first see how kinit and KG are represented by

N. Zhang et al. / Synthesising verified access control systems through model checking 21

Fig. 2. The transitions.

Fig. 3. The process of learning.

boolean expressions composed of the knowledge variables. Using boolean expres-
sions, which then are represented by BDDs, to represent sets of states is the typical
approach used in symbolic model-checking.

5.4. Representation of kinit

According to our assumptions in Section 5.2, kinit is the state where A knows
nothing about the state of S, except on the values of the variables marked by ‘!’
in the conditions defined by ϕ. This means that for all variables in P which also
occur in ϕ and are marked by ‘!’, A knows their values. However, for all the other
variables in P , A does not know their values initially. Now for each variable p ∈ P ,
we have four knowledge variables v0p, t0p, vp and tp to describe A’s initial and
current knowledge about it. We use a boolean expression composed of the knowledge
variables to represent kinit. This boolean expression is then represented by a BDD
in the course of the RW model-checking.

We divide variables in P into three mutually-exclusive subsets. P+ is the set for
variables in P which only occur positively in ϕ and are marked by ‘!’ and by ‘*!’.

22 N. Zhang et al. / Synthesising verified access control systems through model checking

P− is the set for variables in P which only occur negatively in ϕ and are marked
by ‘!’ and by ‘*!’. P o is the set for all the other variables in P . Now for each p ∈ P+,
we use (v0p∧t0p∧vp∧tp) to represent A’s initial knowledge about p. In the case that
p ∈ P−, we use (v0p∧¬t0p∧vp∧¬tp) to represent A’s initial knowledge about it; and
finally, if p ∈ P o, we use (¬v0p∧¬t0p∧¬vp∧¬tp) to represent A’s initial knowledge
about it. Therefore, the representation of kinit by the knowledge variables is the
conjunction of all the representations of the above forms for variables in P .

5.5. Representation of KG

Given a formula ψ describing the goal we want to produce a representation of the
goal states. ψ is a conjunction and disjunction combination of reading goals [l], real-
ising goals 〈l〉, and making goals {l}, where l in each case is a boolean combination
of variables of P .

We want to represent ψ as a set of knowledge states, being those in which the goal
is known to be true. A set of knowledge states can be represented by a formula over
the propositions {v0p, t0p, vp, tp | p ∈ P}. To relate this to the notation of Fig. 2,
note that v0p is true in a state if p ∈ V0, t0p is true if p ∈ T0, and similarly for
vp and tp.

Suppose an agent’s knowledge of the state of the system is represented by V , T .
Then a formula over {v0p, t0p, vp, tp | p ∈ P} expressing the agents ability to deter-
mine that l is true may be constructed as follows:

• if vp is true, then substitute tp for p in l. This covers the case that the agent
knows the value of p;

• if vp is false, then replace l with a version in which � is substituted for p and
another in which ⊥ is substituted for p. This covers the case that the agent does
not know p.

Thus, the formula expressing the agent’s ability to determine that l is true is

(l[tp/p] ∧ vp) ∨ (l[�/p] ∧ l[⊥/p] ∧ ¬vp).

In the following definition, we generalise this formula to consider the effect of all
the p ∈ P .

DEFINITION 5.1. Let V , T be the knowledge held by an agent, and l a formula
over the propositions P . The propositions vp and tp signify p ∈ V and p ∈ T ,
respectively. The formula

γV ,T l =
(∧

S⊆p

l[(vp → p)/p | p ∈ S][(vp ∧ p)/p | p ∈ P\S]

)
[tp/p | p ∈ P]

expresses the agent’s ability to determine that l is true. The S ⊆ P produces all the
possible combinations of � and ⊥ to substitute ps such that vp is false. Note that

N. Zhang et al. / Synthesising verified access control systems through model checking 23

vp → p is � when vp is false, and p otherwise; similarly, vp ∧ p is ⊥ if vp is false
and p otherwise. Hence, S just enumerates all the vectors of �s and ⊥s for the ps
and vp → p and vp ∧ p are used to restrict the effect of the substitution only to ps
such that vp is false.

5.5.1. Substitution of reading goals
The knowledge states in which the reading goal [l] is known to be achieved are

those in which the knowledge held is sufficient to evaluate l in V0, T0. In order to do
that, the agent needs to be able to determine that l is true, or that it is false. Thus, the
appropriate formula over {v0p, t0p, vp, tp | p ∈ P} is γV0,T0 l ∨ γV0,T0 (¬l).

5.5.2. Substitution of realising goals
The knowledge states in which the realising goal 〈l〉 is known to be achieved are

those in which the knowledge held is sufficient to evaluate l in V0, T0. To realise that
l is true, l has to be true. Thus, the appropriate formula over {v0p, t0p, vp, tp | p ∈ P}
is γV0,T0 l.

5.5.3. Substitution of making goals
The knowledge states in which the making goal {l} is known to be achieved are

those in which the knowledge held is sufficient to evaluate that l is true in V , T .
Thus, the appropriate formula over {v0p, t0p, vp, tp | p ∈ P} is γV ,T l.

5.6. Backwards reachability computation

5.6.1. Computing sets of states
To find strategies the algorithm starts from KG, searching for sets of the knowl-

edge states which transition into KG by overwriting any p ∈ P to true; sets of the
knowledge states which transition into KG by overwriting any p ∈ P to false; and
sets of the knowledge states which transition into KG by sampling any p ∈ P . Then
for each newly found set, the algorithm continues to find other sets of the knowledge
states which transition into the new set through either of the three kinds of transition
relations. During this process, if kinit is found in a set of knowledge states, the goal
is considered as reachable by following the operations represented by the transition
relations which connect the set in which kinit is found to KG. The operations along
the path are deemed as the steps of a strategy by the algorithm.

In order to formally describe this process, we shall first define the concept of pre-
sets. For any a ∈ A, p ∈ P and a given set of knowledge states Y ,

Pre∃,a
p:=�(Y) is the set of the knowledge states in which a knows she is permitted to

overwrite p and which transition into Y by overwriting p to true (�). Its formal
definition is: {(V0, T0, V , T) | (V0, T0, V ∪ {p}, T ∪ {p}) ∈ Y , γV ,Tw(p, a) =
�}. The conditions in this set comprehension are conjoined together.

24 N. Zhang et al. / Synthesising verified access control systems through model checking

Pre∃,a
p:=⊥(Y) is the set of the knowledge states in which a knows she is permit-

ted to overwrite p and which transition into Y by overwriting p to false (⊥).
Its formal definition is: {(V0, T0, V , T) | (V0, T0, V ∪ {p}, T \ {p}) ∈ Y ,
γV ,Tw(p, a) = �}.

Pre∃,a
p=�(Y) is the set of the knowledge states in which a knows he is permitted

to sample p and which transition into Y by sampling p and find out it is
true (�). Its formal definition is: {(V0, T0, V , T) | p /∈ V0, p /∈ T0, p /∈ V ,
p /∈ T , (V0 ∪ {p}, T0 ∪ {p}, V ∪ {p}, T ∪ {p}) ∈ Y , γV ,Tr(p, a) = �}.

Pre∃,a
p=⊥(Y) is the set of the knowledge states in which a knows he is permitted to

sample p and which transition into Y by sampling p and find out it is false (⊥).
Its formal definition is: {(V0, T0, V , T) | p /∈ V0, p /∈ T0, p /∈ V , p /∈ T , (V0 ∪
{p}, T0 \ {p}, V ∪ {p}, T \ {p}) ∈ Y , γV ,Tr(p, a) = �}.

In the above definitions, γV ,Tr/w(p, a) = � denotes the condition under which a
knows with Knowledge V , T that she is permitted to read/overwrite p. The mapping
r/w(p, a) is a boolean expression composed of variables in P . It defines the condition
under which a is permitted to read/overwrite p. To represent a’s current knowledge
on r/w(p, a), we need to use the knowledge variables in V and T to replace every
occurrence of variables in r/w(p, a), because variables in V and T describes A’s
knowledge (a and A share the same knowledge) about the current state of the system.
The principle for the substitution is essentially the same with the principle we use in
representing KG.

In Section 5.5 we have seen how KG is represented by a boolean expression. The
algorithm uses BDDs to represent boolean expressions. All the pre-sets can be ob-
tained from KG through BDD computations using the formula in [21]:

Pre∃→(Y) = exists
(
ŷ′,apply(and, B→, BY ′)

)
,

where BY ′ is the BDD representation for the set Y ′ (which is obtained by replacing
all the variables in Y by their primed versions), B→ is the BDD representation for
the transition relation →, and ŷ′ stands for all the primed variables. In our case,
B→ is obtained by synthesising all the conditions in the formal definition of Pre∃,a

→
discussed above.

5.6.2. Generating strategies
During the course of the computation, the algorithm maintains pairs (Y , s) con-

sisting of a set Y of knowledge states and a strategy s. The pair (Y , s) denotes the
fact that s is a strategy that enables A to reach KG from each state in Y . For KG, the
s is simply ‘skip;’, which means ‘do nothing’.

The algorithm starts with the pair (KG,skip;). The core of the algorithm works
as follows: Given the pair (Y , s), it adds the pairs (Pre∃,a

p:=�(Y), (p := �; s)) and

(Pre∃,a
p:=⊥(Y), (p := ⊥; s)). For any two pairs (Y1, s1) and (Y2, s2), it adds the pair

(Pre∃,a
p=�(Y1) ∩ Pre∃,a

p=⊥(Y2), if (p) by a then s1 else s2).

N. Zhang et al. / Synthesising verified access control systems through model checking 25

The algorithm continues until no new pairs are generated. Now, all the pairs whose
set of knowledge states contains kinit contain the strategies we are looking for.

To find out guessing strategies instead of strategies, the only thing that needs to
be changed is to omit the condition γV ,Tr(p, a) = � when computing Pre∃,a

p=�(Y)

and Pre∃,a
p=⊥(Y).

5.7. Pseudo-code for the algorithm

The algorithm for extracting strategies is described below in the form of pseudo-
code. It assumes as input the initial state kinit and the set of goal knowledge states
KG. It outputs at least a strategy for going from kinit to some state in KG. The
algorithm works by backwards reachability from KG to kinit. It maintains a set of
states it has seen, called states_seen, and a data structure storing the pairs found
so far, called strategies.

Input: KG – set of goal knowledge states, kinit – the initial knowledge state,
P – set of propositional variables, A – set of acting agents,
r, w – mappings defining reading and writing permissions (are used when

computing the pre-sets, though not explicitly shown in the algorithm).
Output: a strategy for going from kinit to some state in KG if such strategies exist.

1 strategies := ∅;
2 states_seen := ∅;
3 put (KG,skip;) in strategies;
4 repeat until strategies does not change{
5 choose (Y1, s1) ∈ strategies; // for all pairs in strategies

6 for each p ∈ P{
7 for each a ∈ A{
8 PTY1 := Pre∃,a

p:=�(Y1);
9 if ((PTY1 �= ∅) ∧ (PTY1 �⊆ states_seen)){
10 states_seen := states_seen ∪ PTY1;
11 pts1 := “set p to � by a;” + s1;
12 strategies := strategies ∪ (PTY1, pts1);
13 if (kinit ∈ PTY1)
14 output pts1;
15 }
16 PFY1 := Pre∃,a

p:=⊥(Y1);
17 if ((PFY1 �= ∅) ∧ (PFY1 �⊆ states_seen)){
18 states_seen := states_seen ∪ PFY1;
19 pfs1 := “set p to ⊥ by a;” + s1;
20 strategies := strategies ∪ (PFY1, pfs1);
21 if (kinit ∈ PFY1)
22 output pfs1;

26 N. Zhang et al. / Synthesising verified access control systems through model checking

23 }
24 }
25 }
26 choose (Y2, s2) ∈ strategies; // for all pairs in strategies

27 for each p ∈ P{
28 for each a ∈ A{
29 PSY := Pre∃,a

p=�(Y1) ∩ Pre∃,a
p=⊥(Y2);

30 if ((PSY �= ∅) ∧ (PSY �⊆ states_seen)){
31 states_seen := states_seen ∪ PSY ;
32 strategies := strategies ∪ (PSY , pss);
33 pss := “if (p) by a then s1 else s2”;
34 if (kinit ∈ PSY)
35 output pss;
36 }
37 }
38 }
39 }

In practice, we found there is another way to compute the pairs, which is only
slightly different from the one described above. We provide its pseudo-code in Ap-
pendix B, where we use bold font to highlight the differences. We call the algorithm
described here ‘Algo-0’ and the one described in Appendix B ‘Algo-1’. When there
are no strategies, both Algo-0 and Algo-1 find none. Because in these cases, kinit
will not be found in any set generated during the pre-computations. When there are
some strategies, both Algo-0 and Algo-1 find some, however, the strategies found by
Algo-1 may differ from the ones found by Algo-0. AcPeg integrates both Algo-0 and
Algo-1, so that the user can use either of them. However, because Algo-0 is easier
to reason about than Algo-1, we present Algo-0 here and use it as the basis for our
analysis.

5.8. Proof of correctness

THEOREM 1. The algorithm will eventually terminate.

PROOF. To prove the algorithm will terminate is equivalent to proving that the size
of strategies will not infinitely grow. The set strategies only increases if
we encounter states not yet in states_seen. As there are only finitely many states,
we cannot go on encountering new states for ever. �

LEMMA 1. If there exists a strategy s, then the algorithm will produce a strategy
(but not necessarily s).

N. Zhang et al. / Synthesising verified access control systems through model checking 27

PROOF. The algorithm performs exhaustive backwards reachability and therefore
will find all states for which there is a strategy to arrive at KG.

Since s is a strategy from kinit to KG, kinit will be in the set of states found and
therefore the algorithm will output a strategy from kinit to KG. �

REMARK 1. The algorithm is non-deterministic thanks to the choice operator. That
is why it is not guaranteed to obtain s in the lemma above. The algorithm prevents
any subset from being added to strategies if all the states in that subset have
already been found in states_seen. This condition guarantees the termination
of the algorithm, however, at the cost of eliminating the prospect of exploring some
strategies. In all cases there is a way of picking the choices so that s is output.

THEOREM 2. If there are strategies from kinit to KG the algorithm finds at least
one of them.

PROOF. Following Lemma 1, however the choice operator is resolved, kinit will
eventually be included in states_seen, and therefore some strategy will be gen-
erated. �

LEMMA 2. For all (Y , s) ∈ strategies, and for all y ∈ Y , s succeeds on y and
the result is in KG.

PROOF. We look at all the ways that (Y , s) can be added to strategies. At the
beginning, (KG,skip;) is added in. The correctness of the lemma is self-evident for
this case. During the course of the algorithm, pairs are added in one of these three
circumstances:

(i) (PTY1, pts1) is added, where, ∃ a ∈ A and p ∈ P , such that PTY1 =
Pre∃,a

p:=�(Y1), pts1 = “set p to � by a;” + s1, and (Y1, s1) is in
strategies.
We know by the inductive hypothesis for all y1 ∈ Y1, s1 succeeds on y1 and
result is in KG. We also know for all y ∈ PTY1 that a can do p := � and
that the result of that is in Y1, because that is the way we get PTY1 from Y1.
Therefore pts1 succeeds on all the states in PTY1 and the result is in KG.

(ii) (PFY1, pfs1) is added, where, ∃ a ∈ A and p ∈ P , such that PFY1 =
Pre∃,a

p:=⊥(Y1), pfs1 = “set p to ⊥ by a;” + s1, and (Y1, s1) is in
strategies.
The argument for the above case applies also to this one.

(iii) (PSY , pss) is added, where, ∃ a ∈ A and p ∈ P , such that PSY =
Pre∃,a

p=�(Y1)∩Pre∃,a
p=⊥(Y2), pss = “if (p) by a then s1 else s2” and (Y1, s1),

and (Y2, s2) are both in strategies.
We know by the inductive hypothesis for all y1 ∈ Y1, s1 succeeds on y1 and
result is in KG, and y2 ∈ Y2, s2 succeeds on y2 and result is in KG. We also

28 N. Zhang et al. / Synthesising verified access control systems through model checking

know for all y ∈ PSY that a can read p and if it is �, the result of that is
in Y1. However, if it is ⊥, the result of that is in Y2. Therefore pss succeeds
on all the states in PSY and the result is in KG. �

THEOREM 3. If the algorithm outputs the strategy s then s succeeds on kinit and
the result is in KG.

PROOF. From Lemma 2 we know that for all (Y , s) ∈ strategies and y ∈ Y ,
s succeeds on y and the result is in KG. Because if s gets output, there must exist
a Y , such that kinit ∈ Y and (Y , s) ∈ strategies. Therefore, it follows that s
succeeds on kinit and the result is in KG. �

From the implication of theorem 3, we know that if there is no strategy s which
succeeds on kinit and results in KG, the algorithm will output none.

5.9. Computational complexity

We use K for the set of all the knowledge states, |K| for the total number of
knowledge states, |P | for the number of variables in P , |A| for the number of acting
agents. We assume that |K| is equal to 24|P | because for each variable in P , we use
four knowledge variables to represent the coalition’s knowledge about it. (This is an
upper bound; |K| is actually less than 24|P | because not all the knowledge variables
are independent.)

Because the computations in our algorithm are done through operations between
BDDs, several remarks concerning the complexity of BDD operations should be
made in advance.

• For two BDDs B1 and B2, the complexity of the operation apply(and/or,
B1, B2) is determined by |B1||B2|, where |B1| and |B2| are the numbers of
nodes in B1 and B2 respectively.

• Suppose X and Y are two subsets of K; BX and BY are the BDD representa-
tions of X and Y respectively. The number of nodes in BX or BY is at most
24|P |. Therefore, the complexity of the operation apply(and/or, BX , BY) in
the worst case is 28|P |.

• Suppose B→ is a BDD representing one of the transition relations presented in
Section 5.6.1, the number of nodes in B→ is at most 16|P | if the knowledge
variables are properly ordered.

• The complexity of an existential quantification over n variables in a BDD is 2n.
• Checking the equality of two BDDs takes constant time in all BDD implemen-

tations, e.g., BuDDy.

In what follows, we discuss the complexity of the algorithm line by line, only
omitting those lines of which operations spend constant time.

N. Zhang et al. / Synthesising verified access control systems through model checking 29

Line 5. Because the conditions in Lines 9, 17 and 30 prevent any subset whose ele-
ments are already found from being added to strategies, and, in the worst
case, the subsets of K are just singletons, there are at most |K| (24|P |) pairs in
strategies. Therefore, this step repeats at most 24|P | times.

Line 6. This step repeats |P | times.

Line 7. This step repeats |A| times.

Line 8. According to the formula for computing Pre∃→(Y) in Section 5.6.1, the op-
eration of this step involves the BDD computation apply(and, Bp:=�, BY ′

1
)

followed by an existential quantification over all the V ′, T ′ variables on the
resulting BDD of the apply operation. Let |Bp:=�| denote the number of
nodes in Bp:=� and |BY ′

1
| denote the number of nodes in BY ′

1
. 2|P | is the to-

tal number of V ′, T ′ variables. The complexity of the apply operation in the
worst case is 16|P |24|P | and the complexity of the existential quantification is
22|P |. The worse one of the two is 16|P |24|P |. Therefore, the time spent on
this step in the worst case is determined by 16|P |24|P |.

Line 9. The time spent on this step is determined by the time spent on checking
if PTY1 is a subset of states_seen. Checking if PTY1 is a subset of
states_seen can be done by uniting PTY1 and states_seen together
and then seeing if the resultant set is equal to states_seen. Hence the time
spent on this step in the worst case is determined by 28|P |.

Line 10. The time spent on this step in the worst case is determined by 28|P |.

Line 16. The time spent on this step in the worst case is determined by 16|P |24|P |.

Line 17. The time spent on this step in the worst case is determined by 28|P |.

Line 18. The time spent on this step in the worst case is determined by 28|P |.

Line 26. This step repeats at most 24|P | times.

Line 27. This step repeats |P | times.

Line 28. This step repeats |A| times.

Line 29. The time spent on this step in the worst case is determined by 16|P | ×
24|P |+1 + 28|P |. Counting the larger one of the two, the time is determined
by 28|P |.

Line 30. The time spent on this step in the worst case is determined by 28|P |.

Line 31. The time spent on this step in the worst case is determined by 28|P |.

Adding the time spent on each step together, we get 24|P | × (|P | × |A| ×
(16|P |24|P | + 28|P | + 28|P | + 16|P |24|P | + 28|P | + 28|P |) + 24|P | × |P | × |A| ×
(28|P | +28|P | +28|P |)). Therefore, the complexity of the algorithm in the worst case
is asymptotically bounded above by 3 × 216|P |. However, as the experimental data
in Table 3 show, the situation in practice is far better than this.

30 N. Zhang et al. / Synthesising verified access control systems through model checking

6. Implementation

6.1. General description

AcPeg (Access Control Policy Evaluator and Generator) is implemented in Java.
It integrates both the functions of the RW model-checking and the translation from
RW to XACML (which is to be discussed in Section 7). A three-level abstraction
mechanism is built into the tool to work with the RW model-checking. CEGAR
(CounterExample-Guided Abstraction Refinement [11]) is also implemented in the
tool, which can be used with the abstraction.

The translation works in Windows, Unix and Linux. The RW model-checking
works only in Linux, because the BuDDy library used by AcPeg is for Linux only.
However, one can run AcPeg as the RW model-checker in Windows provided one
downloads the JavaBDD package for Windows from [31]. The BuDDy library for
Windows can be found in that package. An explanation of the command line para-
meters for running AcPeg is in Appendix C.

6.2. Computational round

A computational round is a particular running of the algorithm when each quanti-
fied variable defined in the query is instantiated by an element in the class on which
the variable is defined. In the query defined in Query 4.2, there are three quantified
variables: a, c (disjointed) are defined on the set Agent, and p is defined on the set
Paper. The set Agent is populated to four elements – {a1, a2, a3, a4} – and the
set Paper to three elements – {p1, p2, p3} – by the execution of the run-statement.
Therefore the possible values that a can have is four, the possible values for c is four,
and the possible values for p is three. The total number of combinations of the val-
ues of a, c and p is forty-eight. Each of the combinations, if run by the algorithm,
becomes a round.

However, to obtain the overall result for checking a query, not every round is
executed by the tool. The use of the keyword disj excludes those rounds where
different quantified variables defined on the same class play the same element. More-
over, for an existential (universal) variable defined on a class, a round in which the
checking result returned is true (false) excludes the necessity of running those rounds
where only this variable is instantiated differently.

The above optimisations are built into the tool. However, the computation can be
further simplified. In the cases that all quantified variables are made distinct using the
keyword disj, every round returns the same result, and therefore the result returned
by any round is the same as the overall result. This is so because in the cases that all
quantified variables play different elements, the model built by the tool is symmetric.
When running the tool, we leave the decision of running which round to the user
(see Appendix C for the using of the option ‘r’). In the following discussions, all
the experimental results on computational time and memory usage are the results
obtained from running just one round.

N. Zhang et al. / Synthesising verified access control systems through model checking 31

6.3. Implementing strategies and guessing strategies

The RW program for Example 4.1 is shown in Fig. 4.
Now we write a query to ask the question that whether there is a strategy or guess-

ing strategy for a to set z’s value to false. This query is expressed by Query 6.1.

QUERY 6.1.

run for 1 P, 1 Agent
check{E p: P, a: Agent || {a}:{~z(p)}}

If we use option ‘a’ (see Appendix C) to tell AcPeg to search for strategies for
Query 6.1, AcPeg finds none. Because to set z to false, a needs to be able to make
either x’s value true or y’s value true. To have confidence to write the value of either x

or y, a needs to find out u’s value. However, u’s value is unreadable by a. Therefore,
there isn’t a strategy which always guarantees that a can set z to false. But if we use
option ‘i’ to run AcPeg to search for guessing strategies, the tool finds one, which
assumes a can read every information she needs. The guessing strategy is shown in
Fig. 5, where [p = 1 a = 1] stands for the fact that p is instantiated as the first
element in the set Paper and a is instantiated as the first element in the set Agent.
Strategies and guessing strategies are output to a file named ‘strategy.acc’ which is
in the same directory with the checker.

AccessControlSystem exampleIntheSlide
Class P;
Predicate u(p: P), x(p: P), y(p: P), z(p: P);
x(p){

read: true;
write: ~u(p);

}
y(p){

read: true;
write: u(p);

}
z(p){

read: true;
write: (x(p) or y(p));

}
End

Fig. 4. The RW script for the policy defined in Example 4.1.

32 N. Zhang et al. / Synthesising verified access control systems through model checking

[p=1 a=1]
Acting agents: [1]
Guessing strategy: 1
if (u(1) is true) by 1 {

set y(1) to true by 1;
set z(1) to false by 1;
skip;

}else {
set x(1) to true by 1;
set z(1) to false by 1;
skip;

}
The number of guessing strategies found is: 1

Fig. 5. The guessing strategy found for Example 4.1.

6.4. Abstraction

To enable AcPeg to handle large cases, we added abstraction mechanisms to the
tool. During the course of checking, the most time-consuming computations involve
the BDDs which represent the conditions such as V ′ = V ∪ {pi} in computing the
pre-sets. Such conditions represent the fact that when an action, either sampling or
overwriting, is performed on pi, it only changes A’s knowledge on pi – it does not
change A’s knowledge on other variables in the set P . Using boolean expressions to
represent such conditions is expensive. For example, V ′ = V ∪ {pi} is represented

by (
∧|P |

j=1,j 	=i((v
′
pj

∧ vpj) ∨ (¬v′pj
∧ ¬vpj))) ∧ v′pi

. If |P | is large, the length of
the expression can be huge. For reasons of efficiency, we can choose to make this
expression simpler by not maintaining A’s knowledge of all the variables in P , when
an action is performed only on pi. For instance, if we only track A’s knowledge of pi

when an action is performed on pi, the above expression representing V ′ = V ∪{pi}
becomes v′pi

.
According to how many variables are tracked when modelling the change of A’s

knowledge when an action is performed on only one variable, we have introduced
three abstraction levels in the tool for users to specify. The minimum level, level 0, is
the level that no abstraction is used, that is, the tool maintains A’s knowledge on all
variables when actions are performed on any pi. It is the most precise level and the
default level, if no abstraction level is specified in the command line. The maximum
level, level 2, is the level when an action is performed on pi, the tool only maintains
A’s knowledge on pi, and also on all the other variables that occur in ψ. In the middle,
level 1 is built on the basis of level 2. In this level, the tool not only maintains A’s
knowledge on pi and all the variables in ψ, as level 2 does, but also maintains A’s
knowledge on any other variables in P specified by the user in a configuration file
named ‘abstraction.config’. The more abstraction we use, from level 0 to level 2, the
more precision we lose. If in level 1 or 2, the checking result is ⊥, then it means there

N. Zhang et al. / Synthesising verified access control systems through model checking 33

is no strategy for A to reach its goal. But if it is �, it does not guarantee there is a
strategy. In fact, the answer is uncertain. Because by not maintaining A’s knowledge
on all variables, some transitions which actually cannot happen may be included in
the course of computing the pre-sets.

Working in abstraction, when a seemingly false strategy or guessing strategy is
found, it is useful to know which variables in P , being not tracked, have caused
the strategy or guessing strategy to be found. Once the variables are found, they
can be put into the file ‘abstraction.config’ for AcPeg to track, so that, by running
the tool once again, we can see whether the strategy or guessing strategy is found
again. The repeating use of this procedure gradually rules out false strategies or
guessing strategies found because of abstraction. This methodology is referred to
as counterexample-guided abstraction refinement (CEGAR) in [11].

AcPeg provides a built-in function to do CEGAR. When option ‘g’ is specified,
together with either abstraction level 1 or 2, AcPeg outputs a suggestion for each
strategy or guessing strategy found. The suggestion is a list of variables in P sus-
pected by AcPeg of being responsible for the strategy.

Consider the query defined in Query 4.2. We know that, if we use AcPeg to resolve
the query without using abstraction, it finds no strategy. However, if we use AcPeg to
resolve the query in abstraction level 2 together with CEGAR (running in Algo-0),
we will see that the output contains a false strategy and a suggestion made by AcPeg,
shown in Fig. 6.

The checking is performed in the round that a plays the first element of the set
Agent, c plays the second and p is instantiated as the first element of the set Paper.
The finding of this strategy is, as AcPeg suggests, because the variable author(1, 1)
is not tracked during the course of the checking. Following the suggestion provided
by AcPeg, we put the variable author(1, 1) into the file ‘abstraction.config’ by
adding the line ‘Predicate = author, Parameters = 1 1’. Then we run AcPeg again
in abstraction level 1. This time no strategy is found.

[a=1 c=2 p=1]
Acting agents: [2]
Strategy: 1
set pcmember(1) to true by 2;
set reviewer(1,1) to true by 2;
skip;

Please track the following variable(s):
- this may not be precise

author(1,1)

The number of strategies found is: 1

Fig. 6. A false strategy and a suggestion made by AcPeg when checking Query 4.2 in abstraction level 2
and CEGAR.

34 N. Zhang et al. / Synthesising verified access control systems through model checking

6.5. Strategies for nested queries

The strategy described by Strategy 1.1 is found by AcPeg when Query 4.3 is
checked. The strategy is shown in Fig. 7.

The strategy described by Strategy 1.2 can be found if the following query is
checked by AcPeg. (Query 6.2 differs from Query 4.3 only in that the condition
reviewer(p, a)! is positive, meaning that initially a knows he is a reviewer of p.)

QUERY 6.2.

run for 1 Paper, 3 Agent
check {E disj a,b,c: Agent, p: Paper || chair(c)*! and
~author(p,a)*! and submittedreview(p,b)*! and
~submittedreview(p,a)! and pcmember(a)*! and
reviewer(p,a)! and ~subreviewer(p,b,a)*! and
~subreviewer(p,c,a)*! and
~subreviewer(p,a,a)*! -> {a}:([review(p,b)] AND
{a,c}:({submittedreview(p,a)}))}

However, as well as the strategy described by Strategy 1.2, AcPeg also finds a
more straightforward one, where a first submits his review for p and then reads
b’s review for p. This is so because, along the way of achieving the first subgoal
‘[review(p, b)]’, the second subgoal ‘{submittedreview(p, a)}’ may also be achieved
by a. The two strategies are shown in Fig. 8.

The goal in using AcPeg is to find undesirable strategies. If a query yields strate-
gies which are not perceived as problematic, as in this case, the user should try to
refine the query. To avoid the unwanted strategy in this case, one can refine the
query by insisting that a achieves review(p, b) first, and then a, c together achieve
submittedreview(p, a).

[a=1 b=2 c=3 p=1]
Strategy: 4.1
Coalition: [1]
if (review(1,2) is true) by 1 {

skip;
}else {

skip;
}

Coalition: [1, 3]
set reviewer(1,1) to true by 3;
set submittedreview(1,1) to true by 1;
skip;

Fig. 7. The strategy found for Query 4.3.

N. Zhang et al. / Synthesising verified access control systems through model checking 35

[a=1 b=2 c=3 p=1]
Strategy: 1.1
Coalition: [1]
set submittedreview(1,1) to true by 1;
if (review(1,2) is true) by 1 {

skip;
}else {

skip;
}

Coalition: [1, 3]
skip;

Strategy: 4.1
Coalition: [1]
set reviewer(1,1) to false by 1;
if (review(1,2) is true) by 1 {

skip;
}else {

skip;
}

Coalition: [1, 3]
set reviewer(1,1) to true by 3;
set submittedreview(1,1) to true by 1;
skip;

Fig. 8. Two strategies found for Query 6.2.

QUERY 6.3.

run for 1 Paper, 3 Agent
check {E disj a,b,c: Agent, p: Paper ||

chair(c)*! and ~author(p,a)*! and
submittedreview(p,b)*! and
~submittedreview(p,a)! and
pcmember(a)*! and reviewer(p,a)! and
~subreviewer(p,b,a)*! and
~subreviewer(p,c,a)*! and ~subreviewer(p,a,a)*!

-> {a}:(([review(p,b)] and {~submittedreview(p,a)})
AND {a,c}:({submittedreview(p,a)}))}

This query does not yield the unwanted strategy.
The strategy found by AcPeg when Query 4.4 is checked, is shown in Fig. 9.

36 N. Zhang et al. / Synthesising verified access control systems through model checking

[a=1 c=2]
Strategy: 2.1
Coalition: [2]
set pcmember(1) to true by 2;
skip;

Coalition: [1]
set pcmember(1) to false by 1;
skip;

Coalition: [2]
set pcmember(1) to true by 2;
skip;

Coalition: [1]
set pcmember(1) to false by 1;
skip;

Coalition: [2]
set pcmember(1) to true by 2;
skip;

Fig. 9. The strategy found for Query 4.4.

6.6. Case study – an employee information system

EXAMPLE 6.1. An Employee Information System (EIS) is used to enforce autho-
risation rules on bonus allocation among the employees of a department. A bonus
package with a fixed number of options, such as a free day off work, is available
for all employees. The director of the department chooses options from the package
to give to all employees. She can also read the information about the distribution of
options. The director can promote an employee to be a manager. Managers can read
and set ordinary employees’ bonuses, but not bonuses of other managers or the di-
rector. An employee can appoint another employee to be his advocate, and have read
access to his bonus information – for example, this might be useful if he needs help
from a trade union.

To put this example in the RW formalism, let Bonus be the set of bonus options,
Σ be the set of employees and thus P includes the following propositional variables,
for all b ∈ Bonus, a, a1, a2 ∈ Σ:

bonus(a, b) bonus option b is owned by a,
manager(a) a is a manager in the department,
director(a) a is the director of the department,
advocate(a1, a2) a2 is a1’s advocate.

N. Zhang et al. / Synthesising verified access control systems through model checking 37

The permission mappings r and w can be defined as follows:

r(bonus(a, b), x)

�
((x = a ∨ director(x))
∨ (manager(x) ∧ ¬manager(a) ∧ ¬director(a))
∨ advocate(a, x)

)
rule 1

w(bonus(a, b), x)

�
((manager(x) ∧ ¬manager(a) ∧ ¬director(a))
∨ director(x)

)
rule 2

r(manager(a), x)
� true rule 3

w(manager(a), x)
�

(
director(x) ∨ (x = a ∧ manager(a) ∧ ¬director(a))

)
rule 4

r(director(a), x)
� true rule 5

r(advocate(a1, a2), x)
� true rule 6

w(advocate(a1, a2), x)
�

(
x = a1 ∨ (advocate(a1, a2) ∧ x = a2)

)
rule 7

The RW script for this example is shown in Fig. 10.
Rule 2 explicitly specifies that no manager can set another manager’s bonus; oth-

erwise two managers may co-operate to set each other’s bonuses. However, the inten-
tion of rule 2 can be breached when several agents work together. Suppose a1, a2 ∈ Σ
are different agents; a1 and a2 are managers but not directors. Consider the query:

QUERY 6.4.

run for 4 Bonus, 8 Agent
check{E disj a1,a2: Agent, b: Bonus || ~director(a1)*!

and ~director(a2)*!
and manager(a1)! and manager(a2)! and ~bonus(a1,b) ->

{a1,a2}:({bonus(a1,b)})}

For this query, AcPeg finds a strategy in which a1 resigns his position as manager
and then a2 sets his bonus. Suppose we prevent this strategy by insisting that a1
should be a manager at the end:

QUERY 6.5.

run for 4 Bonus, 8 Agent
check{E disj a1,a2: Agent, b: Bonus || ~director(a1)*!

38 N. Zhang et al. / Synthesising verified access control systems through model checking

AccessControlSystem EmployeeInformationSystem
Class Bonus;
Predicate bonus(employee: Agent, bonus: Bonus),

manager(employee: Agent),
director(employee: Agent),
advocate(appointer: Agent,

appointee: Agent);
bonus(a,b){
read: (user=a or director(user))

or (manager(user) and ~manager(a)
and ~director(a)) or (advocate(a,user));

write: (manager(user) and ~manager(a)
and ~director(a)) or director(user);

}
manager(a){
read: true;
write: (director(user) or (user=a and manager(a)

and ~director(a)));
}
director(a){
read: true;

}
advocate(a1,a2){
read: true;
write: user=a1 or (user=a2 and advocate(a1,a2));

}
End

Fig. 10. The RW script for the access control system in Example 6.1.

and ~director(a2)*!
and manager(a1)! and manager(a2)! and ~bonus(a1,b)

-> {a1,a2}:({bonus(a1,b)} and {manager(a1)})}

Then AcPeg doesn’t find a strategy. Suppose now we introduce another agent a3
which is a director, and ask the query

QUERY 6.6.

run for 4 Bonus, 8 Agent
check{E disj a1,a2,a3: Agent, b: Bonus || ~director(a1)*!
and ~director(a2)*!
and manager(a1)! and manager(a2)! and director(a3)*!
-> {a1,a2,a3}:({bonus(a1,b)} and {manager(a1)})}

N. Zhang et al. / Synthesising verified access control systems through model checking 39

For this query, we get the strategy in which a3 directly sets the bonus of A1, but
we also get the strategy in which a1 resigns her position as manager; then a2 set a1’s
bonus; and after that a3 promotes a1 to be manager again.

Indeed, if we suspect strategies like that one and want to check their possibility
using AcPeg, we can do so. The following query directly finds the same strategy:

QUERY 6.7.

run for 4 Bonus, 8 Agent
check{E disj a1,a2,a3: Agent, b: Bonus || ~director(a1)*!
and ~director(a2)*! and manager(a1)! and manager(a2)!
and director(a3)*! -> {a1}:({~manager(a1)}
AND {a2}:({bonus(a1,b)} AND {a3}:({manager(a1)})))}

6.7. Case study – a student information system

EXAMPLE 6.2. A Student Information System (SIS) is a system which enforces au-
thorisation rules for accessing students’ marks of a particular module. The following
rules apply:

1. Whether an agent is a student is readable by all the agents.
2. Whether an agent is the lecturer of the module is readable by all the agents.

There is only one lecturer.
3. Whether a student’s year is higher than another student’s is readable by all the

agents.
4. Whether a student is a demonstrator of another student is readable by all the

agents.
5. The lecturer can appoint a student in a higher year to be a demonstrator of a

student in a lower year.
6. Whether a student can write another student’s mark is readable by the for-

mer.
7. The lecturer can give writing permissions to a demonstrator.

To model this example in the RW formalism, let Σ be the set of agents and thus
P includes the following propositional variables, for all a, a1, a2 ∈ Σ:

student(a) a is a student,
lecturer(a) a is the lecturer,
higher(a1, a2) student a1 is in a year higher than that of stu-

dent a2,
demonstrator_of(a1, a2) student a1 is a demonstrator of student a2,
mark(a) student a’s mark. (Here, in a highly abstract

way, we think of a student’s mark as either
pass or fail.)

40 N. Zhang et al. / Synthesising verified access control systems through model checking

AccessControlSystem StudentInformationSystem
Predicate lecturer(agent: Agent)!,

student(agent: Agent),
demonstrator_of(demonstrator: Agent,

student: Agent),
higher(senior: Agent, junior: Agent),
mark(student: Agent);

lecturer(l){ read: true;
}
student(s){ read: true;
}
higher(s,j){ read: true;
}
demonstrator_of(d,s){
read: true;
write: (lecturer(user) & higher(d,s)) |

(demonstrator_of(d,s) & user=d);
}
mark(a){
read: user=a;
write: lecturer(user) | demonstrator_of(user,a);

}
End

Fig. 11. The RW script for the access control system in Example 6.2.

We assume that the relation higher is antisymmetric and transitive. Note, how-
ever, that currently there is no way in the RW language to specify such constraints.
(See 8.2.2 for the discussion on the limitation of the RW language on specifying
integrity constraints.) This means that AcPeg could find attack strategies based on
impossible interpretation of the higher relation. The user needs to be aware of
this.

The RW script for the model is in Fig. 11.
In such a system, it is important to ensure that no two students can write each

other’s marks. Otherwise, they may conspire to increase their marks. To verify this
property we can check Query 6.8, which asks that ‘can the lecturer appoint two
students to be demonstrators of each other, and as a result, they can write each other’s
marks.’

QUERY 6.8.

check{E disj l,a1,a2: Agent || lecturer(l)*!
and student(a1)*! and student(a2)*!
and higher(a1,a2)*! -> {l}:{demonstrator_of(a1,a2)
and demonstrator_of(a2,a1)}}

N. Zhang et al. / Synthesising verified access control systems through model checking 41

The query was checked by both Algo-0 and Algo-1. Both found no strategy.

6.8. Case study – a patient record system

The policy defined in this example is based on the case study of the Multidomain
Healthcare System in [5].

EXAMPLE 6.3. A Patient Record System (PRS) is a system which enforces authori-
sation rules for accessing patients’ electronic health records (EHRs). A patient may
explicitly exclude certain individuals from accessing her EHR. Doctor d of a hospi-
tal may access the record of patient p if d is a treating doctor of p and d is not in
p’s exclusion list. Doctor d becomes a treating doctor of patient p if a nurse-on-duty
assigns p to d while d is on duty. As soon as d ceases to be a treating doctor of p, he
can no longer access p’s record.

To model this example in the RW formalism, let Σ be the set of agents and thus P
includes the following propositional variables, for all a, a1, a2 ∈ Σ:

patient(a) a is a patient,
doctor_on_duty(a) a is a doctor-on-duty,
nurse_on_duty(a) a is a nurse-on-duty,
excluded(a1, a2) a2 is on the exclusion list of patient a1,
record(a) patient a’s record (Here, in a highly abstract

way, we think of a patient’s record only con-
taining one bit of information.),

treating_doctor(a1, a2) a1 is a treating doctor of patient a2.

The RW script for the model is in Fig. 12.
In this example, we check that whether a treating doctor having ceased to be a

treating doctor can re-gain the privilege of overwriting a patient’s record without the
help of other agents. The property is expressed by Query 6.9.

QUERY 6.9.

run for 6 Agent
check{E disj p,d: Agent || treating_doctor(d,p)!
and patient(p)*!
-> {d}:({~treating_doctor(d,p)}
AND {d}:({record(p)}))}

Query 6.9 was checked by both Algo-0 and Algo-1 and no strategy was found.

42 N. Zhang et al. / Synthesising verified access control systems through model checking

AccessControlSystem PatientRecordSystem
Predicate patient(agent: Agent), doctor_on_duty(agent: Agent),

nurse_on_duty(agent: Agent),
excluded(patient: Agent, agent: Agent),
record(patient: Agent),
treating_doctor(doctor: Agent, patient: Agent);

patient(a) { read: true;
}
doctor_on_duty(a) { read: true;
}
nurse_on_duty(a) { read: true;
}
excluded(p,a) { read: user=p; write: user=p;
}
record(p) {
read: user=p | (~excluded(p,user) & treating_doctor(user,p));
write: treating_doctor(user,p) & ~excluded(p,user);

}
treating_doctor(d,p) {
read: true;
write: (nurse_on_duty(user) & doctor_on_duty(d) & patient(p)

& ~treating_doctor(d,p))
| treating_doctor(d,p);

}
End

Fig. 12. The RW script for the access control system in Example 6.3.

6.9. Performance

We discuss the performance of the tool in terms of the memory it uses and the
time it spends on a checking. Two main factors influence its performance: the nature
of a query and the number of variables in P (see the discussion in Section 5.9).

In Table 2, we summarise the data on the memory usage and the time spent on
all the testing cases discussed in the previous subsections of this chapter. All the
checks are performed without using abstraction. The computer used is a laptop run-
ning Linux (kernel 2.6.10) on a Pentium M 1.6GHz and 512MB RAM. The table
includes results from both Algo-0 and Algo-1, so that the performance of the two
variants of the algorithm can be compared. The general performance of the tool is
demonstrated by the experimental results. The unit for memory usage is MB (mega
byte) and the unit for time spent is ms (millisecond).

A general observation is that the memory usage does not increase as dramatically
as the time spent when the size of the model increases. In terms of memory usage,
there is no observable difference between Algo-0 and Algo-1. However, as for the
computational time, we may conclude that the performance of Algo-1 is slightly
better than that of Algo-0 (see also Table 3).

Now we shall rule out the influences of the queries and observe how the increasing
of the size of a model solely affects the tool’s performance. To do this test, we use

N. Zhang et al. / Synthesising verified access control systems through model checking 43

Table 2

Experimental results obtained from running the test cases in Section 6

Query Assignment |P | Memory usage Time spent

Algo-0 Algo-1 Algo-0 Algo-1

Query 4.2 Paper = 3 Agent = 4 104 156 156 3600 3600

Query 4.3 Paper = 1 Agent = 3 27 155 155 250 250

Query 6.2 Paper = 1 Agent = 3 27 155 155 1000 700

Query 4.4 Paper = 1 Agent = 3 27 155 155 250 252

Query 6.4 Bonus = 4 Agent = 8 112 162 162 30000 22500

Query 6.8 Agent = 10 230 156 156 33807 34181

Query 6.9 Agent = 8 160 156 156 41979 41284

Table 3

Experimental results obtained from checking Query 6.4 with different sizes of the model

Assignment |P | Memory usage Time spent

Algo-0 Algo-1 Algo-0 Algo-1

Bonus = 3 Agent = 3 24 155 155 324 288

Bonus = 3 Agent = 5 50 156 156 1410 1024

Bonus = 4 Agent = 6 72 159 159 3326 2595

Bonus = 4 Agent = 8 112 162 162 30000 22500

Bonus = 5 Agent = 10 170 169 169 81000 58660

Bonus = 6 Agent = 12 240 195 195 226764 177357

Query 6.4 and assign different elements to the set Bonus and the set Agent. The
experimental results are summarised in Table 3.

From the data in Table 3 we can see that, in practice, the computing time increases
far slower than the estimation under the worst case discussed in Section 5.9. Two
more reasons make the prospect of using AcPeg even more optimistic. As Daniel
Jackson has argued in the case of Alloy, small scope checks are extremely valuable
for finding errors [23]. Most errors can be found by checking models of small sizes.
Moreover, the tool outputs a strategy whenever it finds one. Therefore one does not
need to wait to the end of a checking. As soon as a strategy is output one can abort
the program immediately.

7. RW to XACML

The eXtensible Access Control Markup Language (XACML) is an access control
policy specification language created by the OASIS committee [15]. It is intended to
be used as a standard language in the field of e-business. Policies written in XACML
can be bolted onto existing access control systems. Or, new access control systems

44 N. Zhang et al. / Synthesising verified access control systems through model checking

can be implemented based on existing XACML policies. However, policies written
in XACML are hard to read and analyse directly. The syntax of XACML is neither
compact nor readable to someone who is not familiar with it. Writing policies in
XACML directly by hand is not only difficult but also error-prone. However, AcPeg
makes this task easier by translating policies written in the RW language, which
offers a compact, readable syntax, into XACML. This is possible mainly because,
like authorisation conditions in RW, XACML represents authorisation conditions
using the form of boolean expressions. The benefit of the translation is twofold:
First, it allows the relatively concise descriptions of access control policies in RW to
be automatically translated into the machine-oriented XACML. Secondly, since the
properties of systems described in RW can be verified algorithmically, the translation
guarantees to produce policies which preserve the required properties.

The XACML we generate from an RW script also includes some SQL. This is
used to access a database during run-time, in order to allow state information to be
used in taking access control decisions.

Sun Microsystems has implemented a set of Java classes [30] for XACML. It in-
cludes a program which simulates the functions of a policy decision point, that is, it
reads XACML policies; searches for values for necessary attributes and makes de-
cisions. In this way, one could “bolt on” access control classes to an existing Java
program, by writing the policy in RW, then using our translator to XACML, and then
generating Java classes using Sun’s compiler.

We discuss the translation by first giving a little background knowledge about
XACML.

7.1. Background on XACML

7.1.1. Data-flow model of XACML
An access control system using XACML as its policy specification language is

meant to be used on the Internet, where different components of the system locates
throughout the network. The data-flow model which describes how information is
exchanged between the components is shown in Fig. 13.

Access control policies written in XACML are stored in the policy administration
point (PAP). This PAP is known to the policy decision point (PDP), which is the
entity that makes access decisions. The policy enforcement point (PEP) is the entity
which implements and enforces mechanisms of access control. When it receives a re-
quest, it passes the request to the context handler. The context handler then assembles
the request into a format specified by XACML and passes it to the PDP. On receiving
the request, the PDP searches through the policies provided by the PAP and picks up
an applicable policy, if there is one, and makes a decision based on the policy and the
content of the request. To make the decision, the PDP may need to consult the con-
text handler to find out values of certain attributes which are necessary to make the
decision. The context handler will gather all that information from different sources,

N. Zhang et al. / Synthesising verified access control systems through model checking 45

Fig. 13. The data-flow model of XACML.

such as from the policy information point (PIP), from the environment, from the sub-
jects and resource. Once a decision is made, the PDP will send it back to the context
handler, who will transform the response into a format understandable to the PEP
and forward it to the PEP.

7.1.2. Rule, policy and policy-set
The most basic functional unit in XACML is a rule. A number of rules form a

policy. A number of policies form a policy set. A complete rule consists of a head,
a description, a target and a condition. The head contains a XML name space dec-
laration, a name for the rule, and the effect of the rule, either Deny or Permit. The
description describes the rule in human languages, and thus makes the rule more
understandable. The target defines applicable situations for the rule. If the target is
evaluated to false, the rule will be simply rendered as not applicable and the condi-
tion will not be considered. The condition represents a boolean expression, just as
the target, which refines the applicability of the rule. Only if the target and the con-
dition are both evaluated to true, is the effect of the rule returned. Otherwise this rule
is reckoned as not applicable.

46 N. Zhang et al. / Synthesising verified access control systems through model checking

The structure of a policy is very much like that of a rule. It contains a head, a
description about the policy, a target defining the applicability of the policy, and a
number of rules. However, in the policy, a rule-combining algorithm must be speci-
fied to resolve conflicting results returned by different applicable rules. For example,
if the deny-overrides algorithm is used, the effect is that if any rule is evaluated to
Deny, the policy must return Deny. The rule-combining algorithm is specified in the
head of the policy.

Likewise, the structure of a policy set is like that of a policy, except that a policy
set uses a policy-combining algorithm.

7.2. Compiling RW to XACML and SQL

7.2.1. Structure of the converted XACML file
The compiler reads a RW file and outputs the corresponding XACML file. The

XACML file is a single policy unit which contains a number of rules. Each condi-
tional formula in the RW file generates a rule in XACML plus a default rule which
denies everything. The structure of the output XACML file is shown in Fig. 14.

The title of the policy is composed of the content specified in the specification
of XACML 1.1, but one can make one’s own modifications to suit one’s own need.
We chose the permit-overrides algorithm. This is one of the algorithms that are used
in XACML to reconcile decisions from multiple applicable rules. The algorithm ap-
proves Permit, provided that at least one of the applicable rules does so. If some
rules produce Deny and all other rules produce NotApplicable, the algorithm ap-
proves Deny. In other words, Permit takes precedence.

The target of the policy is made to apply to every situation. No target applicability
constraint is needed at the policy level, because each rule defines its applicability
under its own Target tag. Rules are placed after the Target tag of the policy. The
effect of all rules, except the last default one, is Permit. Together with the permit-
overrides algorithm, the policy denies whatever is not explicitly permitted.

For the conference paper review system defined in Example 3.1, the generated
XACML policy contains thirteen rules, including a default denying rule at the end.
Each single rule is generated from a conditional formula in the RW script. An exam-
ple of this correspondence in the case of the formula defining the reading privilege
for the parameterised predicate pcmember(a) is shown in Fig. 15. The rule contains
a Target tag, which evaluates applicable situations for this rule.

The Subjects tag of the Target section sets no restriction on the criterion of the
requester, and this is the case with all rules generated by AcPeg.

The Resources tag has two criteria to be evaluated (see Fig. 15). The first one
is whether the name of the requesting resource is the same as the predicate name
pcmember. To evaluate this criterion, a PDP program, following the instruction in
the ResourceAttributeDesignator, will select the attribute value from the resource-id
field in a request (send on link 4 in Fig. 13), shown in Fig. 16.

N. Zhang et al. / Synthesising verified access control systems through model checking 47

<?xml version="1.0" encoding="UTF-8"?>
<Policy xmlns= ...
PolicyId="conference"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:

rule-combining-algorithm:ordered-permit-overrides">

<Description>add your own comment</Description>

<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
...
<Rule RuleId="urn:oasis:names:tc:xacml:1.0:Rule8" Effect="Permit">

<Target>
<Subjects><AnySubject/></Subjects>
<Resources>...</Resources>
<Actions>...</Actions>

</Target>

<Condition ...>
...

<\Condition>
<\Rule>
...
<Rule RuleId="urn:oasis:names:tc:xacml:1.0:Rule11" Effect="Deny">

<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
</Rule>
</Policy>

Fig. 14. The structure of an output XACML policy file.

If the name of the requesting resource is not pcmember, this rule is simply eval-
uated as not applicable. The second criterion is whether the name of the parameter
whose type is Agent is agent. This information is retrieved from the field agent in
the request. The value retrieved, in this case, will be agent = a1, which specifies
the name of the parameter and (‘=’) its actual value. Here we use a dedicated ex-
ternal function (that is, a function written by us) which compares the string selected
from the XACML policy, which, in this case, is agent, with the string on the left
side of the equivalent formula, which is expected to be agent too. The two criteria
are enclosed in one Resource tag, which means the conjunction of these criteria. For
the evaluation to be successful, both of these criteria must be met.

The Actions tag is to evaluate whether the attribute value of the action-id field in
the request matches the applicable action. Since the conditional formula applies to

48 N. Zhang et al. / Synthesising verified access control systems through model checking

Fig. 15. Correspondence between a privilege definition and its generated rule.

the privilege of reading in this example, the applicable action for this rule is read.
Since the condition for reading in the RW file is true, the Condition tag is omitted
in the XACML file. However, if a condition in the RW file is non-trivial, a Condition
tag is added to the generated rule. We explain how such tags are generated in what
follows.

7.2.2. Generating Condition tag
Logical formulas defining reading and writing privileges in a RW script are con-

verted into a SQL statement and put under Condition tags. The conditions under a
Condition tag are called to be evaluated only if the target-evaluation is passed. A SQL
statement is evaluated by calling a dedicated external function, which queries a data-
base storing values of the attributes in the system. To understand the idea, consider
the RW formula and its generated conditions shown in Fig. 17.

AcPeg produces SQL code that looks up the truth values of the variables in P in
a database. For instance, given an a ∈ Agent, the truth value of pcmember(a) can
be determined by looking up a in a table which contains all the agents who possess
the role PC member. By this way, any boolean combination of such variables can be
evaluated. Thus, the truth value of a RW formula is reflected by the result of querying

N. Zhang et al. / Synthesising verified access control systems through model checking 49

Fig. 16. A request for the rule in Fig. 15.

Fig. 17. A formula in a RW script and its generated conditions.

50 N. Zhang et al. / Synthesising verified access control systems through model checking

its converted SQL statement. The external function self-defined:evaluate-sql, which
appears as a conditional function in Condition tags, evaluates SQL statements.

We now define the mapping SQL from RW formulas to SQL statements, imple-
mented by AcPeg. The translation is motivated by the correspondence between first-
order logic and SQL (see [1]).

SQL(pcmember(a)) � EXISTS (SELECT * FROM pcmember WHERE agent =
arg_agent) This is an example for the simplest case, in which the condition
contains just one predicate with one parameter. Then the condition is equiva-
lent to the non-emptiness of the selection result. The column name agent is de-
rived from the definition of the predicate pcmember(agent : Agent). Thus
the table pcmember must contain a column named agent. The string arg_agent
is the formal name of parameter a. The actual value of this parameter comes
from the request. The external function replaces formal names by their actual
values and produces an executable SQL statement.

SQL(R(a1, . . . , an)) � EXISTS (SELECT * FROM R WHERE Rc1 = a′1 AND
. . . AND Rcn = a′n) If the predicate has more than one parameter, the SQL
selection condition is a conjunction. Again, the RW condition is equivalent
to the non-emptiness of the selection result. Here Rc1 . . .Rcn stand for the
column names derived from the definition of predicate R. a′1 . . . , a′n are the
formal names for a1 . . . , an.

SQL(a1 = a2) � (a′1 = a′2) The translation of equality formulas in RW is straight-
forward. a′1 and a′2 are the formal names for a1 and a2.

SQL(¬f) � NOT SQL(f), SQL(f1 ∧ f2) � (SQL(f1)) AND (SQL(f2)) Logical
operators are expressed by their counterparts in SQL. We only give the clauses
for negation and conjunction. Other connectives can be defined using these.

SQL(∃ x ∈ D f) � EXISTS (SELECT id FROM D AS D_i WHERE SQL(f)) Ele-
ments are selected from the table D, which is supposed to list all the elements
from the RW class with the same name, and f is evaluated for each of them.
The RW condition ∃ x ∈ D f holds if and only if the resulting selection is
non-empty. The string id is the default name for a column in tables describing
defined classes. The alias D_i is given to D to avoid clashes between names
of bound variables. Universal formulas are expressed using existential ones by
means of negation.

To obtain a complete translation of a RW formula, the result of SQL is prefixed
SELECT * FROM T WHERE. Here T is a purpose-set table which is just sup-
posed to contain an appropriate string to be returned by the external function which
evaluates SQL statements. Thus the final form of the converted SQL statement for a
given f is SELECT * FROM T WHERE (SQL(f));.

The above clauses allow any RW formula to be translated into an SQL statement.
Fig. 17 shows an example. The string requester is the formal name for the access
requester. It becomes replaced by its actual value by the external function.

N. Zhang et al. / Synthesising verified access control systems through model checking 51

7.2.3. The external function – self-defined:evaluate-sql
The external function, self-defined:evaluate-sql, is called by a PDP program to

read an SQL statement and other parameters; replace formal names in the SQL state-
ment by their actual values; execute the query and return the result, either true or
false to the PDP program. It takes at least two parameters, which are the SQL
statement and the actual value for the requester selected from the request. AcPeg
also puts all the formal names that need to be resolved after the SQL statement and
the SubjectAttributeDesignator on the requester, as Fig. 17 shows. The ResourceAt-
tributeDesignator on paper is to select the actual value for the first parameter
of predicate reviewer – p, and the ResourceAttributeDesignator on agent is
to select the actual value for the second parameter of predicate reviewer – a.
These two values are passed to the external function. The external function uses the
value selected by the SubjectAttributeDesignator for requester-id to replace every
occurrence of the string requester in the SQL statement, the value selected by the
ResourceAttributeDesignator on paper to replace every occurrence of the string
arg_paper and the value selected by the ResourceAttributeDesignator on agent to
replace every occurrence of the string arg_agent. Strings in the request are written
without quotation marks. These are added by the external function, because quota-
tion marks are required by SQL. The last formal name to be replaced is T. It becomes
replaced by the actual name of the table, which is test in our example.

7.3. Assumptions about the database

The database must satisfy some conditions to make the translation work. Fig. 18
illustrates the idea of how we set up the database for the conference example. Table
test corresponds to the virtual table T. Table Agent and Paper correspond to the
defined class Agent and Paper. Table author is the table derived from the predicate
author(paper : Paper,agent : Agent). Tables derived from other predicates
are not shown in the figure. The elements in the tables are only for the purpose of
illustration.

The conditions are given as follows:

Fig. 18. Tables and the structure of the database set up for the conference example.

52 N. Zhang et al. / Synthesising verified access control systems through model checking

• The database must contain a table for each defined class and defined predicate,
including a table for class Agent and a table for T, except for the defined
predicates that do not appear in any of the logical formulas.

• If a table is for a defined class, it must have a column named id to store iden-
tifiers of the elements that can be used to uniquely identify each individual
element in that class. The type of the column must be either string or char.
The table must not contain duplicated records for each individual element in
the class. One can store any other information about the elements in that table,
however, no matter what they are, they will not be queried during an evaluation.

• If a table is for a defined predicate, it must contain a column corresponding to
each of its parameters, bearing the same name of that parameter. One can store
other information in the table, but it will not be queried.

• The table for T needs only one column and it does not matter what the type and
the name of the column are. It needs one record which can have whatever value.
However, if one is to give it a name differing from test, one should modify
the source code of the external function that evaluates SQL statements. The
modification is very simple. One only needs to change the definition of the
String variable that stores the value for the name of the table. That variable is
named test.

• In our example, the name for the database is conference. This has been hard-
coded into the external function to make it work. One needs to modify the vari-
able url in the source code of the function, which is type of String, if one’s
database has another name. One should also modify the location of the data-
base stored in that variable. One also needs to change the driver for the data-
base in the code, if one uses a database system other than Postgresql. The driver
information is stored in the String variable driver.

8. Discussions and conclusions

8.1. Summary

In this paper we demonstrate the applicability of using the RW framework to un-
cover security weaknesses in access control policies and to generate verified policies.
The particular security weaknesses that the RW framework intends to uncover are
potential failures in policies caused by interactions of rules, co-operation between
agents (including changing of each other’s privileges) and multi-step actions. As we
have mentioned, security weaknesses caused by these reasons are hard to be found
by traditional approaches in the field of security policy analysis. The RW frame-
work uses model-checking to address these problems. In the framework, the RW
formalism is used to model access control policies; the RW language is used to ex-
press models in RW as well as properties to be verified; and AcPeg is used to verify
whether a model satisfies a property as well as to perform the translation from RW
to XACML.

N. Zhang et al. / Synthesising verified access control systems through model checking 53

We formally defined the RW formalism. Using an example, we showed how to
model an access control policy in the RW formalism. We discussed issues on the
syntax and the semantics of the RW language, especially on how to write queries.
We presented the RW model-checking algorithm; proved its correctness; and dis-
cussed its computational complexity. The usability of the algorithm was demon-
strated through a series of case studies in which queries are solved by AcPeg. Func-
tions of AcPeg and abstraction mechanisms were explained. Finally, the translation
from RW to XACML was discussed.

8.2. Practical applicability of the RW framework

8.2.1. The modelling power of the RW formalism
The practical applicability of the RW framework first depends on the modelling

power of the RW formalism. Although it is hard to express law within logic [24],
the RW formalism can be used to model policies used by a wide variety of access
control systems. As the case studies in Section 3 and Section 6 have shown, the
RW formalism is suitable to model systems adopting either role-based or individual-
based policies. Given an access control system, what the RW formalism models are
data of the system, relations between data and permissions (which are considered as
data as well). All these are represented by propositional variables in the RW formal-
ism. When modelling a system in the RW formalism, one should avoid defining too
many predicates. A large number of predicates may cause an instancing model to
have too many variables and thus a checking upon the model takes too long.

8.2.2. The expressive power of the RW language
The practical applicability secondly depends on the expressive power of the RW

language. One major limitation of the RW language that we have identified through
our experience with it is that, currently, there is no way to explicitly establish in-
tegrity constraints between the values of different variables.

For example:

• In the RW language, there is no way to express mutual exclusions between the
values of different variables. For instance, in Example 6.2, we cannot express
the rule ‘an agent cannot be a student and a lecturer at the same time’, that is,
for an agent a, the value of student(a) being true excludes the possibility of
lecturer(a) being true. Although in Example 6.2, to include this rule is not
absolutely necessary, still, it is better if we could express it to make the model
more precise.

• In the RW language, there is no way to express inheritance between roles. In
the context of the RW formalism inheritance means that one variable’s value
being true implies another’s being true. For example, in Example 3.1, for an
agent a, the value of chair(a) being true implies the value of pcmember(a)
being true. Inheritance reflects the hierarchical structures in the organisation of
many entities in the real world. The ability to express inheritance therefore is
useful to the RW language.

54 N. Zhang et al. / Synthesising verified access control systems through model checking

8.2.3. The checking ability of AcPeg
The practical applicability thirdly depends on the checking ability of AcPeg,

which is subject to the threat of the state explosion problem. From experimental
experiences we have found that the time spent on a checking not only depends on
the size of the model but also on the content of the query. Generally speaking, the
more variables are used in conditions to qualify the agents’ knowledge states the
faster the checking is. The reason is that starting from a knowledge state where the
agents already have some knowledge about the system will take them less steps to
reach the goal than starting from a knowledge state where they know nothing, and
thus it will take AcPeg less time spent on figuring out the strategy. Moreover, AcPeg
tends to spend longer time on goals that can be achieved in many ways than goals
that can be achieved in only a few ways. In some circumstances where there are more
than one acting agent, the sequence of the agents that appears in the coalition may
also influence the length of the time spent on a checking. Finally, it matters which
variant of the algorithm is used – Algo-0 or Algo-1. A general observation is that,
for a given query, Algo-1 tends to be faster in checking than Algo-0 if no abstraction
is used. Neither with Algo-0 nor with Algo-1 can we control which strategies are
found and which are not.

8.3. Amending policies

The output strategies help to find out how a goal can be achieved. In the case that
a goal should not be achieved, the output strategies give us ideas as to how the policy
should be amended to make the goal unachievable.

The strategy in Fig. 7 reveals that, as a PC member, a could have already read
b’s review for p before c assigns p to a for reviewing. The second strategy in Fig. 8
shows that a could resign his reviewership for p; read b’s review for p; and then be
assigned p for reviewing by c again. The reason that the strategy in Fig. 7 exists
lies in rule 11 defined in Example 3.1. It does not constrain the reading privilege
on a review to reviewers, and thus provides opportunities for non-reviewers to read
reviews. To amend the rule we could add a condition to the rule which states that to
read a review one must be a reviewer. Having added the condition to the formula in
the RW script, the amended rule is shown in Fig. 19, where the condition is added at
the end.

The reason that the second strategy in Fig. 8 exists lies in the fact that the policy
defined in Example 3.1 allows a PC member to be assigned a paper that was pre-
viously assigned to him. To prevent this from happening, an additional rule might
be added to the policy, stating that a PC member cannot be assigned a paper that
was once assigned to him, even if he later resigned being reviewer of the paper. To
express this rule in the RW language, we need to define an additional predicate to
denote the fact that a paper was once assigned to a PC member. For a ∈ Agent,
p ∈ Paper, we have:

assigned(p, a) p was once assigned to PC member a for reviewing

N. Zhang et al. / Synthesising verified access control systems through model checking 55

review(p, a){
read : pcmember(user) & ~author(p, user)

& submittedreview(p, a)
& (((reviewer(p, user)

-> submittedreview(p, user))
and (E b: Agent [subreviewer(p, b, user)]

-> submittedreview(p, user)))
| user=a) & (E p1: Paper [reviewer(p1,user)]);

write : ...;
}

Fig. 19. The amended version of rule 11 in Example 3.1.

reviewer(p, a){
read : ...;
write : (chair(user) & pcmember(a) & ~author(p,a)

& ~assigned(p,a)) or ...;
}

Fig. 20. The amended version of rule 3 in Example 3.1.

assigned(p, a){
read : true;
write: chair(user) & ~assigned(p,a) & reviewer(p,a);

}

Fig. 21. The accessing rules for the predicate assigned(paper : Paper,agent : Agent)!.

We then change rule 3 to ‘The PC chair can assign a paper to a PC member for
reviewing, provided the PC member is not the paper’s author and the paper was not
once assigned to the PC member’. The amended rule is shown in Fig. 20.

For access rules to the predicate assigned(paper : Paper,agent : Agent),
see Fig. 21. The overwriting rule says that once a paper p is assigned to a PC mem-
ber a, assigned(p, a) is marked as true and cannot be changed to false afterwards.

Based on all the improvements discussed in this section, a new model for the
policy which applies to the conference paper review system in Example 3.1 is con-
structed. Now, checking Query 4.3 (the condition ¬assigned(p, a)! is added) on
the new model, AcPeg finds no strategy (both in Algo-0 and Algo-1). Checking
Query 6.2 on the new model, AcPeg finds one strategy (both in Algo-0 and Algo-1)
which requires a to submit her review for p before reading b’s review for p.

8.4. On the translation to XACML

It should be noted that our translation from RW formulas, which are essentially
first order formulas interpreted on a finite model, to SQL statements, was chosen for
its simplicity and is far from optimal. There is extensive literature on relational data-
base query optimisation and, in particular, on the correspondence between relational
and first order queries, see, e.g. [9].

56 N. Zhang et al. / Synthesising verified access control systems through model checking

The verification methods for RW apply to models of access control systems with
fixed sets of agents and resources only. However, this limitation does not apply to the
translation to XACML of such access control systems as described in this paper. RW
permission conditions written using quantifiers can meaningfully apply to systems
with varying sets of resources and agents and our implementation can handle this.

Acknowledgements

The authors would like to thank David Parker who pointed out an error in the
implementation. The correction of the error led to a great performance improvement.
Pierre-Yves Schobbens should also be acknowledged for his contributions to the
formulation of RW in [16]. Hasan Qunoo pointed out some typographical errors and
made some useful suggestions about the presentation.

Appendix A. Syntax of the RW language

Here we use standard symbols for syntax definition. (A)∗ means A repeats zero
or more than zero times. [A] means A is optional. A|B means a choice between
A and B. Characters quoted by “ ” is a string. All the grammatical units are enclosed
by 〈 and 〉.

〈Model〉 ::= 〈Program〉 [〈RunStatement〉] [〈Specification〉]
〈Program〉 ::= “AccessControlSystem” 〈ModelName〉 〈Body〉 “End”
〈Body〉 ::= [〈ClassDefSection〉] 〈PredicateDefSection〉 〈Rules〉
〈ClassDefSection〉 ::= “Class” 〈ClassName〉 (“,” 〈ClassName〉)* “;”
〈PredicateDefSection〉 ::= “Predicate” 〈PredicateDef〉 (“,” 〈PredicateDef〉)* “;”
〈PredicateDef〉 ::= 〈PredicateName〉 “(” 〈ParameterName〉 “:” 〈ClassName〉

(“,” 〈ParameterName〉 “:” 〈ClassName〉)* “)” [“!”]
〈Rules〉 ::= 〈Rule〉 (〈Rule〉)*
〈Rule〉 ::= 〈AccessPattern〉 “{” [〈ReadStatement〉] [〈WriteStatement〉] “}”
〈AccessPattern〉 ::= 〈PredicateName〉 “(”〈FormalParameter〉 (“,” 〈FormalParameter〉)* “)”
〈ReadStatement〉 ::= “read” “:” 〈Formula〉 “;”
〈WriteStatement〉 ::= “write” “:” 〈Formula〉 “;”
〈Formula〉 ::= “true” | 〈ConditionalFormula〉
〈ConditionalFormula〉 ::= 〈ImplicationFormula〉
〈ImplicationFormula〉 ::= 〈OrFormula〉 (〈implies〉 〈OrFormula〉)*
〈OrFormula〉 ::= 〈AndFormula〉 (〈or〉 〈AndFormula〉)*
〈AndFormula〉 ::= 〈OtherFormula〉 (〈and〉 〈OtherFormula〉)*
〈OtherFormula〉 ::= 〈AtomicFormula〉 | “(”(〈ConditionalFormula〉)*“)”

| 〈negation〉 〈OtherFormula〉 | 〈QuantifiedFormula〉
〈AtomicFormula〉 ::= 〈SinglePredicate〉 | 〈EquivalentFormula〉
〈SinglePredicate〉 ::= 〈PredicateName〉 “(”〈FormalParameter〉 (“,” 〈FormalParameter〉)* “)”
〈EquivalentFormula〉 ::= 〈Term〉 “=” 〈Term〉

N. Zhang et al. / Synthesising verified access control systems through model checking 57

〈Term〉 ::= 〈FormalParameter〉 | 〈QuantifiedVariable〉
〈QuantifiedFormula〉 ::= “E”|“A” 〈QuantifiedVariablesDef〉 (“,” [“E”|“A”]

〈QuantifiedVariablesDef〉)* “[”〈ConditionalFormula〉“]”
〈QuantifiedVariablesDef〉 ::= [“disj”§] 〈QuantifiedVariable〉 (“,” 〈QuantifiedVariable〉)*

“:” 〈ClassName〉
〈ModelName〉 ::= 〈Id〉
〈ClassName〉† ::= 〈Id〉
〈PredicateName〉 ::= 〈Id〉
〈ParameterName〉‡ ::= 〈Id〉
〈FormalParameter〉 ::= 〈Id〉
〈QuantifiedVariable〉 ::= 〈Id〉

〈implies〉 ::= “implies” | “→”
〈or〉 ::= “or” | “|”
〈and〉 ::= “and” | “&”
〈negation〉 ::= “∼”
〈Id〉 ::= 〈Letter〉 (〈Letter〉 | 〈Digit〉 | “_” | “-”)*

† 〈ClassName〉 must start with a upper case letter.
‡ 〈ParameterName〉 must start with a lower case letter.
§ The keyword “disj” can only be used on quantified variables defined in 〈CheckStatement〉
The precedence is: “=” > “∼” > “&” > “|” > “→”

〈RunStatement〉 ::= “run for” 〈NumberClassPair〉 (“,” 〈NumberClassPair〉)*
〈NumberClassPair〉 ::= 〈Integer〉 〈ClassName〉

〈Specification〉 ::= 〈CheckStatement〉
〈CheckStatement〉 ::= “check” “{” 〈QuantifiedVariablesList〉 “||”

[〈Conditions〉 “→”] 〈Coalition〉 “:” 〈Goal〉 “}”
〈QuantifiedVariablesList〉 ::= “E”|“A” 〈QuantifiedVariablesDef〉

(“,” [“E”|“A”] 〈QuantifiedVariablesDef〉)*
〈Conditions〉 ::= 〈Condition〉 (〈and〉 〈Condition〉)*
〈Condition〉 ::= 〈PositiveCondition〉 | 〈NegativeCondition〉
〈PositiveCondition〉 ::= 〈PredicateName〉 “(”〈FormalParameter〉

(“,” 〈FormalParameter〉)*“)” “*” | “!” | “*!”
〈NegativeCondition〉 ::= 〈negation〉 〈PredicateName〉 “(”〈FormalParameter〉

(“,” 〈FormalParameter〉)*“)” “!” | “*!”
〈Goal〉 ::= [“(”] 〈OrGoal〉 [〈SubGoal〉] [“)”]
〈SubGoal〉 ::= “AND” 〈Coalition〉 “:” “(”〈OrGoal〉 (〈SubGoal〉)* “)”
〈OrGoal〉 ::= 〈AndGoal〉 (〈or〉 〈AndGoal〉)*
〈AndGoal〉 ::= 〈AtomicGoal〉 (〈and〉 〈AtomicGoal〉)*
〈AtomicGoal〉 ::= 〈ReadingGoal〉 | 〈RealisingGoal〉 | 〈MakingGoal〉 | “(”〈Goal〉“)”
〈ReadingGoal〉 ::= “[”〈GoalExpression〉“]”
〈RealisingGoal〉 ::= “<”〈GoalExpression〉“>”
〈MakingGoal〉 ::= “{”〈GoalExpression〉“}”
〈GoalExpression〉 ::= 〈OrGoalExpression〉 (〈implies〉 〈OrGoalExpression〉)*

58 N. Zhang et al. / Synthesising verified access control systems through model checking

〈OrGoalExpression〉 ::= 〈AndGoalExpression〉 (〈or〉 〈AndGoalExpression〉)*
〈AndGoalExpression〉 ::= 〈BasicGoalExpression〉 (〈and〉 〈BasicGoalExpression〉)*
〈BasicGoalExpression〉 ::= 〈AGoalPredicate〉 | 〈negative〉 〈BasicGoalExpression〉

| “(”〈GoalExpression〉“)”
〈AGoalPredicate〉 ::= 〈SinglePredicate〉
〈Coalition〉 ::= “{” 〈Id〉 (“,” 〈Id〉)*“}”

Appendix B. Algo-1

The differences between Algo-0 and Algo-1 are the ways they treat those newly
found sets through the pre-computations. Algo-0 discards a newly found set if all the
states in this set have already in states_seen. Algo-1 discards a newly found set
if this set is a subset of a set in strategies. Algo-0 adds a pair constructed from
a newly found set to strategies no matter kinit is in the set or not. Algo-1 adds
a pair constructed from a newly found set to strategies if kinit is not in the set.

When there are no strategies, both Algo-0 and Algo-1 find none. When there are
some strategies, both Algo-0 and Algo-1 find some, however, the strategies found by
Algo-1 may differ from the ones found by Algo-0. The pseudo-code of Algo-1 is:

strategies := ∅;
put (KG,skip;) in strategies;
repeat until strategies does not change{

choose (Y1, s1) ∈ strategies; // for all pairs in strategies

for each p ∈ P{
for each a ∈ A{

PTY1 := Pre∃,a
p:=�(Y1);

if ((PTY1 �= ∅) ∧ (PTY1 �⊆ any set of the pairs in strategies)){
pts1 := “set p to � by a;” + s1;
if (kinit ∈ PTY1)

output pts1;
else
strategies := strategies ∪ (PTY1, pts1);

}
PFY1 := Pre∃,a

p:=⊥(Y1);
if ((PFY1 �= ∅) ∧ (PFY1 �⊆ any set of the pairs in strategies)){

pfs1 := “set p to ⊥ by a;” + s1;
if (kinit ∈ PFY1)

output pfs1;
else
strategies := strategies ∪ (PFY1, pfs1);

}

N. Zhang et al. / Synthesising verified access control systems through model checking 59

}
}
choose (Y2, s2) ∈ strategies; // for all pairs in strategies

for each p ∈ P{
for each a ∈ A{

PSY := Pre∃,a
p=�(Y1) ∩ Pre∃,a

p=⊥(Y2);
if ((PSY �= ∅) ∧ (PSY �⊆ any set of the pairs in strategies)){

pss := “if (p) by a then s1 else s2”;
if (kinit ∈ PSY)

output pss;
else
strategies := strategies ∪ (PSY , pss);

}
}

}
}

Appendix C. Command line parameters

The format of the command which executes AcPeg, is

java RWcheck parameters filename [abstraction_level]

where parameters is a list of characters which specify the behaviour of AcPeg;
filename is the name (path may be included) of the RW script which defines a RW
model (and a property); and abstraction_level (optional) is an integer which,
in the mode of model-checking, specifies the abstraction level at which AcPeg, runs.

The list of parameters must start with either ‘o’, which tells AcPeg, to do the
translation, or ‘c’ which tells AcPeg, to do the model-checking. If ‘o’ is used, AcPeg,
will translate the policy defined by the program in the RW script to a XACML policy
file and save it in the same directory with the script. The translated XACML file
has the same name with the script, except bearing the extension ‘.xml’. If ‘c’ is
used, other parameters should be specified to further regulate AcPeg’s behaviour.
We summarise the usage of these parameters in the mode of the model-checking in
the following list.

a/i ‘a’ is for ‘searching for strategies’ and ‘i’ is for ‘searching for guessing strate-
gies’. ‘a’ and ‘i’ cannot both occur in the command line.

p ‘p’ is for ‘outputting strategies or guessing strategies’. If ‘p’ is used, before each
round of a checking starts, AcPeg, prompts a question, asking whether strate-
gies or guessing strategies found in this round should be outputted. If, ‘p’ is

60 N. Zhang et al. / Synthesising verified access control systems through model checking

not used, AcPeg, does not prompt the question at the beginning of each round,
but only returns an answer ‘yes’ or ‘no’ for this round of checking.

g ‘g’ tells AcPeg, to perform counter-example guided abstraction refinement
(CEGAR), in the case that an abstraction level is specified.

r ‘r’ tells AcPeg, to run every round of a checking. Otherwise, AcPeg, prompts a
question before the starting of each round, asking whether this round should
be running.

0/1 ‘0’ is for ‘running in Algo-0’ and ‘1’ is for ‘running in Algo-1’. Like ‘a’ and ‘c’,
‘0’ and ‘1’ are mutual-exclusive in the command line.

The manual and other documentation can be found in [33].

References

[1] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison Wesley, 1995, Chapter 7.

[2] T. Ahmed and A.R. Tripathi, Static verification of security requirements in role based CSCW sys-
tems, in: SACMAT’03, Como, Italy, Jun 2003.

[3] R. Alur, L. deAlfaro, T.A. Henzinger, S.C. Krishnan, F.Y.C. Mang, S. Qadeer, S.K. Rajamani
and S. Tasiran, Mocha User Manual, The manual and the model checker can be obtained from
http://www.eecs.berkeley.edu/~mocha

[4] R. Alur, T.A. Henzinger and O. Kupferman, Alternating-time temporal logic, in: Compositionality –
The Significant Difference, LNCS 1536, Springer-Verlag, 1999, pp. 23–60.

[5] J. Bacon, K. Moody and W. Yao, A model of OASIS role-based access control and its support for
active security, in: 6th ACM symposium on Access control models and technologies, Chantilly, VA,
USA, ACM Press, 2001, pp. 171–181.

[6] E.S. Barka, Framework for role-based delegation models, PhD thesis, George Mason University,
2002.

[7] A. Belokosztolszk and K. Moody, Meta-policies for distributed role-based access control systems,
in: 3rd International Workshop on Policies for Distributed Systems and Networks (POLICY’02),
IEEE Computer Society, 2002, p. 106.

[8] R. Cavada, A. Cimatti, E. Olivetti, G. Keighren, M. Pistore and M. Roveri, NuSMV 2.2 User Manual,
2005. This document and the model checker can be obtained from http://nusmv.irst.itc.it

[9] A.K. Chandra and P.M. Merlin, Optimal implementation of conjunctive queries in relational data
bases, in: 9th Annual ACM Symposium on Theory of Computing, Boulder, CO, USA, ACM Press,
1977, pp. 77–90.

[10] B. Chess, Improving computer security using extended static checking, in: 2002 IEEE Symposium
on Security and Privacy, Washington, DC, USA, IEEE Computer Society, 2002.

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample guided abstraction refinement
for symbolic model checking, Journal of the ACM (JACM) 50 (2003), 752–794.

[12] S.D.C. di Vimercati, S. Paraboschi and P. Samarati, Access control: principles and solutions, Soft-
ware Practice and Experience 33 (2003), 397–421.

[13] E.A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science (vol. B):
Formal Models and Semantics, MIT Press, Cambridge, MA, USA, 1991, pp. 995–1072.

[14] K. Fisler, S. Krishnamurthi, L.A. Meyerovich and M.C. Tschantz, Verification and change-impact
analysis of access-control policies, in: ICSE’05, St. Louis, Missouri, USA, May 2005.

N. Zhang et al. / Synthesising verified access control systems through model checking 61

[15] S. Godik and T. Moses, eXtensible Access Control Markup Language, OASIS committee, 1.1 edi-
tion, Aug 2003, Committee specification.

[16] D.P. Guelev, M.D. Ryan, and P.-Y. Schobbens, Model-checking access control policies, in: 7th Infor-
mation Security Conference (ISC’04), Lecture Notes in Computer Science, Springer-Verlag, 2004.

[17] J.D. Guttman and A.L. Herzog, Rigorous automated network security management, International
Journal of Information Security, Dec 2004.

[18] J.D. Guttman, A.L. Herzog, J.D. Ramsdell and C.W. Skorupka, Verifying information flow goals in
security-enhanced Linux, in: Workshop on Issues in the Theory of Security, Jan 2004.

[19] J.Y. Halpern and V. Weissman, Using first-order logic to reason about policies, in: 16th IEEE Com-
puter Security Foundations Workshop (CSFW’03), Pacific Grove, CA, 2003.

[20] M.R.A. Huth and M.D. Ryan, Verification by model checking, in: Logic in Computer Science: Mod-
elling and Reasoning about Systems, Cambridge University Press, 2nd edition, 2004, pp. 172–255,
Chapter 3.

[21] M.R.A. Huth and M.D. Ryan, Binary decision diagrams, in: Logic in Computer Science: Modelling
and Reasoning about Systems, Cambridge University Press, 2nd edition, 2004, pp. 358–413, Chap-
ter 6.

[22] D. Jackson, Alloy: A lightweight object modelling notation, in: ACM Transactions on Software
Engineering and Methodology (TOSEM), ACM Press, 2002, p. 256–290.

[23] D. Jackson, Micromodels of Software: Lightweight Modelling and Analysis with Alloy, Software De-
sign Group, MIT Lab for Computer Science, Feb 2002. This document and the tool can be obtained
from http://alloy.mit.edu/

[24] A. Jones and M. Sergot, On the characterisation of law and computer systems: The normative sys-
tems perspective, in: J. Meyer and R. Wieringa, eds, Deontic Logic in Computer Science. Normative
system Specification, Wiley, 1993, pp. 275–307.

[25] K.L. McMillan, Symbolic model checking, PhD thesis, School of Computer Science, Carnegie Mel-
lon University, 1993.

[26] R. Sandhu, Separation of duties in computerised information systems, in: IFIP WG11.3 Workshop
on Database Security, Sep 1990.

[27] R. Sandhu, V. Bhamidipati and Q. Munawer, The ARBAC97 model for role-based administration of
roles, ACM Transactions on Information and System Security 2(1) (1999), 105–135.

[28] R. Sandhu, E. Coyne, H. Feinstein and C. Youman, Role-based access control models, IEEE Com-
puter 29(2) (1996), 38–47.

[29] A. Schaad and J. Moffett, A lightweight approach to specification and analysis of role-based access
control extensions, in: SACMAT’02, Monterey, California, USA, Jun 2002.

[30] Sun Microsystems, Sun’s XACML implementation, Aug 2003. Information about this implementa-
tion can be found at http://sunxacml.sourceforge.net/

[31] J. Whaley, JavaBDD: Java BDD implementation, 2004. Information about this implementation can
be found at http://javabdd.sourceforge.net/

[32] N. Zhang, Verification of access control systems using Mocha, Master’s thesis, School of Computer
Science, University of Birmingham, 2002.

[33] N. Zhang, AcPeg, the access control policy evaluator and generator, July 2006, The tool
can be obtained from www.cs.bham.ac.uk/~nxz or www.cs.bham.ac.uk/~mdr/research/projects/05-
AccessControl

[34] N. Zhang, M. Ryan and D.P. Guelev, Synthesising verified access control systems in XACML, in:
2004 ACM Workshop on Formal Methods in Security Engineering, Washington DC, USA, Oct 2004,
ACM Press, pp. 56–65.

[35] N. Zhang, M.D. Ryan and D.P. Guelev, Evaluating access control policies through model-checking,
in: 8th Information Security Conference (ISC’05), Singapore, Sep 2005, Springer-Verlag, 2005.

