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Abstract: Process analytics is one of the popular research domains that advanced
in the recent years. Process analytics encompasses identification, monitoring, and
improvement of the processes through knowledge extraction from historical data.
The evolution of Artificial Intelligence (AI)-enabled Electronic Health Records
(EHRs) revolutionized the medical practice. Type 2 Diabetes Mellitus (T2DM)
is a syndrome characterized by the lack of insulin secretion. If not diagnosed
and managed at early stages, it may produce severe outcomes and at times, death
too. Chronic Kidney Disease (CKD) and Coronary Heart Disease (CHD) are the
most common, long-term and life-threatening diseases caused by T2DM. There-
fore, it becomes inevitable to predict the risks of CKD and CHD in T2DM
patients. The current research article presents automated Deep Learning (DL)-
based Deep Neural Network (DNN) with Adagrad Optimization Algorithm i.e.,
DNN-AGOA model to predict CKD and CHD risks in T2DM patients. The paper
proposes a risk prediction model for T2DM patients who may develop CKD or
CHD. This model helps in alarming both T2DM patients and clinicians in
advance. At first, the proposed DNN-AGOA model performs data preprocessing
to improve the quality of data and make it compatible for further processing.
Besides, a Deep Neural Network (DNN) is employed for feature extraction, after
which sigmoid function is used for classification. Further, Adagrad optimizer is
applied to improve the performance of DNN model. For experimental validation,
benchmark medical datasets were used and the results were validated under sev-
eral dimensions. The proposed model achieved a maximum precision of 93.99%,
recall of 94.63%, specificity of 73.34%, accuracy of 92.58%, and F-score of
94.22%. The results attained through experimentation established that the pro-
posed DNN-AGOA model has good prediction capability over other methods.

Keywords: Process analytics; deep learning; disease diagnosis; Adagrad; T2DM;
chronic illness

1 Introduction

Process analytics is commonly employed in identification, monitoring, and improvement of the
processes through knowledge extraction from historical data. It can be employed in disease diagnosis
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process in healthcare domain too. It can analyze a dataset effectively and diagnose different kinds of diseases.
Diabetes Mellitus (DM) is one of the incurable diseases characterized by the lack of insulin secretion, a result
of irregular functioning of pancreatic beta-cells [1]. The prevalence and the magnitude of diabetic population
since 1980 are increasing in an alarming manner. Recently, it has been identified as the top most disease with
high mortality rate. International Diabetes Federation (IDF) reported that the number of diabetic patients is
increasing on a daily basis across the globe. Diabetes is categorized into Type 1 (T1DM) Diabetes and Type 2
(T2DM) Diabetes with completely different therapy regimen. China leads the first position with most number
of T2DM patients, due to its increasing population. T2DM leads to major complications such as
macrovascular infection, for instance, Cardiovascular Disease (CVD), microvascular infection, etc. [2].
Further, T2DM results in dementia and cognitive impairment during when the sensitivity of diabetes gets
reduced. The presence of CVD like Heart Failure (HF) and cardiac dysfunction in patients with T2DM is
higher compared to people without T2DM.

Coronary Heart Disease (CHD) is a common and serious complication of diabetes and a lot of diabetic
patients suffer from CHD too. CHD is characterized by insufficient supply of blood to heart muscles due to
hyperlipidaemia, myocardial infarction, and angina pectoris. Most of the diabetic adults in US suffer from
CHD that ends their life. It is apparent that the demographic factors like age, gender, and the health status
of patients in terms of BP, smoking habit and diabetes decide the prognosis of CHD [3]. Hence, it
becomes inevitable to predict CHD at very early stages in spite of the challenges associated with it. The
techniques used in the prediction of CHD so far, followed mathematical approaches like COX regression
and Machine Learning (ML) methodologies like Neural Network (NN). These approaches are developed
for common people, while there is no model available to examine the risks of CHD in T2DM patients.
Thus, the risks for a normal aged person to have diseases like HD and CHD are less, in comparison with
diabetic patients. T2DM patients should be examined periodically to predict the risks of CHD.

Chronic Kidney Disease (CKD) is a major health issue with drastic increase in impact and prevalence in
the recent years. Patients suffering from diabetes are diagnosed with CKD through negative deployment. It is
essential to stratify CKD and evaluate its development, since diabetes is a major cause of end-stage renal
diseases. CKD is a progressive infection that limits the functioning of kidneys for which dialysis and
transplantation are better remedies to extend the life span of the patient [4]. Each country has a unique
price slab for dialysis and transplantation depending on their clinical features [5]. With slow development
of CKD, the consequences of End-Stage Renal Disease (ESRD) could be arrested. Regardless, the
prediction of CKD is essential for both detection of ESRD and cost-cutting for healthcare system [6].
Stage 3 CKD is further classified into two stages namely, A and B. In literature, a variation in poor ratios
represents stage 4 development like mortality and hospitalization [7]. The levels allocated are determined
based on radioactivity. The above-discussed prediction strategies are costlier and time-consuming. So,
there is a need to develop novel methodologies that are cost-effective and time-savvy.

1.1 Previous Works

The application of temporal Electronic Health Record (EHR) data in prediction models remains a
challenging task. This healthcare data consists of different sampling rates over various groups of patients
with different data types. During inpatient encounters, possible symptoms are pointed out on an hourly
basis, while the lab tests and vaccinations are recorded based on clinicians’ request. Further, the
demographic data is considered to be highly responsive in this regard. So, maximum efforts are taken to
balance the temporal data in different medical domains. Initially, time series is represented through
medical features with a heuristic value (considering the advanced value [8] to weighted sum of measures
with weights computed by timestamps [9]). Alternatively, basic sequential order is conserved by mapping
time series with temporal patterns [10]. Furthermore, Deep Learning (DL) models like Recurrent Neural
Network (RNN) especially Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) have
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been involved in modeling temporal functions. The issues discussed above have been addressed by different
research works which inferred different conclusions like maximum data sparsity or data loss and lack of
training information.

When it comes to detection of kidney-based functions, single-value abstraction is an established method
which is known for its simplicity. However, the cost of limited temporal granularity is high [11]. A
multivariate Cox proportional survival framework was deployed in the literature [12] to predict ESRD-
relied mean- and variation-abstraction. These sophisticated applications make use of temporal EHRs and
target severe or acute kidney-based events [13], while independent Markov operation is developed by
frequent latent states to detect the transition from stage 3 to stage 4 in CKD.

Multitask linear method-based knowledge transfer that occurs from one time window to the other, is able
to predict the short-term renal function loss [14]. A tree-based discrete survival-like Gradient Boosting
Machine (GBM) was deployed with few features in the study conducted earlier to detect acute kidney
disease among inpatients. The results were associated with time variance which implied a tremendous
function [15]. Thus, the previously-presented models demand low-to-high manual effort for pre-selection
and recovery of the features. This demand limits the reliability of prediction approaches. However, the
moderate data in patient’s records are reduced [16]. Several studies pointed out the importance of
predicting CKD and CHD risks in T2DM patients. Though several models are available in the literature,
there is a need still exists to improve the detection performance. In addition, the parameter tuning of DL
models is yet to be explored in CKD diagnosis.

1.2 Contribution of the Paper

This paper presents an automated Deep Learning (DL)-based Deep Neural Network (DNN) with
Adagrad Optimization Algorithm i.e., DNN-AGOA model to predict the risks of CKD and CHD in
T2DM patients. The goal of this study is to design a risk prediction model for T2DM patients that can
predict the occurrence of CKD or CHD in future. This model helps in alarming both T2DM patients and
clinicians. At first, the DNN-AGOA model performs data preprocessing to increase the quality of data
and make it compatible for further processing. After this, Deep Neural Network (DNN) is employed for
feature extraction, whereas sigmoid function is used for classification. In order to optimize the results of
DNN model, hyperparameter tuning is performed in DNN using Adagrad optimizer. The novelty of
current research work is the application of Adagrad to fine tune the hyperparameters of DNN. For
experimental validation, benchmark medical datasets were used and the results were validated under
diverse dimensions.

2 The Proposed DNN-AGOA Model

The overall operations involved in the presented DNN-AGOA model is shown in Fig. 1. The input
dataset is first verified to confirm the presence of T2DM. Subsequently, those T2DM positive data
instances are considered to predict the significant risks of CKD and CHD. Sigmoid layer is responsible
for the allocation of proper class labels to the applied test input data.

2.1 Preprocessing

At first, input medical data is preprocessed through two stages namely, format conversion and missing
value replacement. During format conversion, raw medical dataset is converted into a compatible .arff
format. Then, the missing values that exist in the dataset are filled by following median method.
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2.2 DNN Model

Artificial Neural Network (ANN) model is a biology-based computational approach as it is influenced
by biological neural network feature to implant the intelligence in projected technology. Feed Forward
Neural Network (FFN), a class of ANN, is represented by a directed graph to pass the system data with
edges from one node to another without any cycle formation. Here, Multilayer Perceptron (MLP)
framework is applied as a class of FFN with maximum number of input, hidden and output layers. Here,
a layer contains massive number of neurons. The number of hidden layers is selected by applying
hyperparameter selection module. Then, the data is transferred in a layer-by-layer fashion in forward
direction along with fully-connected neurons. MLP is represented numerically; Rm � Rn where ‘m’

implies the input vector size x ¼ x1; x2; � � � ; xm�1; xm and n denotes the size of output vector O xð Þ. Thus,
hidden layer processing hi is defined in arithmetical form as given below.

hi xð Þ ¼ f wT
i xþ bi

� �
(1)

where hi: Rdi�1 ! Rdi , f: R ! R;wi 2 Rd�di�1 ; b 2 Rdi ; di refers to the size of input and f indicates the
non-linear activation function i.e., a sigmoid (values from 0; 1½ �) or tangent function (values from
[1, �1�). For multilabel classification problem, MLP method applies softmax function as a non-linear
activation function. Softmax function results in the possibility of a class and decides the maximum value
from the available probability values, implying a considerable value [17]. The numerical function for
distinct activation functions is given herewith.

sigmoid ¼ 1

1þ e�x
(2)

Figure 1: Functional diagram of DNN-AGOA model
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tangent ¼ e2x � 1

e2x þ 1
(3)

softmax xið Þ ¼ exiPn
j¼1 e

xj
(4)

where x implies an input.

The three-layered MLP, along with Softmax function in the resultant layer, is similar to Multi-class
Logistic Regression (LR) method. MLP is generally expressed for massive number of hidden layers and
is given below.

H xð Þ ¼ Hl Hl�1 Hl�2 � � � H1 xð Þð Þð Þð Þð Þ (5)

The piling hidden layers are generally referred to as DNNs. Fig. 2 shows the structure of DNN with a
hidden layer. It considers the following values as input, x1; x2; � � � , xm�1; xm and output o ¼ o1; o2; � � � ,
oc�1; oc. Here, DNN is applied as an extended version of conventional FFN with a hidden layer by
applying non-linear activation function. ReLU is applied to reduce the diminishing conditions and error
gradient problems. The advantage of ReLU is that it is robust in nature compared to non-linear activation
function and acts as an MLP training model with a maximum number of hidden layers. The ubiquitous
modeling of loss functions and ReLU is applied to enhance the performance of DL in an effective manner.

2.2.1 Loss Functions
In MLP development, it is important to identify the best parameter to achieve the best function. This

procedure includes loss function identification too as a basic procedure. A loss function is applied in the
estimation of difference between the predicted and defined values as illustrated in the mathematical model.

d t; pð Þ ¼ kt � pk22 (6)

where t signifies the target value and p implies the detected measure. Multi-class classifier applies
negative log probability with t as target class and p padð Þ as probability distribution, which are implied as
given below.

Figure 2: Structure of DNN model
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d t; p pdð Þð Þ ¼ � log p pdð Þt (7)

Thus, a corrected input-output set is received by i�o ¼ i1; o1ð Þ; i2; o2ð Þ; � � � ; in; onð Þ from the training
operation. Next, the reduction of mean is depicted as follows.

loss in; onð Þ ¼ 1

n

Xn

i¼1
d oil; f irisð Þð Þ (8)

The loss function should be reduced to gain the best results from NN. A loss function is demonstrated as
follows.

Trainio hð Þ � Lio hð Þ ¼ 1

n

Xn

i¼1
d oi; fh iið Þð Þ (9)

where h ¼ w1; b1; � � � ; wn; bnð Þ
Loss function minimization Li o hð Þ is performed using an accurate choice of value h 2 Rd and is

inherently composed of f h pið Þ and rfh iið Þ calculation at cost i�oj j,
MinhL hð Þ (10)

Different types of optimization models have been developed so far in Gradient Descent (GD) as it is
frequently applied in the computation of sequential parameters.

hnew ¼ hold � arhL hð Þ (11)

where α defines the learning rate which is elected on the basis of hyperparameter selection method. In order to
identify a derivative of L, backpropagation (BP) of errors module is applied in current research work. BP
module applies chain rule to calculate the function i.e., θ 2 Rd to reduce the loss function i.e., Li o hð Þ.
Thus, NN applies the maximization of BP named as Stochastic Gradient Descent (SGD) to identify the
minimum θ. SGD employs a mini batch of training samples, im�om, where the training instances i�o are
randomly selected instead of selection based on a training set im�om � i�o. SGD update rule is given
herewith.

hnew ¼ hold�arhJ h; im ið Þ; om ið Þ
� �

(12)

where im ið Þ and om ið Þ denote the input-output pair training instances.

2.2.2 ReLU Layer
ReLU layer is highly effective and applied in the simulation of training speed. ReLU is a breakthrough in

NN history that arrests the diminishing of gradient problems. It is identified as an effective model by means
of training, duration and cost for large scale datasets, compared to conventional non-linear activation
functions like sigmoid and tangent functions. The numerical function for ReLU is given below.

f xð Þ ¼ max 0; xð Þ (13)

where x implies the input. In this study, DNN is comprised of different layers as defined below.

2.2.3 Fully Connected (FC) Layer
FC layer has a link to all the units in subsequent layers. Normally, FC layer performs the mapping of data

to a higher dimension. The output layer is highly precise for high dimension data. It makes use of ReLU, a
non-linear activation function. In addition, a dropout of 0.01 and batch normalization are applied in FC layers
to avoid overfitting and to increase the training speed of DNN model. The dropout removes the neurons with
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links in a random manner. DNN may go overfitting into training data with no regularization, even if it is
trained under large number of sample instances.

2.2.4 Classification
FC layer is the final layer that utilizes a sigmoid activation function for classification. A predictive loss

function for sigmoid is represented by binary cross-entropy and the predictive loss is represented by
categorical cross-entropy as given below. The prediction loss can be defined as follows.

loss pd; edð Þ ¼ � 1

N

XN
i¼1

edilogpdi þ 1� edið Þlog 1� pdið Þ½ � (14)

Here, ‘pd’ is a vector of predicted probability for every sample in testing dataset and ‘ed’ is a vector of
predictable classes, 0 or 1.

2.3 Adagrad Optimizer

ADO (Adagrad Optimizer) is employed to fine tune the parameters of DNN model. The existing adaptive
gradient models offer element-wise scaling term on learning rate, which ensures no manual intervention to tune
the learning rate. It utilizes the past data to estimate the curvature of loss function and implements diverse
learning rates for all parameters. Therefore, learning rate is a vector and every element in a parameter is
diverse from conventional learning rate methodologies. In this study, ADO is employed which adopts a
small learning rate parameter equivalent to recurrent features and a large learning rate parameter equivalent
to rare features. Consequently, ADO is highly appropriate to train the sparse data as it enhances the robust
nature of SGD model. ADO can be updated using the Eqs. (15) and (16).

wk ¼ wk�1 � g
rf wk�1ð Þffiffiffiffi

vk
p þ e

; (15)

vk ¼
Xk�1

j¼0

rf wj

� �2
; (16)

where e denotes a smoothing term which avoids to be divided by 0 and η is the learning rate [18].

3 Experimental Validation

In this section, the researchers validated the performance of NN-AGOA model on the applied dataset
[19]. DNN-AGOA model was simulated in a PC loaded with Python 3.6.5 and its specifications were as
follows; Processor—i5-8600k, MSI Z370 A-Pro, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and
1TB HDD. To train the DNN model, 10-fold cross-validation was performed and the dataset was split
into training and testing datasets. The additional packages used for simulation were TensorFlow-gpu ==
1.14.0, pyqt5 == 5.14, pandas, scikit-learn, matplotlib, prettytable, seaborn, tqdm, numpy == 1.16.0, and
h5py == 2.7.0. Tab. 1 shows the details of the dataset used in the study. Different processes, involved in
the simulation of the proposed model, are shown in Appendix. As shown in the table, the test dataset
includes a set of 400 instances with 24 attributes. In addition, the dataset includes a set of two classes. A
total of 137 instances is grouped under DM presence whereas 263 instances are placed under DM
absence. Besides, a total of 34 samples belongs to the presence of Coronary Artery Disease and
366 instances with the presence of artery class. Moreover, a total of 250 and 150 samples come under the
presence and absence of CKD respectively.
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Fig. 3 shows the sets of confusion matrices generated by DNN-AGOAmodel on the applied dataset. Fig. 3a
is the confusion matrix produced by DNN-AGOA model during DM classification. The figure portrays that the
DNN-AGOA model classified 227 instances as DM absent and 121 instances as DM present. Similarly, Fig. 3b
portrays the confusion matrix produced by DNN-AGOA model in the classification of Coronary Artery Disease.
The figure infers that the DNN-AGOAmodel classified a total of 362 instances as Coronary Artery Disease absent
and 12 instances as Coronary Artery Disease present. Likewise, Fig. 3c reveals the confusion matrix generated by
DNN-AGOAmodel on the classification of Coronary Artery Disease. The figure represents that the DNN-AGOA
model classified a total of 148 instances as CKD absent and 241 instances as CKD present.

Table 1: Dataset description

Description Values

No. of Samples 400

No. of features 24

No. of class labels 2

Number of Positive Diabetes Mellitus Sample Instances 137

Number of Negative Diabetes Mellitus Sample Instances 263

Number of Positive Coronary Artery Sample Instances 34

Number of Negative Diabetes Artery Sample Instances 366

Number of Positive CKD Sample Instances 250

Number of Negative CKD Sample Instances 150

Data source [19]

Figure 3: Confusion matrix (a) DM (b) Coronary artery disease (c) CKD
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Tab. 2 and Figs. 4 and 5 demonstrate the classification results attained by DNN-AGOA model in
different diseases. The results infer that the DNN-AGOA model attained a proficient diagnostic outcome
on the classification of different diseases. For instance, the DNN-AGOA model categorized DM disease
at a high precision of 93.42%, recall of 86.31%, specificity of 88.32%, accuracy of 87%, and F-score of
89.72%. Concurrently, the DNN-AGOA model categorized Coronary Artery Disease with a superior
precision of 94.27%, recall of 98.91%, specificity of 35.29%, accuracy of 93.50%, and F-score of
96.53%. Likewise, the DNN-AGOA model categorized CKD disease with a maximum precision of
94.27%, recall of 98.67%, specificity of 96.40%, accuracy of 97.25%, and F-score of 96.42%.

Table 2: Results of DNN-AGOA model in terms of different measures

Dataset Precision Recall Specificity Accuracy F-score

Diabetes Mellitus 93.42 86.31 88.32 87.00 89.72

Coronary Artery Disease 94.27 98.91 35.29 93.50 96.53

Chronic Kidney Disease 94.27 98.67 96.40 97.25 96.42

Average 93.99 94.63 73.34 92.58 94.22

Figure 4: Result of DNN-AGOA model with different measures

Figure 5: Results of DNN-AGOA model in terms of accuracy and F-score

CSSE, 2022, vol.40, no.1 199



Fig. 6 shows the results attained by DNN-AGOA model for the classification of diverse diseases. The
figure reveals that the DNN-AGOA model achieved a maximum precision of 93.99%, recall of 94.63%,
specificity of 73.34%, accuracy of 92.58%, and F-score of 94.22%.

Tab. 3 and Figs. 7 and 8 show a comparison of classification results achieved by DNN-AGOA model,
when analyzing the applied dataset [20–23]. The resultant values demonstrate that the DNN-AGOA model
achieved effective results in diagnosing different diseases. When comparing the results of DNN-AGOA
model in terms of precision, the figure reveals that both AI-CHD and DT models failed in achieving an
effective outcome, since it yielded minimal precision values such as 80% and 81.40% respectively.
Besides, the LogitBoost model attempted to show slightly better precision of 84.60%. Along with that,
ACO, PSO, LR, and SVM models yielded moderately close precision values such as 87.34%, 86.24%,
88%, and 86.86% correspondingly. In line with these, MRODC and Voted Perceptron models reached
near-optimal precision values of 91.80% and 92.40% respectively. But the presented DNN-AGOA model
outperformed all the models compared and exhibited the maximum precision of 93.99%.

Figure 6: Average analysis of DNN-AGOA model with different measures

Table 3: Comparative analysis of DNN-AGOA model in different measures

Methods Precision Recall Accuracy F-score

DNN-AGOA 93.99 94.63 92.58 94.22

AI-CHD 80.00 20.41 80.88 56.18

ACO 87.34 88.88 87.50 90.56

PSO 86.24 88.00 85.00 88.00

MRODC 91.80 90.89 88.67 91.34

Logistic Regression 88.00 79.27 77.21 83.41

Voted Perceptron 92.40 68.04 66.79 78.37

LogitBoost 84.60 77.61 74.08 80.95

Decision Tree 81.40 79.02 73.82 80.19

SVM Model 86.86 87.10 86.87 88.22
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When comparing the results achieved by DNN-AGOA model in terms of recall, the figure portrays that
both AI-CHD and Voted Perceptron methods failed in gaining efficient results since it achieved the least
recall values of 20.41% and 68.04% respectively. Followed by, the LogitBoost approach attempted to
exhibit a moderate recall of 77.61%. Similarly, the DT, LR, PSO, and ACO schemes implied considerable
recall values such as 79.02%, 79.27%, 88%, and 88.88% correspondingly. In line with these, both SVM
and MRODC models attained near-optimal recall values of 87.1% and 90.89% respectively. However, the
projected DNN-AGOA model surpassed all the compared models and exhibited a higher recall of
94.63%. Besides, when comparing the results of DNN-AGOA model with respect to accuracy, the figure
depicts that both Voted Perceptron and DT models failed in achieving effective outcomes since it
achieved the least accuracy values such as 66.79% and 73.82% respectively. Besides, the LogitBoost
model tried to achieve a reasonably better accuracy of 74.08%.

Likewise, the LR, AI-CHD, PSO, and SVM models accomplished moderately closer accuracy values
such as 77.21%, 80.88%, 85%, and 86.87% respectively. In line with these, both ACO and MRODC
models reached closer optimal accuracy values such as 87.5% and 88.67% respectively. But the presented
DNN-AGOA scheme performed well compared to other methods and showcased a high accuracy of
92.58%. Followed by, when comparing the results of DNN-AGOA model in terms of F-score, the figure
demonstrates that both AI-CHD and Voted Perceptron models failed in gaining better outcomes since it
attained the minimum F-scores of 56.18% and 78.37% respectively. Besides, the DT model managed to

Figure 7: Comparative analysis of DNN-AGOA model in terms of precision and recall

Figure 8: Comparative analysis of DNN-AGOA model in terms of accuracy and F-score
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display a reasonable F-score of 80.19% Along with that, the LogitBoost, LR, PSO, and SVM models
accomplished acceptable closer F-score values such as 80.95%, 83.41%, 88%, and 88.22%
correspondingly. In line with these, both ACO and MRODC models reached near-optimal F-score values
such as 90.56% and 91.34% correspondingly. But the presented DNN-AGOA model outperformed all
other traditional models and attained a supreme F-score of 94.22%.

From the above-mentioned tables and figures, it is apparent that the DNN-AGOA model is an effective
model for disease diagnosis. During experimentation, the DNN-AGOAmodel attained a maximum precision
of 93.99%, recall of 94.63%, specificity of 73.34%, accuracy of 92.58%, and F-score of 94.22%. This is
attributed to the inclusion of AGO in the process which fine-tuned the parameters in DNN model.

4 Conclusion

The current research work presented an automated DNN with Adagrad optimizer i.e., DNN-AGOA
model for CKD and CHD risk prediction in T2DM patients. The aim of this study is to design a risk
prediction model for T2DM patients who may develop CKD or CHD. This model can provide early
warning to both T2DM patients and their clinicians. In this study, the input dataset was initially verified
for the presence of T2DM. Subsequently, data instances with T2DM presence were processed
significantly to predict the risks of CKD and CHD. Here, the sigmoid layer was held responsible for the
allocation of proper class labels in applied test input. To enhance the efficiency of DNN model, the
hyperparameters were tuned using Adagrad optimizer. In order to validate the effectiveness of DNN-
AGOA model, benchmark medical datasets were used and the results were determined under several
aspects. DNN-AGOA model achieved better performance with a maximum precision of 93.99%, recall of
94.63%, specificity of 73.34%, accuracy of 92.58%, and F-score of 94.22%. The results established the
supremacy of the proposed model compared to existing models. In future, the performance can further be
enhanced using advanced DL models.
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