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Abstract: With the rapid development and popularization of 5G and the Internet
of Things, a number of new applications have emerged, such as driverless cars.
Most of these applications are time-delay sensitive, and some deficiencies were
found during data processing through the cloud centric architecture. The data gen-
erated by terminals at the edge of the network is an urgent problem to be solved at
present. In 5 g environments, edge computing can better meet the needs of low
delay and wide connection applications, and support the fast request of terminal
users. However, edge computing only has the edge layer computing advantage,
and it is difficult to achieve global resource scheduling and configuration, which
may lead to the problems of low resource utilization rate, long task processing
delay and unbalanced system load, so as to lead to affect the service quality of
users. To solve this problem, this paper studies task scheduling and resource col-
laboration based on a Cloud-Edge-Terminal collaborative architecture, proposes a
genetic simulated annealing fusion algorithm, called GSA-EDGE, to achieve task
scheduling and resource allocation, and designs a series of experiments to verify
the effectiveness of the GSA-EDGE algorithm. The experimental results show
that the proposed method can reduce the time delay of task processing compared
with the local task processing method and the task average allocation method.

Keywords: Edge computing; “cloud-edge-terminal” framework; task scheduling
and resource allocation

1 Introduction

Most of the emerging application scenarios based on 5G technology are either computationally intensive
or data intensive, presenting “wide link” and requiring “low latency”. One of the goals of edge computing
[1,2] is to process data close to the network edge generated by data, so as to meet the needs of users for low
delay, low energy consumption, security and privacy.

At present, there is no uniform definition of edge computing in academic and industrial circles. The
European Telecommunications Standards Institute (ETSI) and the Edge Computing Consortium (ECC)
have proposed different concepts of edge computing. These concepts have reached a consensus: complete
data processing near the data generation terminal and provide services nearby. In [2], edge computing is
divided into three stages, and the basic concept of edge computing is function caching. Reference [3]
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considers edge computing as an enabling technology to meet the needs of the industry in terms of agile
connectivity, security and privacy. Literature [4,5] summarizes the scenario and architecture of edge
computing, and describes future development trends as well as potential problems. The paper [6—8]
summarizes the task offloading strategies for mobile edge computing. Reference [9] studies service
requests in mobile edge computing and proposes GAMEC algorithm. Reference [10] abstracts the task
unloading problem as a nonlinear programming problem by using the concept of software defined
network. Reference [11,12] proposes a scheduling strategy based on task priority. Reference [13—18]
looks at the edge computing applications in security, Al and such as.

The related research on edge computing, often fails to consider the collaborative participation of cloud
center. Most of the existing scheduling schemes are based on single degree quantity, such as delay, and
energy consumption. As a result, it is imperative to study the theory and method of task scheduling based
on a Cloud-Edge-Terminal three-tier collaborative framework.

This paper first describes the concept and architecture of edge computing, then introduces the three-tier
architecture of “Cloud-Edge-Terminal”, and presents a task scheduling strategy based on genetic simulated
annealing algorithm. Finally, the model is constructed and the simulation experiment is designed to confirm
the effectiveness of the proposed task scheduling strategy.

2 “Cloud-Edge-Terminal” Framework Design

Although the definitions given by different organizations may differ, but they express a common point of
view, that is, to process data nearby at the edge of the network. The mainstream definitions of edge
computing is listed in Tab. 1.

Table 1: Concept of edge computing

Organization Definition

ISO/IEC JTC1/ Edge computing is a form of distributed computing that places the main processing and
SC38 data storage at the edge nodes of the network.

ECC Edge computing refers to an open platform that integrates core capabilities of network,
computing, storage, and applications on the edge of the network close to the source of
things or data, and provides edge intelligent services nearby to meet the needs of
industry digitization in agile connection, real-time business, data optimization,
application intelligence, Key requirements for security and privacy protection.

ETSI Provide IT service environment and computing capabilities at the edge of mobile
networks, and emphasize proximity to mobile users to reduce network operation and
service delivery delays and improve user experience.

2.1 Connotation of Edge Computing

The mobility of edge computing is the primary concern, but edge computing should not be limited to
mobile edge computing (MEC). It is worth mentioning that some scholars “MEC” multi access edge
computing.

2.2 Framework of Edge Computing

The edge computing industry alliance has proposed a feasible architecture for edge computing, which is
widely used in existing research. A simplified schematic diagram is shown in Fig. 1.
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Figure 1: Architecture of edge computing

The terminal layer is located at the edge of the network, which is composed of various terminal devices
and generates a large amount of heterogeneous data. Limited by the resources of terminal devices, most
terminal devices cannot complete those tasks with a long duration and a large amount of computation.

The edge layer acts as a bridge between the cloud layer and the terminal layer, which is closer to the
terminal devices at the edge of the network. The edge layer completes the processing of data generated
by terminal devices and supports terminal layer services nearby.

Cloud is rich in computing, storage and other resources, and is good at dealing with long-term, large
amounts of data and complex computing. However, with the rich types and number of terminals, the data
generated shows an explosive growth trend. Due to network transmission costs, cloud computing has
some deficiencies in supporting emerging low latency applications.

2.3 “Cloud-Edge-Terminal” Framework

Edge computing and cloud computing are complementary technologies, and each has its advantages.
The emergence of edge computing extends cloud services to the edge of the network. It will become a
new development trend of cloud computing technology to process the data at the edge nearby and
cooperate in the cloud center. Reference [19] propose that the value of edge computing and cloud
computing can be magnified, and they also provide reference framework and application scenarios of
“edge cloud” collaboration.

Most of the existing edge computing researches focus on the edge layer, and form the “Edge-Terminal”
binary architecture with the terminal devices, which has some limitations in the global and integrity
[6,7,11,12]. In this paper, a Cloud-Edge-Terminal collaborative framework is proposed. The cloud center
is introduced into the traditional “Edge-Terminal” binary architecture, and the edge computing and cloud
computing are organically combined to construct the “Cloud-Edge-Terminal” collaborative framework.
This paper proposes a framework for bringing the advantages of cloud computing resources to the
network edge layer, and at the same time synergizing the local advantages of edge computing and cloud
computing. The diagram of Cloud-Edge-Terminal framework is shown in Fig. 2.

This paper focuses on the process of the terminal user unloading the task to the edge server. The edge
computing server is closer to the data generation side, but its resources are still limited compared with those
of the cloud center. Therefore, it is necessary to find a suitable edge computing server to allow the terminal
user to offload the task.
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CSSE, 2022, vol.42, no.3

Considering that in practice, the priorities for offloading requests of different user tasks is different, and
the resources provided by the server at the edge layer are often different at different times. At the same time,
considering the user demand and the load of the edge server can improve the efficiency of task offloading, as
well as reduce service time and energy consumption. Taking into account the possibility of further task
segmentation, the task is further divided into more fine-grained tasks, so as to explore the parallelism

between subtasks.

This paper mainly focuses on resource collaboration in cloud edge collaboration. The task unloading of
terminal devices first selects the edge server cluster closer to each other. The cloud is responsible for the
scheduling of task unloading, making the unloading decision, processing the unloading request of the
terminal, matching the best edge server for the unloading task, and participating in the collaborative
computing when the edge device resources are insufficient. The process is shown in Fig. 3.

3 Model Building
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Figure 3: “Cloud-Edge-Terminal” collaborative processing

In order to further study, this section will abstract the edge computing and cloud collaboration
framework model, and formalize the problem.
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3.1 Device Model

3.2

Definition 1 Center Cloud
The center cloud is represented as a 3-tuple cloud (m, c, b).

(1) “m” represents the memory resources that the center cloud can provide;
(2) “c” represents the CPU resources that the center cloud can provide;

(3) “b” represents the bandwidth resources that the center cloud can provide.
Definition 2 Edge Server

The edge server is represented as a 4-tuple E; (m, c, b, #j).

(1) “m” represents the memory resources that the edge server can provide;

€6 9

(2) “c” represents the CPU resources that the edge server can provide;
(3) “b” represents the bandwidth resources that the edge server can provide;
(4) “ty” represents the estimated processing time of tasks on the server.

Definition 3 Terminal
The terminal is represented as a 2-tuple Ter; (m, c).

(1) “m” represents the memory resources that the terminal can provide;
(2) “c” represents the CPU resources that the terminal can provide.

Task Model

Task division aims to divide task J into multiple subtasks w;(I=1, 2, ...). Then according to whether

unloading is allowed or not, it can be divided into two categories: allowing unloading and not allowing
unloading. In this paper, directed acyclic graphs are used represent the task after partition. D (V, E):V
represents subtasks and E is the directed edge between nodes, as shown in the Fig. 4.
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Figure 4: Task division

Definition 4 Task
The task is represented as a 4-tuple Task; (m, c, t,.c, Mob).

(1) “m” represents the memory requirement of this task;
(2) “c” represents the CPU requirement of this task;

(3) “tmax represents the latest completion time of the task;
(4) “Mob” represents the terminal that generated the task.

Definition 5 Subtask
The task is represented as a 6-tuple Subtask; (m, ¢, tyqy, task;, di,, dou).

(1) “m” represents the memory requirement of this task;
(2) “c” represents the CPU requirement of this task;
(3) “tmax represents the latest completion time of the task;
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(4) “task;” represents the task before the subtask is partitioned;

(5) “d;p” represents the predecessor subtask of the subtask;

(6) “dou¢” represents the successor subtask of the subtask.

Subtasks should meet the two constraints:

(1) The starting subtask, that is, the task without degree must be executed locally;

(2) The subtasks except (1) are allowed to be offloaded to the edge server or center cloud for execution.

According to the constraint rules, subtasks A and B in Fig. 5 must be executed locally at the terminal,
and tasks C through H are allowed to be unloaded. The specific execution location depends on the remaining
resources of each server and the network conditions.

Figure 5: Task classification

3.3 Time and Energy Consumption Model
Definition 6 Delay

The total task processing delay is defined as follows:
Tan = t. + 1ty + 1ty (1)

where 7, represents task task; unload to edge computing server E; transmission delay and total return delay of
calculation results; 7y represents the processing delay on the edge server; and ¢, is the waiting delay of
unloading process.

Definition 7 Energy Consumption

The total task processing energy consumption is defined as follows:
n
En =) PiT; ()
i=1

where P; represents the power of device i; T; represents the continuous running time of the device 1i.

3.4 Description of Problem and Nondeterministic Polynomial (NP) Analysis

3.4.1 Problem Description

The goal of the task scheduling method is to minimize the task delay under the premise of ensuring the
user's delay requirements. Therefore, the problem is modeled as the problem of minimizing the delay under
the constraint conditions to ensure the user's agile connectivity experience. This section refines the
constraints for this problem.

Definition 8 Execution Cost

The weighted sum of time and energy consumption is defined as the task execution cost.
Cost Func = 01T + ozE, o+ o, =1 3)
where, w; and w, represent the time weighting factor and energy consumption weighting factor respectively,
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indicating the sensitivity of the system to this factor. The larger the value, the higher the sensitivity. When
w, = 0, the task execution cost is the task delay. Then, the problem is transformed into an optimization
problem with constraints.

Tall < Tmax
s.t {Resource,- < Edge.J )

3.4.2 NP Analysis of the Problem

When the number of tasks is n and the number of edge servers is m, for a task scheduling problem in an
edge computing and cloud collaborative environment, its time complexity is O(m"). If m significantly larger,
the above problems cannot be solved in polynomial time. So task scheduling problem becomes an NP
problem.

The task scheduling problem in the Cloud-Edge-Terminal collaborative framework can be abstracted as
n tasks assigned to m targets, which can be regarded as a knapsack problem (KP) [20]. It represents the 0—
1 knapsack problem (0—1 KP), which is a combinatorial optimization problem, and has been proved to be a
NP complete (NPC) problem.

Because the NPC problem cannot obtain exact solution in polynomial time, the performance of existing
task scheduling methods still needs to be improved. In this paper, a genetic algorithm and simulated
annealing algorithm are used to optimize the transformed combinatorial optimization problem.

3.5 Algorithm Design

This paper uses an optimized genetic algorithm to solve the problem. The flowchart of the algorithm is
shown in Fig. 6. Genetic algorithm uses roulette selection, and fitness function selects the reciprocal of time.
The mutation selection is random point crossover.

Generation of
new species by

B annealing
method
Generate initial
population
Number of
Calculate iterations reached
fitness
v

Genetic feasible

Operator solution
End

Figure 6: Algorithm flowchart

(1) Coding guidelines

The goal of the task scheduling method is to match the most suitable destination server for the task, and
Dests is used to represent the final unloading method. For the sake of simplicity, the local processing task
code is 0, the cloud server number is 1, and the edge servers are coded from 2 in turn. The target server
uses binary encoding, and the final result is the final scheduling method.

DestS = [0000 0001 0002 0003 ...]
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(2) Selection

In this paper, roulette algorithm is used as the generation method, and the reciprocal of the system cost is

defined as the fitness function.
1
Fitn: = -— 5
1HNess Cost_Func ®)

(3) Crossover

The process of cross operation and chromosome exchange to produce new offspring is one of the
processes of population producing new offspring. The common crossover operations include single point
crossover, multi-point crossover and extended crossover.

(4) Mutation

Single point mutation and multiple point mutation are common methods for mutation operation and
chromosome individual gene mutation. Single point mutation is used in this paper.

(5) Annealing process

In order to reduce the probability of genetic algorithm falling into local optimal solution in the early
stage, a simulated annealing factor is introduced.

Disturbance probability is introduced in Eq. (6).
p = exp(—AFitness) (6)

If P/(K*T) > rand, accept the suboptimal population. The “rand” is a rand number, where “K” is
constant, and “T” is the current temperature. The temperature drop follows the rule Eq. (8), “c” annealing
coefficient.

rand € (0, 1) (7)

Tt + 1) =0T(t) (8)

4 Experimental Design and Analysis of Result
4.1 Experimental Design

In this section, the above is tested and verified. The experiment is based on the Python programming
language, and the simulation platform parameter information is shown in Tab. 2.

Table 2: Experimental platform information

Parameter Value

Operating system Windows 10 Professional
Processor AMD Ryzen 5 3600 3.59 GHz
Memory 16GB

Version Python 3.7
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The experiment adopts the current mainstream method, of using Python for data simulation, and
generating experimental parameters through random methods [11,12]. The parameter information is
shown in Tabs. 3 and 4.

Table 3: Resource parameters

Parameter Value range
Number of edge servers 10-100
Number of terminals 100-1000
Edge servers CPU resources 10%-10°
Edge servers memory resources 10°-10'°
Terminals CPU resources 1-1.5
CPU required by the tasks 1-1.5
Memory required by the tasks 10°-10’
Terminal-Edge transmission bandwidth 10®
Cloud-Edge transmission bandwidth 10%-9*10"
Terminal-Cloud transmission bandwidth 10°

Table 4: Energy consumption parameters

Parameter Value range
Terminal 0.10-0.25
Edge servers 100-150
Cloud 1500-2500

This paper verifies for experimental sensitive applications. The experimental design consists comparing
task localization processing with task random offloading processing in order to prove the necessity of task
offloading; then verifying the task scheduling method proposed in this paper, and finally comparing the
algorithm proposed in this paper with the task average distribution algorithm.

The equipment energy consumption parameters are shown in Tab. 4.

4.2 Analysis of Results

In order to determine the effectiveness of the algorithm, we first compared the performance of the
improved genetic algorithm. The optimal scheduling results were analyzed under the condition that the
number of edge server nodes is 10 and the number of cloud center nodes is 1. The algorithm parameters
are shown in Tab. 5.
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Parameter Value
Number of iterations 500
Crossover probability 0.7
Mutation probability 0.1
Initial temperature 1000
I 0.98
The experimental results are shown in Tab. 6.
Table 6: Experimental results
Number of tasks Algorithm Results(s)
100 GA 0.077009
GSA-EDGE 0.071019
200 GA 0.1145118
GSA-EDGE 0.112412
300 GA 0.142701
GSA-EDGE 0.13808
400 GA 0.290745
GSA-EDGE 0.28089
500 GA 0.47644
GSA-EDGE 0.423638
600 GA 0.498386
GSA-EDGE 0.426664
700 GA 0.689837
GSA-EDGE 0.647761

The experimental results show that under the conditions of this experiment setting, as the number of
tasks increased from 100 to 700, the improved algorithm becomes more effective.

Next the relationship between the optimal iteration results of the algorithm and the number of iterations
were compared. The experiment was carried out under the conditions that the number of tasks was 600, the
number of edge computing servers was 10, and the number of cloud centers is 1. To demonstrate the
optimization performance of the algorithm, the experiment was repeated 50 times, and the comparison
between the average optimal result and the optimal result was conducted. The results are shown in Tab. 7.

The experimental results show that the improved genetic algorithm has a smaller adaptation value and
better searching effect under the same number of iterations.
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Table 7: Analysis of algorithm performance
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Number of Algorithm Optimal First Average Average number
iterations results(s) appears results(s) of iterations
100 GA 0.53149605 90 0. 55634206 88.2
GSA-EDGE 0.52202637 96 0.540611662 90.2
200 GA 0.49449435 194 0.51066 182.5
GSA-EDGE 0.48609051 198 0.505746252 185.6
300 GA 0.48294193 238 0.491247565 273.25
GSA-EDGE 0.47822559 293 0.48864317 277.2
400 GA 0.47208516 370 0.481051 374.5
GSA-EDGE 0.46378412 374 0.477597682 374.4
500 GA 0.46664622 469 0.47015579 476.2
GSA-EDGE 0.46281636 482 0.468687904 482
600 GA 0.46284699 567 0.467606 554.75
GSA-EDGE 0.45722705 587 0.46553027 561.2
700 GA 0.45745619 663 0.462613 641.25
GSA-EDGE 0.45045954 680 0.460182298 649
800 GA 0.45542874 780 0.460006 782.5
GSA-EDGE 0.44958811 789 0.45809669 762
900 GA 0.45398229 850 0.458569 829
GSA-EDGE 0.44845254 880 0.45694739 799.2
1000 GA 0.44791635 913 0.45156852 865
GSA-EDGE 0.44664402 930 0.45434687 834

Fig. 7 shows the fitness of the improved genetic algorithm when the number of tasks was 600 and the
number of iterations was 500.

Time(ms)

400

1 1 1
100 200 300

Number of iterations

1 1 L
400 500 600

L L L
700 800 900 1000

Figure 7: Algorithm fitness
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Because genetic algorithms have relatively few parameters, they are easy to implement. Therefore, for to
analyze the influence of crossover and variation factors on the parameters of the improved genetic algorithm
in term of the optimization results, the experiment was carried out using 500 iterations and 600 tasks. The
results are shown in Tab. 8

Table 8: Analysis of algorithm performance

Mutation 0.1 0.2 0.3 0.4 0.5 0.6
probability
Fitness 0.46281636 0.49259758 0.474520742 0.463950786 0.476446722 0.475106816

Next, the unload necessity proof experiment was carried out to compare the unload processing with local
task processing and unscheduled task processing. The experimental results are shown in Fig. 8.
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Figure 8: Total time of task local processing and random offloading

Fig. 8 shows the comparison of task localization processing and the total time delay of task randomly
unloading task processing under the “Cloud-Edge-Terminal” framework proposed in this paper. Analysis of
the experimental results, show that random task offloading can reduce the total task processing time by
91.4%. Therefore, edge computing for task offloading can reduce the total task duration.

Then, for the number of tasks from 100 to 700, under the condition of the number of edge servers is
10 and the number of cloud centers is 1.

The delay weighting factor w; =1 was selected in experiment, and the longest processing time of the
device was regarded as the duration of the method. The longest processing time of the device was
selected as the processing delay, the experiment was verified, and the task local terminal processing,
average offloading and the offloading method designed in this paper were compared. The experimental
results shown in Fig. 9, confirm that the offloading algorithm proposed in this paper can reduce the task
processing time by 43.35% on average compared with the average offloading algorithm, and reduce the
task processing time by 77.67% with task localization.
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Figure 9: Comparison of three algorithms in terms of task processing delay

Task local processing means that the tasks generated by the terminal are processed on the terminal, and
the task processing time is the genetic algorithm-based scheduling algorithm parameters discussed in this
paper, as shown in Tab. 5.

When the number of tasks is 500, verify the relationship between the number of tasks and the number of
edge servers. The experiment selects the number of edge servers [10, 100], and the specific results are shown
in Fig. 10. The experimental results show that when the number of edge servers is small, the average
computational delay of the algorithm proposed in this paper is decreased significantly.

09 - 0O GSAEDGE

08 - B Average

Time(s)

10 20 30 40 50 60 70 80 90 100
Number of servers

Figure 10: Relationship between calculation delay and the number of servers

Finally, the experiment vertifies the relationship between the task delay and the number of algorithm
iterations in an environment where the number of tasks is 100, 200, and 500, and the number of edge
servers is 50. The experimental results show that the task processing time of the 100 to 300 generations
of iterations is significantly reduced. Starting with the 300th generation, the time has been reduced
slowly. The experimental results are shown in Fig. 11.
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Figure 11: Relationship between calculation delay and number of iterations

5 Conclusion

In this paper, the concept, framework and application scenarios of edge computing are defined, and a
Cloud-Edge- Terminal collaborative framework is proposed. Based on this, a task scheduling strategy
based on time delay and energy consumption is proposed, which shows an improvement compared with
task localization processing, task random offloading and comparison.

Going forward, we will consider optimizing the experimental environment and building an edge
computing environment using big data processing platforms such as Spark and Hadoop. Furthermore,
because multi cloud access is one of the technology trends in edge computing “cloud-edge” collaborative
computing in a multi-cloud environment will be another work direction.
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