
Cold-Start Link Prediction via Weighted Symmetric Nonnegative Matrix
Factorization with Graph Regularization

Minghu Tang1,2,3,*, Wei Yu4, Xiaoming Li4, Xue Chen5, Wenjun Wang3 and Zhen Liu6

1key Laboratory of Artificial Intelligence Application Technology State Ethnic Affairs Commission, Qinghai Minzu University,
Xining, 810007, China

2School of Computer Science, Qinghai Minzu University, Xining, 810007, China
3College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China

4School of International Business, Zhejiang Yuexiu University, Shaoxing, 312069, China
5Law School, Tianjin University, Tianjin, 300072, China

6Graduate School of Engineering, Nagasaki Institute of Applied Science, Nagasaki, 851-0193, Japan
*Corresponding Author: Minghu Tang. Email: mhtang@tju.edu.cn

Received: 19 February 2022; Accepted: 30 March 2022

Abstract: Link prediction has attracted wide attention among interdisciplinary
researchers as an important issue in complex network. It aims to predict the miss-
ing links in current networks and new links that will appear in future networks.
Despite the presence of missing links in the target network of link prediction stu-
dies, the network it processes remains macroscopically as a large connected
graph. However, the complexity of the real world makes the complex networks
abstracted from real systems often contain many isolated nodes. This phenomen-
on leads to existing link prediction methods not to efficiently implement the pre-
diction of missing edges on isolated nodes. Therefore, the cold-start link
prediction is favored as one of the most valuable subproblems of traditional link
prediction. However, due to the loss of many links in the observation network, the
topological information available for completing the link prediction task is extre-
mely scarce. This presents a severe challenge for the study of cold-start link pre-
diction. Therefore, how to mine and fuse more available non-topological
information from observed network becomes the key point to solve the problem
of cold-start link prediction. In this paper, we propose a framework for solving the
cold-start link prediction problem, a joint-weighted symmetric nonnegative matrix
factorization model fusing graph regularization information, based on low-rank
approximation algorithms in the field of machine learning. First, the nonlinear fea-
tures in high-dimensional space of node attributes are captured by the designed
graph regularization term. Second, using a weighted matrix, we associate the attri-
bute similarity and first order structure information of nodes and constrain each
other. Finally, a unified framework for implementing cold-start link prediction is
constructed by using a symmetric nonnegative matrix factorization model to inte-
grate the multiple information extracted together. Extensive experimental validation
on five real networks with attributes shows that the proposed model has very good
predictive performance when predicting missing edges of isolated nodes.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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1 Introduction

Link prediction, an important problem in the complex network, has achieved fruitful results [1,2]. Its aim is
to use known information of the observed network to infer missing edges. Although existing link prediction
methods can achieve the prediction of missing links between pairs of nodes in a network, they assume that
the network is a connected graph. However, the complexity of the real world, makes the complex networks
abstracted from real systems often contain many isolated nodes. This phenomenon causes that the network
observed is a nonconnected graph. That is, the overall observation network is in a semi-connected state, so
it is called a semi-connected network. This situation led to the traditional link prediction methods cannot
use the topological information, thus affecting the prediction effect [3]. For example, in criminal networks
or anti-terrorist networks, the topological structure is semi-connected, which makes it extremely difficult for
link prediction methods to speculate on the social relations of criminals [4]. Thus, how to solve the
prediction of missing edges of isolated nodes in the semi-connected network is a problem worth studying.
In fact, as early as 2010, Leroy et al. [5] have studied the missing edge prediction problem and proposed
the first concept of cold-start link prediction. They assume that the relationship of all users in the social
networks are hidden, and then collect information about users' social activities, such as time of attend social
events, number of communities sharing together, and length of stay in the community, through modeling to
speculate the hidden links in the network. However, because the network topology information is not
available and node attributes are very difficult to collect, this problem has not been well studied.

In recent years, with the increasingly severe anti-terrorism situation, the research of cold-start link
prediction has gradually gained attention [6] and been widely used in fight against terrorists [4], abnormal
detection [7], recommendation system [8], Community detection [9,10] and other fields [11–14].
However, many isolated nodes in the network cause the network topology becomes semi-connected states
(i.e., the observed network is a non-connected graph). Existing link prediction methods based on
structural similarity [1,2], network embedding [15], or neural network [16] cannot be directly used to
solve this problem. Therefore, how to mine the non-topological information in the network and form a
good information fusion mode becomes the key to solve the cold-start link prediction.

Currently, the studies of cold-start link prediction can be roughly divided into two categories. The first is
based entirely on non-topological information methods [5]. Such methods, however, come to unsatisfactory
prediction since the considerable difficulty in collecting of node attributes and the impact of noises involved.
The second class of methods for cold-start link prediction is generally based on multiple auxiliary network
layers to infer the missing edges of isolated nodes on the target network layers [17]. This method achieves the
prediction by first exploring various auxiliary networks information of the target network, then reasoning in
accordance with the relationships, and last, transferring the structure relationships at the auxiliary network
level to the target network. But it is difficult to seek an auxiliary-level network and align these different
networks. So, the second method has limitation with particularly strong domain. Thus, these methods
which use single information cannot better solve the cold-start problem.

In this paper, considering the advantages of fusing heterogeneous information via a nonnegative matrix
factorization (NMF) framework, a cold-start link prediction model, Joint weighted Symmetric NMF
integrating Graph regularization information (GJSNMF), is proposed. The model first excavates non-
nonlinear features in the attribute high-dimensional space and transforms it’s as weighted information.
Then, using NMF framework to fuse topological information of the semi-connected network, to realize
the prediction problem of the missing edges of the cold-start nodes of the network. Extensive experiments
show that the model proposed achieves good effect on solving the problem of cold-start link prediction.
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The rest article develops as follows. Part 2 shows the relevant works. Part 3 is about the establishment of
the model and its optimization. Part 4 is experimental design. Part 5 is experiment results and related analysis.
The last part contains our conclusions and prospects.

2 Related Work

Leroy et al. [5] supposed that all the nodes in a network are isolated and came up with the concept of
cold-start link prediction. Ge et al. [18] proposed that some of the network structural relationships are known
and the other missing, which they called pseudo cold-start link prediction. Han et al. [19] used the
configuration files of online social-contact users and other non-topological information (e.g., workplace
and school) to compute the attribute similarity, for counting the number of attributes the users all possess
and the geographic distance between the users. Then, a prediction model was devised on the basis of
support vector machines (SVM). By contrast, Wang et al. [20] extracted topological information by an
implicit feature representation model. Wu et al. [21] abstracted multiple interactions as multi-relational
networks, and employed robust principle component analysis to extract low-dimensional latent factors
from sub-networks. Then associated auxiliary networks are exploited for cold-start link prediction. It
realized the prediction by learning characteristics from the non-topological attributes they have observed.
Adopting mesoscopic community membership information, Xu et al. [22,23] puts forward a community-
weighted measurement learning framework for the purpose of link prediction. Yan et al. [24] paid
attention to the cold-start for new users. It conducts predicting the interrelationships between new users
by cross-platform transfer of the relationships via heterogenous information networks. Zhang et al. [25]
tried to infer the possible link relationships between the newly registered users and old users by sampling
various attribute information. Li et al. in reference [26], both the structure and attributes of a real network
are considered dynamic and having an impact on the evolution of network structure with time.
Alternatively, the reference [27] presents different perspectives for cold nodes.

3 Materials and Methods

3.1 Preliminaries

In this section, we first describe the problem of cold-start link prediction. In addition, we review the
conventional NMF method.

3.1.1 Network Representation
Given an attribute network G V ;E;Að Þ, where V ¼ v1; v2; � � � vnf g is the set of nodes and

E ¼ vi; vj
� �

; 1 � i and j � n; i 6¼ j
� �

is the set of edges. The interaction relation between nodes is
formally marked as an adjacency matrix Sn�n in network with n vertices. The element of the ith row and
the jth column in the matrix correspond to the link between node i and j in the network, where Sij ¼ 1 if
there is a link from i to j and Sij ¼ 0 otherwise. Generally, the adjacency matrix S represents the macro-
relations of the network topology. The node attributes are represented as the matrix An�m. If the node vi
has the k-th attribute, then Aik ¼ 1, otherwise Aik ¼ 0.

3.1.2 Cold-Start Link Prediction Problem
Assuming a real interaction system P, the network G is a model that fully characterizes the interaction

relationships of various entities within the system P. But the actual observed network is G0 by the observer. It
contains a lot of isolated nodes. The purpose of the cold-start link prediction is to use all these known
information of the observed network G0, to infer the missing link, so that restores the incomplete network
G0 to the topological style of the real network G as much as possible. So, the problem of link prediction
is inferring the probability of an existent link between nodes x and y based on known information in the
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network G0, and the probability is expressed as score Pxy. The score can be viewed as the similarity of nodes
x and y. The higher Pxy indicated that two nodes are more similarity. According to the score, all non-existent
links in the network can be sorted in descending order. The links at the top are the most likely to exist. In this
paper, we compute the score Pxy based on GJSNMF.

Fig. 1 show that the entire row(column) elements are 0 in the adjacency matrix S0 of the network G0. It
indicates that there are some isolated nodes in the network. And the network is semi-connected.

3.1.3 NMF Review
Given a matrix Y 2 Rn�m

þ , the NMF aims to find two nonnegative factor matrices B 2 Rn�k
þ and

X 2 Rk�m
þ that make Y � Y0 ¼ BX. In general, the k is the number of latent features or the inner rank of

Y. It obeys the condition of the inequality, mþ nð Þk� mn. The matrix B is called the basis matrix, and
X is the coefficient matrix. The optimization problem of NMF is a convex optimization problem. This
decompose aims to solve the following F-norm optimization problem:

min
B;X

Y� BXk k2F s:t: B � 0;X � 0 (1)

where �k kF indicates the Frobenius norm, constrain B � 0;X � 0 requires that all the elements in matrices B

and X are non-negative. The Frobenius norm of the matrix X is denoted by kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij xij
�� ��2q

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr X TXð Þp

.

The T represents the transpose operation of the matrix X .

3.2 Cold-Start Link Prediction Model: GJSNMF

Information shortage shapes the major challenge for cold-start link prediction. The presence of isolated
nodes leads to an incomplete network structure, so that the network structure topological information cannot
be fully utilized to predict link. Therefore, it is necessary to seek more non-topological information to assist
cold-start prediction, such as node attribute information.

Considering the advantages of symmetric NMF incorporating heterogeneous information [28], in this
paper, using the matrix S represents the topological information and it is decomposed into S � VVT . The
node attributes information A is then mapped with the structural information to the low-rank hidden space
to form a fusion pattern, i.e., A � VUT . Although the network is a semi-connected state due to the
presence of isolated nodes, part of the observed structural information can be fused with the node
attribute. To integrate the topological and non-topology attributes into the same NMF framework,
symmetric NMF-based objective functions are designed,

Figure 1: A toy network’s topological structure and adjacency matrix. A. Real networks G; B. Adjacency
matrix S of real network G; C. Adjacency matrix S' of observed network G'; D. Actual observed networks G'
with isolated nodes.
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O ¼ minV ;U S � VVT
�� ��2

F
þa A� VUT

�� ��2
F

s:t: V � 0;U � 0 (2)

where S 2 Rn�n
þ , A 2 Rn�m

þ , the factor matrix U 2 Rm�k
þ and V 2 Rn�k

þ represent the hidden space that
integrates topological structure and node attribute information, Rþ represents non-negative real number
sets. The parameter a balance the availability of structure and attribute information. Because the network
data matrix S is extremely sparse, during the model learning to prevent the overfitting, the constraints are
introduced in the Eq. (2).

O ¼ minV ;U S � VVT
�� ��2

F
þa A� VUT

�� ��2
F
þb Vk k2Fþ Uk k2F

	 

(3)

Although the Eq. (3) achieves the predictions to some extent, but its performance will be poor due to the
extremely sparsity of the semi-structured network topology. Moreover, the impact of noise in the node
attribute information reduces the role of fusion to structural attributes, and for this problem, the fused
node attribute information needs to be modeling to allow weighted constraints. Inspired by the jointly
weighted NMF model [29], in this paper, the weight variable �ERm�m

þ is introduced to restrict each node
attribute information, so that each node attribute is assigned to an appropriate weight when fused with the
structure information to promote the degree of node attributes fused to the structure, i.e., A� � VUT . The
diagonal matrix � satisfies

Pm
i¼1 �i;i ¼ 1. To ensure that the � weights are assigned to a rule space,

update operations need to be normalized to:

� ¼ �Pm
i¼1�i;i

(4)

The node attribute information of the general network has high-dimensional characteristics, and the
hidden deep non-linear characteristics and the attribute-based similarity properties of nodes cannot be
completely captured through the second term in Eq. (3). That is, the nonlinear manifold structure present
in the high-dimensional node property space is not modeled for link prediction. This exhibits that two
nodes topologically distant, actually having a very close nonlinear proximity in a high-dimensional
property space.

In addition, the observed node interactions in the network semi-structured state indicate that the two
nodes in the network have already structurally close distance. At this point, if the node attribute
information is again fused and forced into work, it will sometimes pull away the distance between the
two in the structural space. Therefore, we need to restrict the role of the attribute information and correct
it to play a significant role on the unconnected nodes.

In this way, the node attribute graph regularization term is introduced based on the advantages of graph
regularity in data representation [30]. Then the manifold similarity of the attributes is maintained by mining
the nonlinear structure information hidden in the node attribute data. Thus, applied to the prediction missing
edges of isolated nodes. Then, the existing partial topological information is used to guide the proximity of
the node attribute information on the hidden space. The link between non-isolated nodes in a semi-connected
network are taken as weight to restrict the similarity of attribute information for isolated nodes at the
microscopic level. Thus, introducing the regularization form is expressed as:

R	 ¼ 1

2

Xn
i;j

W ui � uj
�� ��2

F
(5)

where, the W is the weight of forming edges between vi and vj vertices. And ui and uj represents the
proximity degree of attributes of vertices vi and vj in the hidden space. For the Eq. (5) above, it is easily
converted to a matrix format as follows:
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R	 ¼ 1

2

Xn
i;j

W ui � uj
�� ��2

F
¼

Xn

i¼1 u
T
i uiDii �

Xn

i;j¼1 u
T
i ujWij

¼ Tr UTDU
� �� Tr UTWU

� � ¼ Tr UTLU
� �

(6)

where, the Tr :ð Þ is the trace of the matrix, L ¼ D�W is a Laplacian matrix based on the similarity of node
properties, and the formula Dii ¼

P
k Wik is diagonal matrix. According to the above equation, the

framework is proposed for missing link prediction in the semi-structured network state, that is, a cold-
start link prediction model of a jointly weighted symmetric NMF with a graph regularization term.

O ¼ minV ;U ;� S � VVT
�� ��2

F
þa A�� VUT

�� ��2
F
þb Vk k2Fþ Uk k2F

	 

þ cTr UTLU

� �

s:t: V � 0;U � 0;� � 0 (7)

where, V 2 Rn�k
þ ;U 2 Rm�k

þ ;� 2 Rm�m
þ , the a is balance parameters for structure and properties. The b is

regular parameters to prevent overfitting, and the parameters c control the effect of the graph regular term.

As described in the ref. [28], consider a graph with N vertices, where each vertex corresponds to a data
point. For each data point au, we find its nearest neighbors and put edges between au and its neighbors. There
are many choices to define the weight matrix W on the graph. Three of the most used are as follows:

1) 0–1 Weighting. Wuv ¼ 1, if and only if nodes u and v are connected by an edge.

2) Heat Kernel Weighting. If nodes u and v are connected, putWuv ¼ e
�kau � avk2

r . Heat kernel has an
intrinsic connection to the Laplace-Beltrami operator on differentiable functions on a manifold.

3) Dot-Product Weighting. If nodes u and v are connected, putWuv ¼ aTu av. Note that if a is normalized
to 1, the dot product of two vectors is equivalent to the cosine similarity of the two vectors.

In this paper, the matrix W is calculated using the simplest 0–1 weighting method. It indicates that if
existing a link between the two nodes, the weights are calculated as formula 1), otherwise we.

Through the weight matrix W , the links between the non-isolated nodes in the network are used to
restrain and guide the similarity of the attribute vectors between two nodes, thus allowing the node
attribute similarity to have the best effect in the prediction of the missing edges of the isolated nodes.

3.3 Model Solution

It is impossible that the objective function O is convex on both factor matrices U and V simultaneously.
It is unrealistic to expect the algorithm to find global minima. However, alone U or V , the objective function
is again convex. Its local optimal solution can be obtained by a multiplicative iterative approach. Therefore,
the stochastic gradient descent method was used to seek the solutions of the model. To this end, a non-
negative Lagrangian multiplier w; ’; f is introduced to change the Eq. (7) to the unconstrained loss
function.

J ¼ 1

2
S � VVT

�� ��2
F
þa A�� VUT

�� ��2
F
þb Vk k2Fþ Uk k2F

	 

þ cTr UTLU

� �	 


þ Tr wTV
� �þ Tr ’TU

� �þ Tr fT�
� � (8)

Then, expand the Eq. (8) and simplify it.
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First of all, let � ¼ Tr wTV
� �þ Tr ’TUð Þ þ Tr fT�

� �
, then expand J to

J ¼ 1

2

�
Trð S � VVT

� �T
S � VVT
� �Þ þ aTr A�� VUT

� �T
A�� VUT
� �	 


þ b Tr VTV
� �þ Tr UTU

� �� �

þcTr UTLU
� ��þ �

¼ 1

2



Tr STS � STVVT � VVTS þ VVTVVT
� �þ aTr �TATA���TATVUT � UVTA�þ UVTVUT

� �
þb Tr VT V

� �þ Tr UT U
� �� �þ cTr UTLU

� ��þ �
(9)

For the Eq. (9), taking partial derivatives of J with respect to V , U and �, we have

@J

@V
¼ 1

2
�2 ST þ S

� �
V þ 4VVTV þ a �2A�U þ 2VUTU

� �þ 2bV

 �þ w

¼ � ST þ S
� �

V þ 2VVTV þ a �A�U þ VUTU
� �þ bV þ w

¼ � STV þ SV þ aA�U
� �þ 2VVTV þ aVUTU þ bV þ w

� �
(10)

Similarly, the partial derivatives of J with respect to U ,

@J

@U
¼ 1

2
a ��TATV � VTA�

� �T þ UðVTV ÞT þ UVTV
	 


þ 2bU þ c LU þ LTU
� �h i

þ ’

¼ �a�TATV þ aUVTV þ bU þ 1

2
c LU þ LTU
� �þ ’ (11)

Because the L ¼ D�W is symmetrical, So there are L ¼ LT . Lead it into the Eq. (8), which can be
obtained

@J

@U
¼ �a�TATV þ aUVTV þ bU þ cLU þ ’ (12)

Replace that L in Eq. (12), then

@J

@U
¼ � a�TATV þ cWU

� �þ aUVTV þ bU þ cDU þ ’
� �

(13)

Similarly, the partial derivatives of J with respect to �,

@J

@�
¼ 1

2
a ATA�þ ATA

� �T
�� ATVUT � UVTA

� �T	 
h i
þ f

¼ �aATVUT þ ðaATA�þ fÞ (14)

For these equation above, in terms of the Karush-Kuhn-Tucker (KKT) complementary slackness

condition wp;rVp;r ¼ 0; ’q;rUq;r ¼ 0; fq;q�q;q ¼ 0, and Let
@J

@V
¼ 0,

@J

@U
¼ 0 and

@J

@�
¼ 0, we can derive

the following updating rules with respect to V , U and �:

V  V : 	 STV þ SV þ aA�U

2VVTV þ aVUTU þ bV
(15)
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U  U : 	 a�TATV þ cWU

aUVTV þ bU þ cDU
(16)

� �: 	 A
TVUT

ATA�
(17)

where :	 and := represent the element-wise multiplication and division, respectively. According to the
obtained update rules (15) to (17), a stable V is calculated, which can then be used to approximate
the original network to obtain the similarity score value between nodes and realize the prediction task of
the missing edges.

To sum up, the pseudo code of the proposed cold-start link prediction model of jointly weighted
symmetric NMF with graph regularization (GJSNMF) is described as follows (see Tab.1):

3.4 Computational Complexity Analysis

The computational complexity of GJSNMF algorithm mainly comes from two parts. One is to compute
the weight W . The second is iterative update matrices V , U and � at the same time. Given an attributed
network with n nodes, each node contains m attributes. Suppose the algorithm iterates t times, the
objective function convergence, algorithm stops updating. First, computing the W with 0–1 weights, the
algorithm needs to run n2 times, then the complexity is O n2ð Þ. So overall computational complexity is
O n2ktð Þ for the symmetric NMF algorithm. In addition, the main complexity lies in the multipliers and
division operations of the matrix when updating V ; U ; �. Each multiplication and division operation are
required O n2ð Þ times. If these operations of multiplication and division have T step in updating them.
Then their complexity is O n2Tkð Þ times. To sum up, combined with the processing of the attribute
information, the overall time cost of the algorithm is about O n2 þ n2kt þ n2kTð Þ, that is nearly to O n2ð Þ.
Of course, we can also improve our algorithm according to the relevant literature to achieve parallel
computing, so as to obtain performance optimization. This is what we want to do in the future.

In the experiment, the convergence of the model was verified on all the datasets, and the convergence
result very well. Model convergence is shown here only on the Facebook dataset (see Fig. 2).

Table 1: Pseudo code of model GJSNMF

Algorithm Name: GJSNMF

Input: S: the adjacency matrix of the given network, A: the attribute matrix, k: number of features, a, b and
c: parameters.
Output: the approximate matrix of the network S
1: divide S into Strain; Stest

2: computing W and D.
3: initialize V ; U ; �.
4: do while
5: update V ; U ; � by means of Eqs. (15)–(17).
6: normalized � by Eq. (4).
7: get V after until object function O convergence
8: end while
9: output S0 ¼ V � VT
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4 Experimental Design

4.1 Datasets Description

We consider the following 7 real-world attribute networks datasets drawn from disparate fields.

The basic topology features of these networks are summarized in Tab. 2. The symbol N and E are the
total number of nodes and links, respectively. <K> is the average degree. <d> is the mean shortest distance. C
is the clustering coefficient, and #Attributes is the number of node attributes. Datasets used for the
experiments are available to be downloaded from these websites:

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:urls:index;

http://snap.stanford.edu/data/

4.2 Evaluation Metrics

Like many existing prediction studies, in our work adopts also the most frequently-used metrics AUC
(area under the ROC curve) and Precision to measure the performance of link prediction [1–3]. The metric is
viewed as a robust measure in the presence of data imbalance. Furthermore, the training set partitioned from

Figure 2: The convergence of the model on the Facebook dataset

Table 2: Simple topological information of attribute networks

Network N E <K> <d> C #Attributes

Facebook 228 3419 29.991 1.868 0.6162 56

Cornell 195 286 2.903 3.2 0.1568 1703

Texas 187 298 3.027 3.036 0.1937 1703

Washington 230 366 3.373 2.995 0.1974 1703

Wisconsin 265 479 3.464 3.763 0.2080 1703

Lazega 71 378 10.8 2.104 0.3853 7

Coauthor 422 10755 48.665 2.585 0.5759 3449
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the original network dataset is treated as observed networks and thus have many isolated nodes. To evaluate
the deviation between the predicted value and the true value of the network, we adopted two evaluation
criteria commonly used in machine learning, MAE (Mean Absolute Error) and RMSE (Root Mean
Squared Error).

4.3 Comparison Methods

The cold-start link prediction method was proposed in the reference [5] by Leroy et al., which is a
combined method to count the communities that the nodes share. It is used to compare the prediction
performance with our method, and it is labeled as LEROY.

SASNMF method [31]. This model is the NMF-based to implement link prediction by coupling
structure attribute and node attribute information.

Matrix completion method [32] (MC). Based on the low-rank and sparse characteristics of adjacent
matrices, the robust principal component analysis was used to fit the training data by minimizing the
kernel norm of the matrices. In this way, a network akin to the real network was reconstructed.

NMF_LP method [33]. The method is based on the NMF framework which adopted node attributes. It
directly fusion node attribute information and structure information to predict link.

SPM_NMF method [34]. The link prediction method based on matrix disturbance principle. This
method formed a new network structure by randomly adding into a link as disturbances and then
decomposed the new structure by NMF framework, to realize link prediction. It was labelled SPM_NMF.
The best outcomes were selected under disturbance ratios of 0.06, 0.08 and 0.1, for comparison.

4.4 Division of Datasets

The network datasets need to be divided into training and test sets. A few nodes were selected randomly
and made into isolated nodes by deleting all the links between them. Where, the edges were removed as the test
set, while the remaining edges served as the training set. Fig. 3 is a schematic of a dataset divided into a training
and test set. To further illustrate the different forms of dataset division, Fig. 3 shows the division on cold start
link prediction (subgraph A), and the partition in traditional link prediction (subgraph B). This paper addresses
cold-start link prediction, and therefore, the dataset partitioning is performed following the pattern of subfigure
A. In addition, according to the experimental requirements, in the datasets provided in this article, the
proportion of edges present in corresponding networks was about 90%–95% when the proportion of deleted
nodes was within 95%–75%. The data sets were divided by K-10 folded cross validation.

Figure 3: Schematic comparison of datasets division. A. Cold-start link prediction model, Node 4 is an
isolated point; B. Structural similarity link prediction model, The link between the node pairs (4,5) is missing
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4.5 Settings of Parameters a, b and c

The sensitivity of these parameters a, b and g in all data sets were analyzed prior to the experiment test
by grid searching. To briefly illustrate the importance of the parameter setting, Fig. 4 show the predicted
value when the training set and test set partition ratio on the Facebook data is 95%. In this experiment,
the parameters a, b and g were valued 13, 3 and 46, respectively.

5 Results and Analysis

5.1 Overall Prediction Performance of the Model

5.1.1 Prediction Effect When the Network is Fixed
In experiment, the proportion of networks divided into training and test sets ranged from 75% to 95%.

The proportion of edges present under the corresponding network is approximately 50% to 90%. Tab. 3
shows the results of each comparison method on different networks.

Fig. 5 show the prediction effect of the model and comparison methods on different real networks, which
is obvious from Fig. 5 that the overall prediction effect of the GJSNMF method has a certain advantage, but
performs poorly on the Lazega datasets.

Figure 4: Parametric sensitivity analysis

Table 3: The AUC results when the training set partition ratio is 90%

AUC NMF SASNMF NMF_LP LEROY MC SPM_NMF GJSNMF

Cornell 0.4065 0.3003 0.3072 0.4267 0.4601 0.3380 0.4760

Facebook 0.3370 0.2612 0.2212 0.5568 0.4904 0.4220 0.5920

Coauthor 0.2375 0.3930 0.1657 0.7210 0.4927 0.4380 0.7900

Lazega 0.2748 0.2215 0.2250 0.7625 0.4976 0.3140 0.3380

Texas 0.4120 0.2825 0.3130 0.3575 0.4810 0.3510 0.5440

Washington 0.3930 0.3347 0.2770 0.4360 0.4649 0.4280 0.4600

Wisconsin 0.3302 0.3570 0.2948 0.4533 0.4900 0.3900 0.4900
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5.1.2 Prediction Effects When the Network Structure is Changed
It is necessary to compare the predicted effects of models with different degrees of network structure.

Therefore, after dividing existing edges from 50% to 90% in the network datasets. Various methods were
subjected for comparative analysis. Fig. 6 to illustrate the prediction effect of the model in Coauthor and
Washington networks.

From the results, we can see that the accuracy of the GJSNMF framework decreased significantly. This
shows that when the topological information of the network is seriously missing, the global structural
information availability also drops sharply, resulting in the overall poor prediction performance.
Therefore, it is necessary, in the network semi-structured state, to mine more available information as
auxiliary properties of the prediction to enhance the overall performance of the prediction.

5.2 The Impact of Fusion Graph Regularization Information

One of the core points of building the model is to strengthen the model to learn the deep nonlinear
manifold hidden attribute feature from the node attributes by adding the graph regularization terms to the
model, in order to improve the model prediction performance. Therefore, to test whether the graph
regularization term improves the model, this task is specially designed to test during the overall
prediction effect of the model. This is to set the parameter g to 0 to block the role of the graph
regularization term in model prediction. The test results divided at the training ratio of 75% set are used

Figure 5: Comparison with contrast AUC values

Figure 6: Predict effects under the proportion of training sets for different data
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below to illustrate the predictive effect tested on all networks when the graph regularization term does not
function and works. The four small plots in Fig. 7 show the test results under the four criteria, AUC,
Precision, MAE and RMSE. Among these, * 0 is used to represent the experimental results of the model
without adding graph regularization term. * 1 Represents the test results under the corresponding
evaluation criteria when the graph regularization term is added.

From the test results, after the model adds the graph regularization term, the utilization rate of the node
attributes is higher, and the prediction effect is more obvious.

5.3 The Influence of Graph Regularization Term Weight Value

In the model construction section, there are three methods to be used to compute the corresponding
weight matrix W when introducing graph regularization terms. In section, the main test is the extent to
which the weights calculated under three different methods affect the overall prediction effect of the
model. In Fig. 8 show the results of taking the three weight calculation methods. In the Figure, the
symbol “G = 0” represents the prediction result without graph regularization term in the proposed model.
The symbol “GW_*” indicates that it is a prediction result with graph regularization term. The predictive
performance of the model was measured by AUC and Precision evaluation criteria. The first subfigure is
the result of AUC, and the second is the result of Precision. Moreover, to further distinguish the three
methods for calculating the values of the weight matrix W, they are represented by the sequence 01, 02,
and 03 in Fig. 8. A detailed description of the specific calculation methods can be found in Section 3.2
of this article.

From the analysis of the experimental results, the effect of using the third weight calculation method in
the model is significantly better. Of course, this is not absolute, in some datasets, the effect is bad.
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Figure 7: Prediction effect with graph regularization terms and no its
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Analyzing the test results in Fig. 8, we can see that the different weight calculation methods have some
effect on the final prediction of the model. It shows from the figure that the third dot product weight effect is
better overall than the other two.

6 Conclusion

The prediction of missing edges of isolated nodes in network semi-connected state has been a difficult
problem. Mainly, the network topology structure is a nonconnected graph, and is extremely sparse.
Traditional structural similarity methods cannot satisfy missing edge prediction of isolated nodes. In this
paper, we analyze the underlying causes of the prediction difficulties and propose a joint weighted
symmetric NMF model integrating graph regularization information for cold-start link prediction.

The model takes advantage of the symmetric nonnegative matrix and the graph regular non-negative
matrix to integrate the nonlinear characteristics in the high-dimensional space of the node attributes, thus
improving the guidance of the attribute information in the prediction process and realizing the cold-start
link prediction task in the case of semi-connected network state.

Extensive experiments have validated that the proposed model globally excelled the state-of-the-art
methods in the predictions of cold-start nodes. And the algorithm is highly robustness and extensibility.
In the future that we would to optimize the model algorithm by parallel methods, in order to improve the
prediction efficiency.
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