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Abstract: Tuberculosis (TB) is a severe infection that mostly affects the lungs and
kills millions of people’s lives every year. Tuberculosis can be diagnosed using
chest X-rays (CXR) and data-driven deep learning (DL) approaches. Because
of its better automated feature extraction capability, convolutional neural net-
works (CNNs) trained on natural images are particularly effective in image cate-
gorization. A combination of 3001 normal and 3001 TB CXR images was
gathered for this study from different accessible public datasets. Ten different
deep CNNs (Resnet50, Resnet101, Resnet152, InceptionV3, VGG16, VGG19,
DenseNet121, DenseNet169, DenseNet201, MobileNet) are trained and tested
for identifying TB and normal cases. This study presents a deep CNN approach
based on histogram matched CXR images that does not require object segmenta-
tion of interest, and this coupled methodology of histogram matching with the
CXRs improves the accuracy and detection performance of CNN models for
TB detection. Furthermore, this research contains two separate experiments that
used CXR images with and without histogram matching to classify TB and
non-TB CXRs using deep CNNs. It was able to accurately detect TB from
CXR images using pre-processing, data augmentation, and deep CNN models.
Without histogram matching the best accuracy, sensitivity, specificity, precision
and F1-score in the detection of TB using CXR images among ten models are
99.25%, 99.48%, 99.52%, 99.48% and 99.22% respectively. With histogram
matching the best accuracy, sensitivity, specificity, precision and F1-score are
99.58%, 99.82%, 99.67%, 99.65% and 99.56% respectively. The proposed meth-
odology, which has cutting-edge performance, will be useful in computer-assisted
TB diagnosis and aids in minimizing irregularities in TB detection in developing
countries.
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1 Introduction

Tuberculosis (TB) is a contagious illness caused by the bacillusMycobacterium tuberculosis. To reduce
the disease burden, TB can be treated by early identification and appropriate categorization from other
disorders with similar radiologic findings. According to the World Health Organization (WHO), TB is the
second leading cause of death from an infectious disease, behind Human Immunodeficiency Virus, with a
global mortality rate of over 1.8 million people and 10.4 million new cases per year Human
Immunodeficiency Virus (HIV). Tuberculosis is becoming more common in a number of developing
nations. It can affect both men and women, although it is more prevalent in men. Patients with active
tuberculosis will undergo a long course of antibiotic medication and treatment [1]. WHO and other
organizations have suggested chest radiography, also known as Chest X-Rays (CXRs), as an effective
method for successful case finding and prevalence surveys for the detection of TB. CXRs have been
discovered to be the most common screening tool for detecting lung abnormalities [2]. Generally, CXRs
will show white patches in the lungs and it will be useful for determining the level of disease spread [3].
Furthermore, it demonstrates the changes in the lungs caused by the existence of TB over time,
necessitating subsequent more expensive and time-consuming investigations.

According to various research and surveys, radiology interpretation is inadequate in many TB-affected
areas, resulting in reduced screening efficacy. The majority of TB CXR images are misdiagnosed as other
illnesses with similar radiologic characteristics. In fact, this leads to ineffective medicine and a
deterioration in the patient’s health. An effective automated and cost-effective technique could aid in the
accuracy of screening evaluations and enable for earlier disease detection in developing countries [4,5].

Artificial intelligence (AI) is playing a tremendous role in the development of prominent tools for
diagnosing various diseases. AI is the superset of Machine Learning (ML) and data-driven deep learning
(DL) is the subset of ML. DL uses a number of layers for feature extraction and transformation of data
[6]. Artificial intelligence has the ability to transform the way diseases are diagnosed, classified, and
identified in the future. Clinical-decision support algorithms for medical imaging, on the other hand,
confront hurdles in terms of reliability and interpretability. DL models automatically extract significant
properties from data and have been shown to achieve state-of-the-art accuracy, in many cases
outperforming human output. One of the most common deep learning designs is the convolutional neural
network (CNN). Deep learning has gained appeal as a result of its functional efficacy. CNN is
computationally efficient and recognizes essential qualities without the need for human intervention. In
image classification, CNNs trained on natural images perform remarkably well. CNN is frequently used
in the research field due to its superior automated feature extraction capability [7].

CNNs are utilized to analyze CXR images in recent research centered on the identification of lung
illnesses such as pneumonia and TB. CNN-based approaches are utilized to identify the novel
coronavirus infection from CXR images and to distinguish COVID-19 pneumonia, TB, and normal
patients in accordance to the COVID-19 global scenario [8]. Histogram matching is an image processing
technique that improves the effect of an image by changing the gray histogram into the matching shape.
The image’s detail can get clearer when processed by histogram matching because the grayscale spacing
can be made larger and the grayscale distribution must be consistent [9]. As a result, the contrast of the
CXR images is enhanced, which improves the detection performance and accuracy of deep CNN models
for tuberculosis detection.

The following are the major contributions of this research.

i) On the basis of CXR images, a deep CNN-based approach for detecting tuberculosis is proposed,
which can be utilized to improve abnormality detection and initial tuberculosis screening.

ii) For effective detection, a performance analysis of notable pretrained CNN architectures are
performed.
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iii) To improve the accuracy and detection performance of the CNNs models, a fusion of CXR images
with histogram matching has been deployed.

iv) A comprehensive analysis was performed with the state-of-the-art TB detection methods.

This paper is organized as follows. Section 2 describes the related works relevant to TB detection using
deep CNNs. Section 3 introduces the methodology of the entire system. Sections 4 details about the pre-
processing, data augmentation and histogram matching used in this study. Section 5 illustrates the results
and discussions on the performance of various CNN models on TB detection with and without histogram
matching. Finally, Section 6 presents the conclusion.

2 Related Works

Tuberculosis is one of the leading causes of death worldwide, therefore early detection is essential for
effective treatment and management. Since radiologists are scarce in developing areas, computer-assisted
detection is essential to aid in the early identification of tuberculosis in order to improve human life.
Combining transfer learning with multiple approaches raised the TB diagnosis accuracy from 50 to
94.8 percent [10]. Despite the numerous risks posed by this disease, one of the United Nations’
Sustainable Development Goals for 2015 is to eradicate the TB pandemic by 2030. New therapies and
diagnostic methods must be established in order to contribute to this goal. X-ray imaging
incompatibilities are very common, particularly in areas where radiological facilities and radiologists are
scarce, or where X-ray equipment’s are technologically different [11].

Machine Learning (ML) has developed rapidly in the last decade, with supervised learning methods like
Artificial Neural Networks (ANNs) achieving superior output in classification and regression tasks. Deep
Learning (DL) is becoming increasingly common in various fields, including malware detection, health
care and medicine, and speech recognition [12]. These advancements were made possible by deep
learning’s ability to learn features from data rather than hand-designed features based on domain-specific
information. Presently, the medical field is one which requires utmost care and investigation, with
medical sciences at a level that necessitates substantial research and technical proposals in order to
address the increasingly complicated medical challenges [13]. Deep learning is rapidly becoming the
industry standard, leading in improved outcomes in a wide range of medical applications. As a result,
these advancements make diagnosing and identifying such medical disorders easier for clinicians. There
has been a lot of work in the recent literature on using DL techniques on medical images to automate
diagnosis [14,15].

Medical images are crucial in the care and diagnosis of patients. The aim of Computer-Aided Diagnosis
(CAD) is to provide doctors with accurate interpretations of medical images, so that a large number of
patients can be treated more effectively [16]. Full training and fine-tuning a CNN that has been pre-
trained using a large number of labeled natural images are the two methods. In this study, both
profoundly fine-tuned CNNs and completely qualified CNNs outperformed the handcrafted alternatives,
highlighting the potential of CNNs for medical imaging applications. Transfer learning has been used to
fine-tune deep CNN models to increase training and validation performance. Partial data augmentation
strategies are used to extend the training dataset in a balanced way. The tests were conducted, and the
model’s robustness was demonstrated by the scores obtained, which included accuracy, recall, precision,
and the area under the curve (AUC) ranking. The proposed model achieved a 98.857 percent accuracy
and a high F1 score of 99.002, confirming its efficacy [17].

Six separate convolutional neural network models are used to identify the data collection composed of
CXR images, including Densenet121, Inception v3, NASNet mobile, Resnet50, VGG16, and Xception. The
classification output of Densenet121 is the best in six models [18]. In medical image modality classification,
three CNNs with different depths, such as CNN-6, VGGNet-16, and ResNet-50, are integrated by a weighted
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average of the prediction probabilities. After employing two data augmentation methods, the results such as
76.87 percent in ImageCLEF2015 and 87.37 percent in ImageCLEF2016 are obtained. This suggests that
using transfer learning techniques and data augmentation, CNNs can more efficiently classify modalities
of medical images [19].

Nine different deep CNNs were trained and tested for classification of TB and normal cases using
transfer learning. This study included three different experiments: CXR image segmentation using two
different U-net models, CXR image classification, and segmented lung images. The accuracy, precision,
sensitivity, F1-score and specificity of best performing model ChexNet were 96.47%, 96.62%, 96.47%,
96.47%, and 96.51% respectively. However, for the segmented lung CXR images, the accuracy, precision,
sensitivity, F1-score and specificity of DenseNet201 were 98.6%, 98.57%, 98.56%, 98.56%, and 98.54%.
The researchers demonstrated that CNN learning predominantly from segmented lung areas results in high
accuracy using a visualization method [20]. Image analysis and feature extraction using AI have been used
to identify and diagnose a broad variety of chest-related diseases [21]. The majority of TB diagnostic deep
neural networks were adapted from natural image categorization. These models contain many parameters
and high system requirements, making them prone to overfitting and challenging to employ in usual
environment [22]. A portable CXR (pCXR) is an essential tool in the treatment of COVID-19 lung
infection. COVID-19 lung infections on pCXR were differentiated from common and associated lung
disorders using deep CNNs, possibly enabling for more prompt and accurate diagnosis. This approach has
the potential to help radiologists and clinicians by improving the accuracy of the diagnosis [23].

As a result, radiologists can detect anomalies on both original CXR examinations and digital images of
CXR films. Deep learning has recently produced impressive results, with its output becoming increasingly
human-like in recent years [24]. The primary goal of technology is to create tools and algorithms that will
improve human life. The detection of such defects using CXR images is a problem that must be
addressed. Deep learning algorithms that can detect such abnormalities with high accuracy and that are
accurate and interpretable must be developed. While several models have been built over time, there is
still room for improvement [25].

3 Methodology

The methodology of the proposed system is illustrated in Fig. 1. This proposed study includes two
separate tests for categorizing TB and non-TB patients using deep CNNs with and without histogram
matching respectively.

Figure 1: Methodology of the proposed system
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3.1 Dataset Description

The datasets used in this study are freely accessible posterior-anterior (PA) chest radiographs from the
National Library of Medicine in the United States (NLM), RSNA CXR dataset, NIAID TB dataset and
Belarus dataset which are accessed from Kaggle.

3.1.1 NLM Dataset
Shenzhen chest X-ray set (CHN) and Montgomery County chest X-ray set (MC): This dataset contains

662 CXRs images, 326 of which belong to healthy participants and 336 of which belong to TB patients. The
Montgomery County dataset is made up of 138 frontal CXRs from Montgomery County’s TB Screening
Program, 80 of which are normal and 58 of which have TB.

3.1.2 RSNA CXR Dataset
RSNA CXR dataset, which consists about 30,000 CXR images, where 10,000 CXR images are normal

and 20,000 CXR images are abnormal.

3.1.3 NIAID TB Dataset
NIAID TB dataset, which contains 3000 TB CXR images from about 3087 cases. All images were

collected from seven different countries and the CXR images are in Portable Network Graphics (PNG).

3.1.4 BELARUS Dataset
Belarus set was collected for a drug resistance study initiated by the National Institute of Allergy and

Infectious Diseases, Ministry of Health, Republic of Belarus. This dataset consists of 306 CXR images
collected from 169 patients. Fig. 2 describes the sample of the CXR images used in this study.

4 Pre-Processing and Data Augmentation

4.1 Pre-Processing

The CXR images in the dataset vary in size, and the majority of the CXR images contain one color
channel (grayscale), but a few images have three color channels (RGB). Initially, all CXR images are
converted to RGB images. To remove the effect of the blue color, RGB images are converted to grayscale
images. The datasets are pre-processed to resize the CXR images as the size of the input images for
various CNN models vary. Portable Network Graphics (PNG) format is used to resize the CXR images to
250 × 250 × 3 pixels. This size was chosen to meet the requirements of the input shape. Fig. 3 depicts
the normal and TB images after resizing and pre-processing.

4.2 Data Augmentation and Histogram Matching

Data augmentation improvise the accuracy of classification of the DL models by augmenting the
existing data instead of collecting new data. It also increases the range of data available for training the
models. Therefore, it is important to perform augmentation in order to make the dataset balance. Thus, to

Figure 2: Sample CXR images from the datasets
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create a normal database of 6002 CXR images for this study, 3,001 normal images and 3,001 abnormal (TB)
images are taken from the datasets. In that 337 normal and 347 abnormal (TB) CXR images are taken from
NLM dataset, 2,664 normal CXR images are taken from RSNA dataset, 2,396 abnormal (TB) CXR images
are taken from NIAID TB dataset and 258 abnormal (TB) CXR images are taken from Belarus dataset
respectively.

Tab. 1 describes the image format of the respective datasets and the number of normal and abnormal
images used for detection of TB through deep CNN models.

When the dataset is unbalanced, image augmentation is essential. Thus, Histogram Matching (HM) is
utilized to enhance the contrast and correct the exposure anomalies in CXR images. Histogram matching
is an image processing operation in which an image’s histogram is matched to the histogram of another
reference (template) image’s histogram. The following is a description of the algorithm.

Step 1: For each image, calculate the cumulative histogram.

Step 2: Match the histogram of the input image with the histogram of the template image to determine
the appropriate pixel value, xn, in the output image for each given pixel value, xm, in the input image.

Step 3: In the input, swap pixel xm for pixel xn.

Figure 3: CXR images after resizing and pre-processing

Table 1: Details of the dataset

Dataset Image format Normal CXR images Abnormal (TB)
CXR images

NLM PNG 337 347

RSNA PNG 2664 –

NIAID PNG – 2396

Belarus PNG – 258

Total – 3001 3001
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The intensities can be better dispersed on the histogram as a result of this modification. This method
increases contrast in low-contrast areas without affecting overall contrast. This is accomplished by using
the following probability of gray level gi occurrence in an image as follows [26]. Here, the intensity
levels of the given image are distinct.

pi gið Þ ¼ ni
n

(1)

where ni is the number of occurrences of the ith intensity and n represents the size of the image. The
normalized histogram pi(gi) is given in Eq. (1). The Cumulative Distribution Function (CDF), ck is
determined from the above normalized histogram as given in Eq. (2).

ck ¼
Xk

i¼0

pi gið Þ (2)

where k represents the number of unique intensities present in the image. The gray levels of the input and
output (processed) images are denoted by gi and ci, respectively, with i = 0, 1… [27].

Fig. 4 depicts the categorization database’s CXR images (without histogram matching) and equivalent
histogram matched images. Thus, it is notable that the contrast of the CXR images have been improved
which has eventually enhanced the intensify our region of interest i.e., the lung region in the CXR images.

4.3 Experiment

Deep CNNs have gained prominence as a result of their improved image classification performance.
Transfer learning can be used in various CNN applications if the dataset is small. Transfer learning has
recently been implemented in a number of domains, including medical, manufacturing, and object
screening. This eliminates the need for a big dataset and shortens the training period that a deep learning
system requires when created from scratch [28]. Ten popular pre-trained deep CNN models such as
Resnet50, Resnet101, Resnet152, InceptionV3, VGG16, VGG19, DenseNet121, DenseNet169,
DenseNet201, and MobileNet are used for TB detection. The intermediate weights for all the models
were set as non-trainable. The last layer weights are trainable. For the last output layer, Sigmoid
activation function has been used for all the CNN models.

Figure 4: Samples of CXR images from classification database (left) and corresponding histogram matched
image (right)
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The above ten different CNN models were trained and tested separately with and without histogram
matched images for the classification of TB CXR images and normal CXR images to investigate whether
the histogram matching can improve the detection performance and enhance the accuracy of the CNN
models. The entire CXR image set was divided into two subsets: 80% training and 20% testing
respectively. The random state in the train_test_split function is 22. The number of training and test
images used in the two experiments of CXR images with and without histogram matching is shown in Tab. 2.

All the ten deep CNN models are implemented using TensorFlow library with Python 3.7.10 on the
Goggle Colab which uses 12 GB RAM, with a GPU. The TensorFlow random speed is 3. The models are
trained with Adam Optimizer and Binary Cross Entropy is used as the loss function. A batch size of
64 images is used. As this is a two-class classification problem, the default threshold value is set to 0.5 to
ensure a fair class balance.

The VGG16 has 16 layers, VGG19 has 19 layers and MobileNet has 28 layers. These networks are
shallow when compared to the other deep networks used in this study. The same training parameters are
used to train ten pre-trained deep CNN models. The test accuracy dropped and the loss increased when
the number of the epochs is increased thus, using image augmentation and reducing the number of
epochs to 5 from the initial value of 15 epochs, helps in avoiding the overfittings of the deep CNN models.

4.4 Performance Matrix

Maintaining a general system of model assessment in the medical field is a crucial component of
establishing a consistent and fair comparison ground with other proposed previous researches. For
validating the robustness of our proposed system, six different evaluation metrices are used: (a) Accuracy
(Eq. (3)), (b) Sensitivity (Eq. (4)), (c) Specificity (Eq. (5)), (d) Precision (Eq. (6)), (e) F1-score/Dice
coefficient (Eq. (7)), and (f) Region of Convergence curve (ROC). These can be computed using the
following expressions.

Accuracy ¼ ðTPþ TNÞ
ðTPþ FNÞ þ ðFPþ TNÞ (3)

Sensitivity ¼ ðTPÞ
ðTPþ FNÞ (4)

Table 2: Details for training and test set for TB detection with and without histogram matching

Dataset Training with and without histogram matching

Normal Abnormal (TB)

Train Test Total Train Test Total

NLM 267 70 337 287 60 347

RSNA 2112 552 2664 – – –

NIAID – – – 1940 456 2396

Belarus – – – 195 63 258

Total 2379 622 3001 2422 579 3001

88 CSSE, 2023, vol.44, no.1



Specificity ¼ ðTNÞ
ðTNþ FPÞ (5)

Precision ¼ ðTPÞ
ðTPþ FPÞ (6)

F1‐score ¼ ð2�TPÞ
ð2�TPþ FNþ FPÞ (7)

Confusion matrix is a typical method for evaluating model performance using true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). This confusion matrix is used as a benchmark
for testing the model’s response. Here, the number of CXR images accurately classified as positive cases
by each model, is referred to TP. The number of CXR images accurately recognized as negative cases by
the model, is referred to TN. The number of CXR images that are truly but classified as tuberculosis by
each model, is referred to as the FP. The number of CXR image that are truly positive (tuberculosis) but
classified as normal, is referred to as FN. For various threshold settings, the ROC is calculated by
plotting the sensitivity against the 1-specificity.

5 Results and Discussions

As previously stated, two separate experiments were conducted for the classification of TB and normal
(non-TB) patients using CXR images with and without histogram matching to investigate if the histogram
matching can enhance the accuracy and improve the detection performance of various CNN models.

5.1 Performance of Various CNN Models for TB Detection without Using Histogram Matching

In Tab. 3, the performance of different CNNs for binary classification is compared using CXR images
without using histogram matching.

It is inferred that, both Resnet50 and Resnet152 are equally outperforming other networks trained on
CXR images without using histogram matching when it comes to categorizing CXR images. Even though
Resnet50 is shallower than DenseNet201, it was originally trained on CXR images provide with
additional benefits in classifying CXR images and hence it has shown better performance compared to
DenseNet201.

Table 3: Comparative performance of different CNNmodels for TB classification without histogrammatching

S. No. Model name Accuracy Sensitivity Specificity Precision F1-score

1. Resnet50 99.25 98.96 99.52 99.48 99.22

2. Resnet101 99.00 98.79 99.19 99.13 98.96

3. Resnet152 99.25 99.13 99.35 99.30 99.22

4. InceptionV3 94.67 93.43 97.58 97.30 97.33

5. VGG16 97.83 97.93 97.74 97.59 97.75

6. VGG19 98.00 96.89 99.04 98.94 97.91

7. DenseNet121 98.16 98.96 97.42 97.28 98.11

8. DenseNet169 98.33 96.54 99.35 99.28 97.89

9. DenseNet201 98.91 99.48 98.39 98.29 98.88

10. MobileNet 98.08 98.61 97.58 97.44 98.02
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Deeper networks do not always perform better; instead, Resnet50 is a great example of transfer learning
that outclasses other networks in this task. Resnet101, DenseNet201, DenseNet169, DenseNet121, and
MobileNet, on the other hand, showed consistently better performance for image classification without
histogram matching.

When evaluating CXR images without histogram matching, Figs. 5a and 5b clearly indicates
that DenseNet201’s ROC curve is the best one followed by Resnet152. It is also found that Resnet50,
DenseNet121, Resnet101, and MobileNet are also performing well. According to Fig. 5b, Resnet50 and
DenseNet121 have overlapping ROC curves, but the remainder of the ROC curves are comparable.

Figure 5: (a) Comparison of ROC curves of different CNN models for TB classification without histogram
matching and (b) zoomed view
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Figs. 6a and 6b presents the confusion matrix for outperforming the Resnet152 and Resnet50 models on
non-histogram matched CXR images respectively. When non- histogram matched CXR images are given as
input to the classifier, 6 out of 579 TB test images are misclassified as normal and 3 out of 622 normal CXR
test images are misclassified as TB images, when using the equally performing network Resnet50 (as shown
in Fig. 6b). When the same CXR images are used as the input to the classifier, only out of 579 TB test images
are misclassified as normal and 4 out of 622 normal CXR test images are misclassified as TB images in the
top performing network Resnet152 (as shown in Fig. 6a).

5.2 Performance of Various CNN Models for TB Detection Using Histogram Matching

In Tab. 4, CXR images with histogram matching are used to examine the performance of different CNNs
for binary classification. Tab. 4 indicates that in this two-class scenario, all of the tested pre-trained models
are exceptionally good at distinguishing between TB and normal CXR images.

It is inferred that, both Resnet50 and DenseNet169 outperforms other networks trained on CXR images
with histogram matching when it comes to categorizing CXR images. Resnet50 is shallower than
DenseNet169, but it was first trained on CXR images, which provided it with significant advantages in
classification of CXR images, and so it outperformed DenseNet169. Resnet50 is an excellent example of
transfer learning and, as previously stated, it outclasses other deep CNN models in this study.

Figure 6: Confusion matrix for normal and TB classifications without histogram matching for the best CNN
models (a) Resnet152 and (b) Resnet50

Table 4: Comparative performance of different CNN models for TB classification with histogram matching

S. No. Model name Accuracy Sensitivity Specificity Precision F1-score

1. ResNet50 99.58 99.65 99.51 99.48 99.56

2. ResNet101 99.08 99.13 99.03 98.96 99.05

3. ResNet152 99.00 99.14 98.87 98.79 98.96

4. InceptionV3 95.00 95.16 94.85 94.51 94.83

5. VGG16 98.33 98.44 98.23 98.10 98.27

6. VGG19 98.00 98.96 97.10 96.95 97.94

7. DenseNet121 99.16 98.61 99.67 99.65 99.13

8. DenseNet169 99.41 99.82 99.04 98.97 99.39

9. DenseNet201 98.58 98.44 98.71 98.61 98.53

10. MobileNet 96.66 96.20 97.10 96.86 96.53
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DenseNet121, ResNet101, and ResNet152 all performed comparably in image classification using
histogram matching. When utilising histogram matching to evaluate CXR images, Figs. 7a and 7b clearly
show that the DenseNet169 ROC curve is the best, followed by ResNet50. ResNet101 and ResNet152
are likewise found to be performing well in comparison. Both ResNet50 and DenseNet169 perform better
with and without histogram matched CXR images, according to the results. DenseNet201 and
VGG16 have overlapping ROC curves, and ResNet101 and ResNet152 have almost overlapping curves,
while the rest of the networks’ ROC curves are comparable as shown in Fig. 7b.

Figure 7: (a) Comparison of ROC curves of different CNN models for TB classification with histogram
matching and (b) zoomed view
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Figs. 8a and 8b presents the confusion matrices for outperforming the Resnet50 and DenseNet169
models on histogram-matched CXR images respectively. When histogram matched CXR images are
given as input to the classifier, 1 out of 579 TB test images are misclassified as normal and 6 out of
622 normal CXR test images are misclassified as TB images, when using the second highest performing
network DenseNet169 (as shown in Fig. 8b). When the same CXR images following histogram matching
is used as the input to the classifier, only 2 out of 579 TB test images were misclassified as normal and
3 out of 622 normal CXR test images were misclassified as TB images in the top performing network
Resnet50 (as shown in Fig. 8a). This is certainly an outstanding performance from any models with a
computer-aided classifier, and it may greatly benefit the radiologists and the doctors in early diagnosis of
TB after collecting the CXR images.

Form Fig. 9, it is inferred that, the accuracy of TB detection has been significantly increased for
Resnet50 (0.33%), Resnet101 (0.08%), InceptionV3 (0.33%) VGG16 (0.5%), DenseNet121 (1%), and
DenseNet169 (1.08%) respectively using histogram matching. Moreover, the histogram matching is found
to be very useful in improving the accuracy for DenseNet169 and DenseNet201 CNN models. On the
other hand, it also is inferred that the accuracy of TB detection has been significantly reduced for
Resnet152 (0.25%), DenseNet201 (0.33%), MobileNet (1.42%) CNN models respectively with the use of
histogram matching. It is also found that there is no change in the accuracy performance of VGG19
model in comparison with and without using histogram matching.

Figure 8: Confusion Matrix for Normal and TB Classifications with histogram matching for the Best CNN
Models (a) Resnet50 and (b) DenseNet169

Figure 9: Comparison of detection accuracy of the CNN models with and without histogram matching
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Our proposed approach’s classification accuracy was compared to various recently published articles in
the detection of tuberculosis. Tab. 5 compares the classification accuracy obtained in this investigation to that
obtained in other studies employing CXR images to diagnose tuberculosis. Many datasets from large
databases were employed in this investigation, and consistent results were achieved. This demonstrates
the generalizability of the proposed system. With 10 deep CNN models, histogram matching is also used
to evaluate classification performance, resulting in a more reliable and efficient system with 99.58 percent
classification accuracy.

When training accuracy is high but testing accuracy is low, overfitting is said to occur. In our situation,
however, all of the models perform well during the training and testing phases, thus there is no overfitting.
The dataset utilised is a standard dataset that has been used in a number of articles, demonstrating that the
model is generalizable. Transfer learning was utilised to fine-tune the model for the TB detection challenge at
hand.

6 Conclusions

As there is a scarcity of radiologists in resource-constrained and developing areas, technology-assisted
TB detection is needed to aid in the reduction of time and effort spent in TB detection. This article presents a
transfer learning strategy that uses deep CNN for automated diagnosis of tuberculosis from CXR images. For
the classification of TB and normal CXR images, the performance of ten different CNN models is evaluated
with and without using histogram matching.

i) Without histogram matching the best accuracy, sensitivity, specificity, precision and F1-score in
the detection of tuberculosis using CXR images among ten models are 99.25%, 99.48%,

Table 5: Comparison of the proposed methodology with related works

Author Year Methodology Dataset Classification
accuracy

[29] 2017 CNN NLM 82%

[30] 2017 CNN transfer learning NLM 84.7%

[31] 2018 Three deep CNN models NLM 90.5%

[11] 2018 Transfer learning (ResNet) NLM 94.89%

[32] 2019 VGG16 model-transfer
learning

NLM 81.25%

[12] 2019 Three pre-trained deep CNN
models

NLM 86%

[33] 2020 Four pre-trained deep CNN
models

NLM 91.6%

[20] 2020 Nine pre-trained CNN models
(Without segmentation)

NLM, RSNA, NIAID
&
Belarus

96.47%

[34] 2021 Ten pre-trained CNN models NLM 90.38%

Our Proposed
Method

2021 Ten pre-trained CNN
models

NLM, RSNA,
NIAID &
Belarus

99.58%
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99.52%, 99.48% and 99.22% respectively. With histogram matching the best accuracy, sensitivity,
specificity, precision and F1-score are 99.58%, 99.82%, 99.67%, 99.65% and 99.56%
respectively.

ii) When it comes to classification of normal and TB infected CXR images, both Resnet50 and
Resnet152 are found to outperform other networks trained on CXR images without histogram
matching. With histogram matching, both Resnet50 and DenseNet169 outperforms other
networks trained on CXR images.

iii) It is also shown that the histogram matching has improved the accuracy and enhanced the detection
performance of the deep CNN models including Resnet50, Resnet101, InceptionV3, VGG16,
DenseNet121 and DenseNet169. This research indicates that by integrating recent advances in
deep learning and applying histogram matching, it is possible to achieve a higher level of
performance, which improves the accuracy of deep CNN models.

iv) Histogram matching improves the image’s visual appeal. It can also aid the clinician in the manual
detection of tuberculosis. Histogram matching can produce good contrast with absolutely no effort
in terms of algorithm inputs or processing time.

This cutting-edge performance has the potential to be a highly reliable and fast diagnostic tool, possibly
saving a huge number of people each year who depart as a result of delayed or incorrect diagnosis of TB.
More clinical data can be acquired in the future to greatly enhance the accuracy and detection
performance. A large-scale TB CXRs database will greatly aid in the development of generalized models
that are accurate over a wide range of CXR datasets.
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