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Abstract: RSs (Radar Systems) identify and trace targets and are commonly
employed in applications like air traffic control and remote sensing. They are
necessary for monitoring precise target trajectories. Estimations of RSs are non-
linear as the parameters TDEs (time delay Estimations) and Doppler shifts are
computed on receipt of echoes where EKFs (Extended Kalman Filters) and UKFs
(Unscented Kalman Filters) have not been examined for computations. RSs, cer-
tain times result in poor accuracies and SNRs (low signal to noise ratios) espe-
cially, while encountering complicated environments. This work proposes
IUKFs (Iterated UKFs) to track online filter performances while using optimiza-
tion techniques to enhance outcomes. The use of cost functions can assist state
corrections while lowering costs. A new parameter is optimized using MCEHOs
(Mutation Chaotic Elephant Herding Optimizations) by linearly approximating
system non-linearity where OIUKFs (Optimized Iterative UKFs) predict a target's
unknown parameters. To obtain optimal solutions theoretically, OIUKFs take less
iteration, resulting in shorter execution times. The proposed OIUKFs provide
numerical approximations which are derivative-free implementations. Simulation
evaluation results with estimators show better performances in terms of reduced
NMSEs (Normalized Mean Square Errors), RMSEs (Root Mean Squared Errors),
SNRs, variances, and better accuracies than current approaches.

Keywords: Radar system; unscented kalman filter; extended kalman filter;
optimized iterative unscented kalman filter; mutation chaotic elephant herding
optimization; time delay estimation

1 Introduction

Target identifications/tracking, management of air traffic, and remote sensing are all common use of RSs
[1,2] where transmitters send signal bursts, and receivers receive dispersed versions of those signals. The
scattering of signals is measured using TDEs and Doppler shifts in received signals and the target’s range
and radial velocities are computed. These measurements are employed as measurements in RSs [3]. The
fundamental concept of Radars is similar to that of sound wave reflection. Radars detect and locate
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objects by using electromagnetic radiation bursts. Radars can be classified in a variety of ways but
categorized into eleven groups based on their functionality and primary characteristics [4].

Generic pulse Radars play a prominent role in RSs where they emit a series of short-duration rectangular
pulses in repeated patterns. Pulse Radars can be divided into two categories namely Radars with MTYIs
(Moving Target Indications) and Radars with pulse-doppler. Both these types employ Doppler frequency
shift, which works with incoming signals to find a moving target. The TDEs and Doppler shift are used
to calculate measures like range and radial velocity based on these two kinds. Difficulties in calculating
TDEs between received signals of the same transmitters are known as TDEs [5] where computing these
parameters are critical for detecting targets with radar transmitters. These received echoes are referenced
with signals by the usage of filters to estimate TDEs and assure target recognitions.

KLMSs (Kernel Least Mean Squares) are new approaches in non-linear estimation [6–8] that efficiently
estimate TDEs and Doppler shifts. RKHSs (Reproducing Kernel Hilbert’s Spaces) use representer theorems
and estimate nonlinearity between unknown parameters iteratively while returning signals using KLMSs
estimators. The LMS method in RKHSs adaptively updates calculated parameters.

EKFs and UKFs are commonly used nonlinear estimators and have been evaluated for tracking targets in
radar measurements [9,10]. Certain specific applications of synthetic aperture radars, Kalman filter’s version
MCKFs (Modified Convolution Kernel Functions) [11] estimated parameters of returning LFMSs (Linear
Frequency Modulated Signals). EKFs and UKFs have not been examined to estimate the TDEs and
Doppler shifts in target tracking applications.

However, they approximate nonlinear systems with first-order linearization to produce linear models. In
complicated environments with low SNRs and heavy-tailed clutter, they have poor accuracies and stability
resulting in ambiguous Target identifications. Improved EKFs and UKFs evaluate systems with their true
nonlinear forms, which helps in accurate parameter estimates even in a complicated context. However,
the purpose of IEKFs is to iteratively search for improved linearization that is suited for severe
nonlinearities, rather than to directly correct linearization mistakes. IEKFs are a natural extension of
EKFs that combine NLSs (Nonlinear Least-Squares) with GNs (Gaussian Newton).

This study proposes OIUKFs for monitoring filter performances online and attempting to improve them
using optimization techniques. The use of cost functions can monitor state corrections and lower costs. A
new parameter is optimized using MCEHOs which approximates the system’s nonlinearity and OIUKFs
which estimate a target's unknown parameters. The underlying cost functions are optimized using
OIUKFs based on MCEHOs approach. This study achieves enhanced accuracies as demonstrated in its
simulation results.

2 Literature Review

Singh et al. in their study proposed non-linear estimations based on sparse KLMSs (Kernel Least Mean
Squares). Their scheme used adaptive kernel width optimizations for reducing computational complexities
and easier implementations. The study used modulated and orthogonal frequency divisions multiplexed
Radar signals where Cramer-Rao lower bounds were constructed for their proposed estimations. Target
ranges were estimated by Singh et al. where unique iterative non-linear KLMSs estimations were used.
Their scheme when compared with FTs (Fourier Transforms) based estimation in simulations showed
KLMSs converged with reduced MSEs. KLMSs have significant limitations in assessments on
characteristics including kernel widths, step sizes, and dictionary threshold values, and when these
parameters are run on specified ranges, they yield suitable values.

Kulikov and Kulikova suggested Accurate Continuous-Discrete EKFs based on ODEs (Ordinary
Differential Equations) with global error controls. They compared their proposed scheme with
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Continuous-Discrete Cubature and UKFs using seven-dimensional radar tracking where airplanes made
coordinated turns. The study proved the worthiness of nonlinear filtering techniques in their tests by
using them for actual target tracking however, their Accurate Continuous-Discrete EKFs were found to be
versatile and resilient in their tests. It could successfully address air traffic control situations for diverse
data and a variety of sample times without any manual adjustments.

Gu et al. suggested multi-component LFMSs parameter estimations based on MCKFs. The suggested
scheme was quicker as there were no searching operations, reducing external influences, and lowering
computing burdens. Furthermore, it was resistant to additive noises. Their suggested strategy was
supported by simulated and real-world data. On the other hand, EKFs and UKFs have not been used to
estimate the TDEs and Doppler shift for target tracking.

For global optimization issues, Ibrahim et al. [12] presented SKFs (Simulated Kalman Filters),
population-based meta-heuristic optimizations based on Kalman Filter estimations. State estimations were
treated as optimization issues where SKF agents were Kalman Filters. Nonlinear estimators based on
KLMSs were proposed by Singh et al. [13] and they outperformed traditional estimators. KLMSs
estimators have poor selections of system parameters and to overcome their limitations nonlinear
estimators namely EKFs and UKFs were used in this study. EKFs were selected due to their ease in
implementations, but suffered from inadequate representations of nonlinear functions for 1st order
linearization, while UKFs outperformed EKFs by providing stableness by treating nonlinearities precisely.
The suggested EKFs and UKFs-based estimators of the study enhanced accuracies, according to the
study’s simulation findings.

Mishra et al. [14] investigated sub-Nyquist cognitive radars in which overall transmitting powers of
multi-band cognitive waveforms were conventional equivalent to full-bands which lowered MSEs of
single-target TDE estimates. To improve the accuracies of delay estimations, the study selected the best
bands and distributed total power in the bands. Using Cramer-Rao limits, the study showed that in
cognitive radars, equal width sub-bands resulted in superior delay estimations than conventional radars.
Cognitive radar performed effectively in terms of low SNRs in their investigation utilizing Ziv-Zakai bounds.

Roemer et al. [15] examined the challenge in predicting unknown delay(s) as systems receive linear
combinations of multiple delayed copies of known broadcast waveforms. This issue was noticed in a
variety of applications, including timing-based localizations and wireless synchronizations. To reduce
hardware complexities, the study suggested a compressed sensing-based system design that measured
values below Nyquist rates, and yet delay estimates were accurate. The study’s design of kernels for
measurements with frequencies showed optimal numerical choices and outperformed functions that were
randomly chosen for estimating delays.

Cobos et al. [16] suggested a sub-band technique for the estimation of TDEs to increase traditional GCC
(Generalized Cross-Correlation) algorithms. Their suggested method used sliding windows to extract
numerous distinct correlations amongst the cross-power spectrum’s frequency bands of the phase. Their
key contributions could be summed up as 1) GCC sub-band representations of cross power spectrums
which have lower temporal resolutions and estimate TDOAs (Time Difference of Arrival) 2) When
signals are without noises their matrix representations exploited scenarios for achieving robust and
accurate GCCs; 3) designing low-rank approximations for processing GCC sub-band matrices resulting in
improved TDOA estimates and source localization performances. To show the validity of their suggested
technique, their scheme was tested with a large number of experiments.

Li et al. [17] introduced a new approach for exploiting space-frequency features to estimate DOAs
(Direction-of-Arrivals) and TDEs of multi-path OFDM (Orthogonal Frequency Division Multiplexing)
signals. The study’s scheme combined array structures and frequencies to generate extended virtual
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arrays. The study reduced impacts of multi-path by constructing extended channel frequency response
matrices which were smoothened.

Compressed Sensing which reach high resolutions were exploited by Li et al. [18] to estimate signal
parameters based on the signal’s sparseness. Their approaches used high resolutions after l0-norm
Optimizations. Generalized filter outputs or ambiguous functions result in sparse representations where
prior studies used sparse representations for channel responses. The study deconvolved outputs of
generalized matching filters using greedy optimizations and bayesian methods for two-dimensional
estimations of Doppler shift and TDEs. Their simulations showed that their technique outperformed other
sparse representations of channel data in low SNRs.

3 Proposed Methodology

The main aim of this study is to predict TDEs and Doppler shifts (radial velocities) of signals. These
estimations are based on non-linear estimation approaches namely OIUKFs and EKFs. To obtain
theoretical optimal solutions, OIUKFs consume less iteration, resulting in shorter running times, and are
useful for estimating the target’s properties accurately even in complicated contexts. This study’s
suggested estimators showed lower errors and variances in simulations.

3.1 Signal Model Formulation

This section derives radar return signals by connecting radar return and required unknown parameters
like TDEs and Doppler shift where mono-static LFM radars [3] were used to keep radars static. Radar’s
transmitters emit LFM pulses at baseband frequencies with LFM pulses separated by set periods called
PRIs (Pulse Repetition Intervals). Received signals get dispersed from their initial broadcasting signals.
This scattering occurs due to two factors namely TDEs (signal transmissions between antennas and
targets and Doppler shifts which occur due to radial velocities of targets.

The LFMSs (vLFM(t)) can be depicted as in Eq. (1)

vLFM tð Þ ¼ a exp jpct2ð Þ; 0 � t � To

0;T0 , t,TPRI

�
(1)

where, a - amplitude, γ - sweep rate’s frequency, To - duration of pulses, and TPRI - PRIs. The frequency of
LFMSs varies with time where the immediate frequency is computed using f i tð Þ2 ¼ ct. mth pulse when
MLFM pulses burst can be represented as time-shift forms of LFMSs and shown in Eq. (2),

vj tð Þ ¼ v t� nTPRIð Þ for 0 � t � To (2)

where, n 2 ½0; 1;…;N� 1� and N represents total pulses count in a burst. vjðtÞgets modulated by high-
frequency carrier signals where modulations can be represented mathematically as Eq. (3),

v tð Þ ¼ vj tð Þ
� �

exp j2pf ctð Þ (3)

where, f c -carrier signal’s frequency. Returning signals pmðtÞ are time delayed variants of vðtÞ where sm
stands for TDEs of the mth pulse when Eq. (4) is satisfied,

sm¼so� 2

C
vmTPRIf g (4)

where so -first pulse’s TDE, v - radial velocity, and c – light’s velocity. For maintaining generality of target’s
time (N pulses) v is considered constant or constant Doppler shifts are assumed. Then Time differences 2/c
{vmTPRI} in time shifts of return signals when targets change positions over nTPRI results in subsequent
changes to pnðtÞ and given by Eq. (5),
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pn tð Þ ¼ vj t� snð Þ� �
exp j2pf c t�snð Þð Þ þ km tð Þ (5)

where, km tð Þ - additive thermal noises Returning signals, pn tð Þ, of basebands when depicted mathematically,
form Eq. (6),

pm tð Þ ¼ vj t� snð Þ� �
exp �j2pf csnð Þ þ km tð Þ (6)

This implies Pn fð Þ can be written as Eq. (7),

Pn fð Þ ¼ VLFM fð Þj j2 exp �j2pf csnð Þ exp �j2pfsnð Þ þ km fð Þ (7)

Where, VLFM(f) represents Fourier transforms LFMSs Sampling frequency l ¼ ½0; 1; ::;L� 1� with interval
Df and dividing by VLFM lDfð Þj j2yields the following Equation

p n; lð Þ ¼ exp �j2pf csnð Þ exp �j2pDfsnð Þ þ k n; lð Þ (8)

where k(n, l) represents thermal noise’s discrete samples. Substituting sn from Eq. (4) results in Eq. (9),

p n; lð Þ ¼ exp j2pnf dTPRIð Þ exp �j2plDfsoð Þ exp j2pf dml
TPRIDf

f c

� �� �
þ k n; lð Þ (9)

Where f c ¼ 2vfc/c represents unknown Doppler shifts caused by the target’s radial velocities. From Eq. (9), it
can be noted that returning signals, r(m, l), are nonlinearly and exponentially related to TDEs (so and f d)
which are estimated from returning signals r(m, l) using EKFs and UKFs. Gaussian filters were used
instead of particle filters as result in acceptable estimation with low processing costs. The suggested
EKFs and OIUKFs for estimating TDEs are Gaussian filters. The LFM radar system’s states assessment
model was developed using the Bayesian framework followed by EKFs and OIUKF estimations for so
and f d.

This study uses notations for mathematical representations where constants are in upper cases, Vectors
are boldfaced upper cases, superscript representations are: ( T transposes. H complex conjugate transposes of
matrices and * scalar complex conjugate operations), statistical expected outcomes are represented by E½��. R
denotes real numbers while C stands for complex numbers where R(·) implies real parts and I(·) stands for
imaginary parts.

3.2 States Assessment Models for RSs

This work’s proposed state assessments include measurements models where the states are measured
using mathematical links. TDEs (so and f d) form the state, while the observed values (returning signals p
(n,l)) constitute measurements and variables declared included x ¼ sof d½ �T and
y ¼ R r m; lð Þð ÞI r m; lð Þð Þ½ �T. The state-space model defined in Eq. (9) rise consistently in intervals and
TDEs due to the assumed constancy of radial velocities. Errors arising from this study’s assumptions of
constants are treated as process noises. The modeled state can be depicted mathematically as Eq. (10),

ykþ1 ¼ f ykð Þ þ gk ¼ yk þ Dy þ gk (10)

where k 2 f1; 2; . . . ;Kg, K ¼ ML stands for discretized sample counts of signals returned, and Dx ¼ To
K ; 0

� �
represents shifts between successive returning signals. gk is the noise that are additive and assist in modeling
error compensations. Based on Eq. (9), measurements (xkþ1) can be depicted as Eq. (11),
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xkþ1 ¼ c xkþ1ð Þ þ dkþ1

¼
R exp j2pnykþ1 2ð ÞTPRI

	 

exp �j2plDfykþ1 1ð Þ	 


exp j2pykþ1 2ð Þml TPRIDf
f c

� �� �� �
I exp j2pnykþ1 2ð ÞTPRI

	 

exp �j2plDfykþ1 1ð Þ	 


exp j2pykþ1 2ð Þml TPRIDf
f c

� �� �� �
2
64

3
75þ vkþ1

(11)

where dk stands for noises measured. These measurements help mitigate signal errors that occur while
collecting/processing them. gk, vk represent Gaussian filter’s assumed zero means with covariance Qk and
Rk: This study considers the additive impacts of process/measurement noises.

3.3 Bayesian Filters

Bayesian filtering is a two-step operation using predictions and updates:

3.3.1 Predictions
This phase creates the PDFs (Probability Distribution Functions) of states one-time step

forward (relation to the available observations) by utilizing Chapman–Kolmogorov equation [19] given as
Eq. (12),

P ykjx1:k�1ð Þ ¼
Z

P ykjyk�1ð ÞP ykjx1:k�1ð Þdyk�1 (12)

where P(·) stands for PDFs and P ykjx1:k�1ð Þstands for prior PDFs.
3.3.2 Update

PDFs are reconstructed in this step when new measurement values from Bayes rule [19] yk are received
and depicted as Eq. (13),

P xkjy1:k�1ð Þ ¼ P xkjy1:k�1; ykð Þ ¼ 1=ckP ykjxkð ÞP xkjy1:k�1ð Þ (13)

ck ¼ P ykjy1:k�1ð Þ ¼
Z

P ykjxkð ÞP xkjy1:k�1ð Þdxk (14)

where P ykjxkð Þ stands for likely measures achieved using Eq. (11) and ck represents constant for
normalizations. The use of Bayesian filtering results in the construction of posterior PDFs P xkjy1:kð Þ:

3.4 TDE Estimations Using EKFs

The estimations of TDEs (soand f d) from returning signals, r(m, l) of the investigated RSs using Eqs (10)
and (11) are simplified from states assessment as estimations of x k from known y k measurements where
EKFs are analytical simplifications of Bayesian frameworks and where conditional PDFs in Bayesian
frameworks Eqs. (12)–(14) are assumed to be Gaussians as shown in Eq. (15),

Pðxkjk�1Þ � N ðxkjk�1; x̂kjk�1;Pkjk�1Þ (15)

PðxkjkÞ � N ðxkjk; x̂kjk; PkjkÞ (16)

where, real Gaussian distributions are represented as N, xkjk�1 stands for mean values while Pkjk�1 implies
covariance of xkjk�1 and similarly xkjk implies mean values and Pkjk covariance of xkjk. xkjk�1 and Pkjk�1 are
predicted while xkjkand Pkjk are updated as detailed below:
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3.4.1 Prediction
In this step, prior PDFs ( xkjk�1 and Pkjk�1) result when Jacobian (Fk) of f ðxkÞ [19] is used and depicted as

Eq. (17),

Fk¼ @f xð Þ
@x

jx ¼ bxk�1jk�1¼ 1 0
0 1


 �
(17)

3.4.2 Update
In the initial part of this step, measurements ðbykjk�1Þ are predicted along with error covariance (PYYkjk�1)

using Jacobian (Hk) of h(·) [19] which results in new measurements yk. Subsequently, posterior estimates and
covariances, x̂kjk�1, and Pkjk, are obtained using Kalman filter gains (Kk) where posterior estimations

x̂kjk ¼ t̂ok f̂ dk

h iT
results desired TDEs and Doppler shift outcomes.

3.5 Optimized Iterative Unscented Kalman Filter (OIUKF)

The calculation of an IUKF using the Fisher estimation framework is described in [20], and it entails
minimizing the following cost function in the filter’s measurement update phase.,

bytjt ¼ arg min
y

Z yð Þ ¼ arg min
y

1

2
fT yð Þf ðyÞ (18)

f yð Þ ¼
R
�1

2
t yt � h xð Þð Þ

P
�1

2

tjt�1 x̂tjt�1 � x
	 


2
64

3
75 (19)

Hi ¼ Pxyi
	 
T

P�1 (20)

It presupposes, like the IUKF version, that the measurement function is affine in the vicinity of x and x i,
and therefore that h x' (x)=h x' (x i)= H i. The Jacobian H i is not explicitly computed in the UKFs, but the fact
that Pxy = PHT in the linear case may be used to infer a stochastic linearization. As a result, the equation
provides a fair estimate of H i in the IUKF (20),

When P’s symmetry has been exploited and Pxy implicitly incorporates second-order transformation
effects [21]. The state iteration in IUKF may be utilized to generate the following equation using the
preceding stochastic linearization approach (21),

xiþ1 ¼ x̂þ Ki y� ŷi � Pxy
ið ÞTP�1 x̂� xið Þ

� �
(21)

Ki ¼ Pxy
i Pyy

ið Þ�1 (22)

ŷi ¼
X

k
W kð ÞY kð Þ

i (23)

It can be utilized as a starting point in the IUKF It’s worth noting that y = y (t|t − 1) remains constant. The
projected measurement y i must still be determined. The equation can be used to express two different natural
alternatives (23),

ŷ�i ¼ Y 0ð Þ
i (24)
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i.e., the converted center sigma point, represented by the superscript * in this case. Two somewhat different
interpretations of the cost function by equation result from the two options (25),(26).

V xð Þ ¼ yt � E h xð Þ½ �ð ÞTR�1
t yt � E h xð Þ½ �ð Þ þ x̂tjt�1 � x

	 
T
P�1

tjt�1ð Þðx̂tjt�1 � xÞ (25)

V � xð Þ ¼ yt � h xð Þð ÞTR�1
t yt � h xð Þð Þ þ x̂tjt�1 � x

	 
T
P�1

tjt�1ð Þðx̂tjt�1 � xÞ (26)

both depict different approximations of costs where corrections to states can result in decreased costs i.e.,
V xiþ1ð Þ < V xið Þ. If this is not the case a step size parameter a by Eq. (27).

yjþ1 ¼ yj þ aj ŷ� yj þ Gj x� x̂j � Hi x̂� xið Þ	 
� �
(27)

MCEHOs are used to compute the step sizes where EHOs (Elephant Herding Optimizations) use both
global and local searches [22]. Local searches, on the other hand, aim to locate better step sizes in smaller
search spaces with smaller promising approximate predictions of time and Doppler flaws. Elephant’s
herding behaviors are characterized as elephant populations (with varying step sizes) split into clans.
Generations have males which leave their clans for optimal selections of step sizes. Clans represent local
searches in the algorithm through the optimum selection of step sizes, but male elephants leaving clans
are global search implementations through step sizes. Matriarchs are solutions (elephants) in the clan with
the best fitness values for TDEs. Moving male elephants, on the other hand, are solutions so and fd with
the worst fitness function of RSs. MCEHOs approach divides Elephant population into k clans which are
D-dimensional solutions created randomly in search spaces by using lower bounds xmin and upper bounds
xmax of TDEs and using Eq. (28),

x ¼ xmin þ xmax � xmin þ 1ð Þrand (28)

where, rand implies random numbers between (0,1). New solutions get generated in generations when clan
members (j) from clan (ci)with best fitness values get attracted by solutions ( xbest;ci) [22]:

xnew;ci;cj ¼ xci;cj þ amutation xbest;ci � xci;j
	 


rand (29)

where, xnew;ci;cj- j’s new solution in clan ci for optimal selection of steps size in TDEs and doppler effects, xci;cj
- previous generation’s solution, amutation- generated parameter via mutation operator and algorithm’s
parameter is set correspondingly for TDEs and doppler effect. If the mutated value is worse than the new
value that is created via the new mutated value. rand 2 ½0; 1� random numbers between (0,1) in uniform
distributions. Scaling factor α influences best TDEs and doppler effect values with their step sizes and
these positions in clans get updated based on Eq. [22] given below:

xnew;ci ¼ bxcenter;ci (30)

where [0,1] is the second algorithm parameter, which determines the clan center’s effect. xcenter;ci for TDEs
and doppler effect. Clan center is defined by Eq. (31) [22],

xcenter;ci;d ¼
1

nci

Xnci
l¼1

xci;l;d (31)

where 1 ≤ d ≤ D represents the dth dimension and nci is the number of reduced TDEs and doppler effect in
clan ci. In each clan, nci solutions with the worst fitness values for TDEs and doppler effect of the clan ci are
chosen to be replaced by the following Eq. (32) [23],

xworst;ci ¼ xmin þ a xmax�xminþ1ð Þrand (32)
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where xminand xmax represent lower and upper bounds of search spaces for TDEs and doppler effects in the
interval rand ∈ [0,1] TDEs and the doppler effect was used to represent a random integer from uniform
distributions where they use two separate one-dimensional maps, circles, and sinusoidal maps, to generate
random numbers. The circular maps [23] can be described by Eq. (33),

ygþ1 ¼ yg þ a� b

2p
sin 2pyg

� �
 �
mod 1 (33)

where the produced chaotic sequence is inside b = 0.5 and a = 0.2 (0, 1). The equation for a sinusoidal map is
(34) [23],

ygþ1 ¼ by2g sinðpygÞ (34)

where for b = 2.3 and y0 = 0.7 the following simplified form.

The proposed scheme using EKFs and OIUKF estimations was tested with MATLAB simulations and
compared with other non-linear estimators based on UKFs, KLMSs, and Modified NCs. Two mono-static
RSs with different parameter values were studied and listed in Tab. 1 for Scenarios 1 and 2 which refer to

Algorithm 1. Pseudo-code of the MCEHOs algorithm

1. Set step sizes for TDEs and Doppler effects

2. Assign generation counter t=1 and value for MaxGen //maximum generations

3. Assign initial population with step sizes of TDEs and Doppler effects

4. Repeat

5. Sort all the elephants according to their fitness via the filter function

6. ci is the step size for all clans

7. ci do for all elephants j in the clan

8. Update xci;jand generate xnew;ci;cj by Eq. (29), generate amutationis via mutation operator

9. if xci;j ¼ xbest;cithen

10. Update xci;j and generate xnew;ci;cj by Eq. (30) via step size in TDEs and doppler effect

11. end if

12. end for

13. end for

14. Do this for all ci clans in the population

15. Get rid of the clan’s worst elephant ci by Eq. (32) and apply a circle map

16. end for

17. Assess the population in light of the newly revised positions according to step size for TDEs and
doppler effect

18. until t < MaxGen

19. Return the best-found solution
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the two RSs [24]. Scenario 1 depicts realistic LFM RSs where parameter values differ from Scenario 2’s RSs.
These scenarios are generated using a radar toolbox in MATLAB.

For both Scenarios 1 and 2 estimators based on EKFs and OIUKFs [25], Rk ¼ r2vI (where r
2
v is obtained

according to specified SNRs defined as relative strengths of signals with respect to noises in this work

SNR ¼ c ykþ1

	 
T
c ykþ1

	 

=nr2v (35)

TDEs and Doppler shift were estimated for SNR of 20 dB; however, a comparative study is presented for
SNRs ranging from 30 to 20 dB. For UKFs and both Scenarios 1 and 2, =0.5 were evaluated with 5 sigma
points in simulations taking 2n +1. (where n is the dimension or 2 in this study) [22].

Fig. 1 shows that EKFs and OIUKF-based estimating procedures achieve the final NMSE around the
3000th iteration, UKFs-based estimation around the 3500th iteration, and KLMS Modified NC around the
4500th iteration. Furthermore, OIUKF achieves a substantially lower final NMSE than the other approaches.
As a result, whereas estimators based on EKFs, UKFs and KLMSs Modified NC require longer to
converge, the OIUKF-based estimator converges quickly and achieves a substantially lower final MSE than
previous approaches. Fig. 1 shows that the proposed OIUKF-based estimation has a lower NMSEs of
0.0032, whereas other approaches such as EKFs, UKFs, and KLMS Modified NC have higher NMSEs of
0.42, 0.029, and 0.012, respectively, for 5000 iterations in scenario 1 in Estimation of TDEs.

Table 1: For simulation, LFM radar readings from scenarios I and II were used

Quantity Values for Scenario 1 Values for Scenario 2

Number of pulses (M) 10 20

Number of frequency intervals(L) 500 500

Frequency increment(Df) 10 MHz 10 MHz

Pulse Duration(T0) 5 ls 200 ls

Pulse Repetition interval(TPRIÞ 1 ms 0.4 ms

Centre Frequency(fcÞ 10 GHz 9 GHz

Figure 1: Comparison of NMSE for time delay estimation for scenario 1
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In Doppler shift estimation, the proposed OIUKF-based estimation yields a decreased NMSE value of
0.00094, whereas other approaches such as EKFs, UKFs, and KLMS Modified NC give higher NMSE
values of 0.36, 0.045, and 0.0092 respectively, after 5000 iterations in scenario 1 as shown in Fig. 2.

Fig. 3 shows that the proposed OIUKF-based estimation has a lower NMSE of 0.00092, whereas other
approaches such as EKFs, UKFs, and KLMS Modified NC have higher NMSEs of 0.33, 0.020, and
0.0087 respectively, after 5000 iterations in scenario 2 in Estimation of TDEs.

According to Fig. 4, the suggested OIUKF-based estimation has a lower NMSE value of 0.00075,
whereas other approaches such as EKFs, UKFs, and KLMS Modified NC have higher NMSE values of
0.21, 0.053, and 0.0014, respectively, at 5000 iterations in Doppler Shift estimation [25]. With the
suggested estimate methodologies, the decreased NMSE results in better accuracy in TDEs and Doppler

Figure 2: Comparison of NMSE for Doppler shift estimation for scenario 1

Figure 3: Comparison of NMSE for time delay estimation for scenario 2
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shift estimation. Fig. 5 demonstrates the variations acquired from the EKFs, UKFs, KLMS-Modified NC,
and suggested OIUKF based estimations. When compared to the KLMS-Modified NC, the variances
achieved with the EKFs and UKFs are closer to the attainable OIUKF estimation, as seen in the figures.
Furthermore, the statistics show that the UKF’s is somewhat more accurate than the EKFs.

In Fig. 5, established approaches such as KLMS Modified NC and UKFs are compared to EKFs and
OIUKF-based estimating methodologies. Furthermore, the variance achieved by the OIUKF-based
estimate is much smaller than the variance obtained by the other approaches. At 5000 iterations in
scenario 1, the proposed OIUKF-based estimation yields a decreased variance value of 0.00018, whereas
other approaches such as EKFs, UKFs, and KLMS Modified NC give increased variance values of 0.92,
0.11, and 0.00089, respectively. The comparison of NMSE for the scenario I and scenario II were
discussed in Tabs. 2 and 3 and shows that OIKUF has a minimum mean square error.

Figure 4: Comparison of NMSE for Doppler shift estimation for scenario 2

Figure 5: Estimate strategies for scenario 1 variance in time delay estimation based on KLMS-Modified NC,
UKFs, EKFs, and OIUKF
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4 Conclusion and Future Work

TDEs and Doppler shifts are used in RSs to derive measures like ranges and radial velocities. The
proposed OIUKFs and the EKFs are two unique nonlinear estimation approaches that can overcome the
estimator’s limitations and with enhanced outcomes for TDEs and Doppler shifts. Nonlinearity is
regarded as the genuine nonlinear model for estimation in the proposed OIUKF system. MCEHO is used
to optimize a new parameter using a cost function. The OIUKF system uses a numerical approximation
to provide a derivative-free implementation. It is more stable than the EKFs since it is implemented
without derivatives. EKFs are favourable because of their ease in implementations, but they suffer from
inadequate representations of nonlinear functions by first-order linearization, whereas the proposed
OIUKFs outperform EKFs while having better stability due to precise treatment of the system’s
nonlinearity. As a result, the OIUKFs outperform EKFs in terms of stability and yield estimates that are
similar in accuracy. In actuality, however, clutter, which is frequently represented as non-Gaussianity, is
common. As a result, future research into the nonlinear form of the Kalman filter capable of dealing with
non-Gaussianity to deal with the effects of clutter will be possible. The tracker also requires range, radial
velocity, and angle information for accurate tracking.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

Table 2: NMSE estimation values of scenario I for estimators

No. of iterations(k) Time delay estimation Doppler shift estimation

KLMS-
Modified NC

EKF UKF OIUKF KLMS-
Modified NC

EKF UKF OIUKF

1000 1.28 0.095 0.044 0.0091 0.97 0.095 0.044 0.0082

2000 1.12 0.082 0.036 0.0067 0.68 0.072 0.026 0.0064

3000 0.98 0.055 0.022 0.0054 0.51 0.064 0.022 0.0042

4000 0.67 0.045 0.015 0.0046 0.43 0.051 0.015 0.0026

5000 0.42 0.029 0.012 0.0032 0.36 0.045 0.0092 0.00094

Table 3: NMSE estimation values of scenario II for estimators

No. of iterations (k) Time delay estimation Doppler shift estimation

KLMS-
Modified NC

EKF UKF OIUKF KLMS-
Modified NC

EKF UKF OIUKF

1000 0.84 0.085 0.051 0.0096 0.88 0.094 0.038 0.0096

2000 0.65 0.056 0.024 0.0075 0.55 0.067 0.017 0.0055

3000 0.53 0.045 0.018 0.0059 0.43 0.044 0.0081 0.0037

4000 0.42 0.034 0.01 0.0029 0.36 0.023 0.0062 0.0019

5000 0.33 0.02 0.0087 0.00092 0.21 0.0053 0.0014 0.00075
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