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Abstract: The Problem of Photovoltaic (PV) defects detection and classification
has been well studied. Several techniques exist in identifying the defects and loca-
lizing them in PV panels that use various features, but suffer to achieve higher per-
formance. An efficient Real-Time Multi Variant Deep learning Model (RMVDM) is
presented in this article to handle this issue. The method considers different defects
like a spotlight, crack, dust, and micro-cracks to detect the defects as well as loca-
lizes the defects. The image data set given has been preprocessed by applying the
Region-Based Histogram Approximation (RHA) algorithm. The preprocessed
images are applied with Gray Scale Quantization Algorithm (GSQA) to extract
the features. Extracted features are trained with a Multi Variant Deep learning mod-
el where the model trained with a number of layers belongs to different classes of
neurons. Each class neuron has been designed to measure Defect Class Support
(DCS). At the test phase, the input image has been applied with different operations,
and the features extracted passed through the model trained. The output layer
returns a number of DCS values using which the method identifies the class of
defect and localizes the defect in the image. Further, the method uses the Higher-
Order Texture Localization (HOTL) technique in localizing the defect. The pro-
posed model produces efficient results with around 97% in defect detection and
localization with higher accuracy and less time complexity.

Keywords: Photovoltaic systems; deep learning; defect detection; classification;
localization

1 Introduction

The use of electrical and electronic devices is increased to a higher extent in the last decade itself. Such
growth in electronic devices directly impacts the usage and requirement of electric power. However, the
source of electric power like coal, water, and thermal are becoming scarce and human society cannot
depend on them for a long time. Because, the popular countries like china is already facing power
scarcity and looks for the alternate power from wind, atomic and other sources. In this line, solar energy
is the alternate source that has no scarcity and would be available throughout the year for the long term.
The PV systems are one which is designed to generate power supply from solar energy.
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The PV systems are designed with a number of solar panels assigned in a grid manner which contains a
panel at the top to absorb the sunlight which has been connected with different devices and components like
solar cells, diodes, and so on which has been converted into direct current. The direct current generated has
been passed through the silicon diode and stored in the battery storage like an inverter. The inverter converts
the direct current and returns an alternate current to the other devices. The performance of such a PV system
is depending on the functioning of different components of the PV system. In order to achieve higher power
regulation, the functioning of each component of the PV system must be monitored and maintained.

The output power from the PV system gets reduced because of several reasons like hotspots due to
sunlight, dust deposit in the panel, failure of the battery, damage of panel, and so on. It is necessary to
identify the conditions of the panel to maintain the power regulation from the system. Monitoring the
conditions of the panel physically is not possible because the PV systems are deployed in acres where the
human cannot visit each panel. As the panel comes with a thin size, it is not possible to move or walk
over the panel and look for the defects. To perform this, image processing and deep learning techniques
can be used in identifying the defects in the solar panel.

By applying image processing techniques over the luminescent ariel images, the presence of dust,
erosion, crack, sunlight effect, and other damages can be identified. There exist different image
processing techniques available to identify the defects by classifying the images using K-Means, Support
Vector Machine, Neural Networks, and so on. However, each of them has its benefits and demerits. But,
the deep learning models can be used in this problem because of the support of identifying micro-crack
and works by training huge samples of data and supports a variety of problems. Also, localization is very
much needed in this problem because when the solar system has been deployed in huge acres, then
identifying the defect itself is not enough, and need to localize which panel gets defected to replace them.
The problem of defect detection and localization can be handled with the support of deep learning
approaches. The deep learning models are capable of learning all the features with higher dimension and
takes only limited time in training as well as testing. By considering all these, in this article, an efficient
RMVDM is presented. The model applies the RHA algorithm in preprocessing the images and the
features of the images are extracted using GSQA. Further, the method trains the model with a deep neural
network to perform defect detection and localize the defect in the given image. The method applies
HOTL towards localizing the defect. The detailed approach is presented in the next section. The different
types of solar panels are discussed in Tab. 1 below.

Table 1: Types of solar cells [1]

Generation of solar cell Types of solar cell

First generation solar cells Single/Mono-crystalline silicon PV panel
Poly/Multi-crystalline silicon PV panel

Second generation solar cells Amorphous silicon thin-film PV panel
Cadmium telluride thin-film PV panel
Copper indium gallium di-selenide PV panel

Third generation solar cells Nano crystal-based PV panel
Polymer-based PV panel
Dye-sensitized PV panel
Concentrated PV panel

Transparent solar cell technologies Near-Infrared transparent PV panel
Polymer PV panel
Transparent luminescent solar concentrator
perovskite PV panel
Electrophoretic deposition PV panel
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A convolutional neural network (CNN) presented in [2], is used for our deep learning network. To perform
the input and output operation the CNN consists of three important layers: (1) convolution layer, (2) activation
layer, and (3) pooling layer. The neurons of a deep neural network can connect to other neurons, achieving
image processing, object detection, classification, and segmentation. In CNN, the raw images are
preprocessed with image processing techniques and then the classifier is trained by transfer learning.

2 Related Works

A number of approaches of defect detection and classification are discussed in the literature and this
section details different approaches related to the problem. An automatic defect detection system is
prescribed in [3], applying a Simple Linear Iterative Clustering scheme in thermal images of solar
systems to detect hotspots and generate real-time alerts. Towards detecting the cracks and micro-cracks in
solar panels the Halcon-based approach deep learning approach [4] and Bluetooth-based inspection
system [5] are presented. The system gets updated with the dynamic images with the support of
Bluetooth of android devices. The sensors are attached to the panel and update the defects to the system
with the use of Bluetooth.

To detect defects on residential solar panels the UV Fluorescence image-based approach is presented in
[6], which detects hotspots, cracked cells, junction box defects, and erosion defects. To support the detection
in outdoor environments conditions, a novel approach is presented in [7], which uses thermal images
captured that find the region of interest from the images to produce effective results.

An infrared image has been used in the detection of defects in PV cells and panels in [8,9], which use
Time-Resolved Thermography and Synchronized Thermography (ST) schemes in identifying the Region of
Interest in outdoor environments. In [10], the image processing techniques were used to detect the damages
in the panel and count them accordingly. These defects are caused by various weather conditions like cold,
heat, hail, and rain. A transfer learning approach is presented in [11,12] towards the detection of a defect in
the solar surface panel, which combines the result of transfer learning with AlexNet CNN. Applying a data
processing scheme to thermal images [13,14] for background subtraction, and applying discrete Fourier
transform and histogram equalization scheme to enhance the quality of the image. Towards localizing the
defect in PV panels and cells, ST has been used in [15]. The method computes the geometric areas of PV
cells and energy production in the detection of defects.

A support vector machine (SVM) based defect detection scheme is presented in [16], which uses
Electroluminescence (EL) images that classifies the images by extracting features from the image. An
adaptive neuro-fuzzy system is presented in [17–19], towards the detection of defects and elimination of
defects in PV systems, which performs aging analysis on different panels and collects different behaviors
in identifying the defects. A Particle Swarm Optimization (PSO) based crack detection scheme is
presented in [20], which uses image processing schemes to detect the cracks in the panel. The PSO
scheme is used in detecting the edges of cells extracts cracks, bus bars in classifying the defect with
fuzzy logic. A machine vision-based approach is presented in [21], towards the detection of micro-cracks.
The method uses EL images and applies bias voltage in capturing the photons which have been increased
for the brightness to support the detection of defects. A UAV infrared measurement scheme is presented
for the detection of thermal anomalies in [22], which applies the visual field to the PV plant.

A behavior-based approach is presented in [23] to detect the defects in panels that monitor and measure
the current at different voltage levels. Using the voltage obtained forward-biased non-illuminated PV cells
are measured using thermography. According to the maps generated on temperature, the presence of
defects has been detected. A CNN-based deep learning method YOLO [24,25] uses drones to detect the
snowy layers in solar panels. This method segments the panel images and evaluates the PV images with
the use of the existing network to detect the defects.
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An efficient transfer deep learning model is presented in [26], which uses infrared images to train the
network and to detect the normal and defective panels. A CNN-based automatic cell segmentation
algorithm is presented in [27], which uses high-resolution EL images. The method uses an automatic
segmentation scheme to extract cells from the image and classify them using the CNN network. The
method uses probabilistic Hough transform to identify the gridlines of panel and bus bars. Also, the
method uses a cell-based defect identification scheme using deep learning. The method uses K-means
clustering in grouping the images. A PV hotspot detection model is presented in [28], which uses a
machine-learning algorithm. The method generates color image descriptors from the thermography
images by dividing non-overlapping regions. Further, color descriptors are used in generating the features
in training the machine learning network towards classification.

A deep learning-based supervision scheme is presented in [29], which adapts CNN to find the defects.
The method extracts the features with pre-trained architecture Vgg16; the suggested solution added a full-
connected layer and an SVM decision layer to classify the defects. An image processing approach is
presented in [30], which finds the defects in surface control and defects in the panel. A light CNN-based
approach is presented in [31], to detect the defect in EL images. Similarly, a CNN model is presented in
[32], towards detecting the defects in PV panels. The method combines various machine learning
algorithms in detecting the defects. CNN-based architectures such as ResNet50 and ImageNet are used
for feature extraction by applying feature maps to global branches, local branches, and complementary
branches. The feature learning is done by a feature map. To learn the local region features, the L-ATT
module is used [33]. After the feature extraction, the object detection is done by YOLOv3 architecture
with the help of an Unmanned Aerial Vehicle (UAV) [34].

3 Proposed Methodology

The proposed model fetches the PV images obtained from the data set. Such images are preprocessed by
applying the RHA algorithm which finds the noisy pixels and approximates them to perform noise removal.
Further, the preprocessed images are used in extracting the features with GSQA. The GSQA algorithm
extracts not just gray features but also extracts different features like distribution, texture, contrast
features. Such features extracted are used in training the deep learning network where the network is
constructed with K number of layers and each intermediate layer denotes the process of detecting defects
towards a specific class. The neurons are designed to estimates the value of DCS towards various classes
of defects. Finally, a single class has been selected to perform classification and localize the defect
accordingly. Towards localization, the method uses the HOTL technique in localizing the defect. The
architecture of the proposed RMVDM has been presented in Fig. 1 where the functional components of
the model are detailed in this section.

3.1 Regional Histogram Approximation

The data set given for preprocessing contains a number of PV images. The images would have been
captured through different devices and contain noise features. The noise features in the image need to be
normalized to improve the quality of the images. To perform this, the model uses the RHA algorithm.
The method generates a number of regions of interest with the size of 3 and 5. To do this, the method
generates a sub-window according to the size of 3 and 5 for each of the pixels. For the window is
generated, the method generates a histogram of pixel values on grayscale. Further, the least gray value
has been identified and the pixel value of the current pixel is identified. If the number of histogram values
is close to the current pixel value then the method computes the mean value of the selected histogram
subset and adjusts the current pixel value with the mean measured. Otherwise, it has been left to identify
the texture values of different defects that appear in the image given. The preprocessing algorithm
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eliminates the noise from the PV image according to the approximated values of histograms generated at
different regional images. The preprocessed image has been used to extract the features for defect detection.

3.2 Gray Scale Quantization Algorithm

The GSQA has been designed to extract the required features from the PV image. To handle this, the
preprocessed image has been applied with the sobel edge detection algorithm. According to the detected
edges, the panel texture features are extracted. To perform this, the edge detected image has been
converted into a binary image and applies morphological operation. According to the morphological
result, the panel texture has been removed from the input grayscale image. With the subtracted image, the
method applies grayscale quantization which segments the rest of the features according to grayscale
values. With the segmented image, the method extract different features like texture, mean gray variance,
and contrast values. The texture is extracted from the binary image generated and to extract the gray
variance, it measures the mean gray value of panel feature segment and means a gray value of defect
segment generated. By computing the variance between the two values, the mean gray variance has been
computed. Similarly, the contrast value of the texture is measured by computing the mean value of the
histogram of texture generated. The feature from the PV image has been extracted by computing different
measures and the method extracts the texture of the defect, extracts the mean gray variance, and means
contrast variance to support classification.

Figure 1: Architecture of proposed RMVDM model
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3.3 Real-time Multi Variant Deep learning Model

The proposed RMVDM reads the test image and applies it to preprocess with the RHA algorithm.
Further, the extracted features are tested with the network trained where each layer neuron estimates
different defect class support values. The neuron computes Sunlight Defect Class Support (SDCS), Crack
Defect Class Support (CDCS), Erosion Defect Class Support (EDCS), and Deposit Defect Class Support
(DDCS). The neurons at the output layer return different support measures. The support measures
generated have been used to measure the Defect Class Weight (DCW) and based on that the defect class
has been identified. The algorithm for the RMVDM is given in Algorithm 3.

Algorithm 3: Multi variant defect detection and classification

Input: Image Set Ais, Test Image Timg

Output: Defect Class DC

Start

Read Image set Ais, Test Image Timg

For each image in Tis

Perform RHA preprocessing,

[Texture, MGV,MCV] sets = Perform GSQA Feature Extraction

Generate deep learning network

For each feature vector

Initialize Neurons with feature of Texture, MGV and MCV.

End

Train the model

End

Pimg = RHA Preprocessing (Timg)

[Texture, MGV, MCV] = GSQA Feature Extraction (Pimg)

Defect class DC = Choose the class with maximum weight.

Stop

The above algorithm computes different defect class weights and finally, a single class with a higher
defect class weight is selected as result.

3.4 Higher-Order Location Technique

The proposed HOLT approach identifies a set of textures and measures the different defect
support measures for various classes. For each texture, the method collects a set of support measures.
According to the factor measured, the method selects the texture which has a higher weight measure.
Such selected texture has been marked and localized to produce the result. The HOLT algorithm is given
in Algorithm 4.
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Algorithm 4: Higher Order Location Technique

Input: Texture Set Ts, Test Image Timg

Output: Localized Image Limg

Start

Read Ts, and Timg.

Initialize Weighted Set Ws.

Initialize MaxSet Ms

For each Ti

Choose the maximum weight W

Add to max set Ms.

End

Ti ¼
size Msð Þ

Max Ms ið Þ; ið Þ
i ¼ 1

Localized image Limg = Mark Ti in the Timg.

Stop

The above-discussed algorithm represents how the localization is performed to represent the location of
the texture in the image given.

4 Evaluation

The training process involves several operations of the model. The proposed deep learning model has
been trained by extracting different features from the PV image data set given. To perform this method
preprocess each of the PV images from the data set and enhance the quality of the image by applying the
RHA algorithm. Further, the image has been applied with a gray quantization algorithm which extracts
different features like texture, gray variance, and contrast variance. Once the features of each image have
been extracted, then the method generates the deep learning network by constructing a number of layers
with many neurons. The method initializes the input layer neurons with the feature extracted and
constructs the ‘I’ number of the intermediate layer where the neurons of the layer are designed to
measure different DCS values towards a specific defect class. At the training phase, the features extracted
from the images have been given to the model and trained. At last, the output layer is designed to return
the ‘I’ number of output as DCS.

The hotspot defect located in the solar panel has been pictured in Fig. 2. The presence of micro-crack in
PV panels has been noticed in Fig. 3. The effect of erosion effect is presented in Fig. 4. The sample dust
defect present in the solar panel has been displayed in Fig. 5. These images have been localized by
computing the values of SDCS, CDCS, EDCS, and DDCS.
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Figure 2: Hotspots

Figure 3: Micro cracks

Figure 4: Erosion
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4.1 Sunlight Defect Class Support (SDCS)

The sunlight defect class support is the measure that represents the possession of texture to be classified
towards the sunlight defect. It has been measured based on the gray mean-variance Gmv(T) value measured
for the given input image and the set of gray mean-variance (Gmvs) values of trained images. Then the value
of SDCS is measured in (1) as follows:

SDCS ¼
PSize Gmvsð Þ

i ¼ 1 Dist Gmvs ið Þ;Gmv Tð Þð Þ
size Gmvsð Þ (1)

4.2 Crack Defect Class Support (CDCS)

The crack defect class support is the measure representing the image’s support towards the crack class. It
has been measured based on the location parameters. To perform this, the method initially maps the texture
on the location map. According to the pixel locations, the method computes the average max distance for
different pixels of the texture. According to that, the method computes the value of CDCS.

First, the texture T given has been mapped to the location map (Lmap). According to the location map,
for each pixel of T, the method computes the distance to identify the max distance. Finally, the max distance
is selected for each pixel to compute the average max distance. Finally, using the average max distance the
method computes the value of CDCS is mentioned in (2) as follows.

Compute Distance LmapDist ¼
size Tð Þ

Dist T ið Þ;T jð Þð Þ
j ¼ 1
i ¼ 1

(2)

Compute max distance of Ti is measured as MaxDist (T(i)) = Max(LmapDist)

Similarly, for each pixel T(k) from the texture T, the method computes the LmapDist and computes
MaxDist values. Now according to the values MaxDist values of all the pixels, the method chooses the
most maximum distance value to compute the value of CDCS.

Figure 5: Dust deposition
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To perform this, the most maximum values are measured in (3) and (4) as follows.

Most maximum distance Mmd ¼

size Tð ÞP
MaxDistðT ið Þ
i ¼ 1
size Tð Þ (3)

Compute CDCS ¼
PSize Tsð Þ

i ¼ 1 Dist Mmd;Ts ið Þ:mmdð Þ
size Tsð Þ (4)

Computed value of CDCS has been used to perform defect detection and classification.

4.3 Erosion Defect Class Support (EDCS)

The erosion defect class support is the measure that represents the image fitness to be classified towards
erosion defect. It has been measured based on the variation of gray pixels with less intensity. The value of
EDCS is measured according to the variance in less intensity gray pixels. The pixels with less intensity are
selected and variation is measured between them. To perform this, first, the pixels sets with less intensity are
identified in (5)–(7) as follows:

Less intensity pixels Lip ¼
Xsize Tð Þ

i ¼ 1
T ið Þ:value. 50 && T ið Þ < 150 (5)

Compute Mean Gray Distribution MGD ¼
Psize Lipð Þ

i ¼ 1 Lip ið Þ:value.
size Lipð Þ (6)

Compute EDCS ¼
Psize Tsð Þ

i ¼ 1 Sum Dist Ts ið Þ:MGD;T:MGDð Þð Þ
size Tsð Þ (7)

4.4 Deposit Defect Class Support (DDCS)

The deposit defect class support is the measure that represents the fitness of the PV image to be classified
towards the deposit of dust particles. It has been measured according to the contrast features of the texture
region extracted. The value of DDCS is measured by computing the mean contrast variance in the panel and
the texture considered. To perform this, the method first measures the mean contrast of the panel and mean
contrast of the texture considered. Using these values, the method computes the DDCS value as follows in
(8): The estimated value of DDCS has been used to perform defect detection and classification.

Compute DDCS ¼
Psize Tsð Þ

i ¼ 1 Sum Dist Ts ið Þ:CMV;T:CMVð Þð Þ
size Tsð Þ (8)

5 Results and Discussion

The proposed RMVDM based PV defect detection and classification system has been implemented
using Python and evaluated with different data set. The method has been evaluated for its performance
using real-time PV images installed in SRM Institute of Science and Technology. The results obtained
have been compared with the results of other approaches. The details of evaluation being used to evaluate
the performance of the proposed model are presented in Tab. 2. The proposed method has been analyzed
for the performance under various performance metrics and compared with the results of other approaches.
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Fortunately, the model derived from the RMVDM architecture works admirably on our image dataset
utilized to train the models. This method offered preliminary validation that deep learning could be
utilized to tackle the problem and was an acceptable method to take. The learning algorithms successfully
classified all of the photos in the test set as normal or faulty.

The value of accuracy and loss produced by the proposed model has been measured and presented in
Fig. 6 and the accuracy value and loss value of conventional classifiers are depicted in Figs. 7–9.
The proposed model improves the accuracy and reduces the loss ratio.

Table 2: Evaluation details

Parameter Data set Images Total no of images Tool used

Value Real-time environment, SRM IST RGB images 2088 Python

Figure 6: Analysis on accuracy and loss
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The performance of different approaches in defect detection and classification are measured with
different no of images in each class present in Tab. 3. The proposed RMVDM model has produced
higher detection accuracy in the ratio 87%, 93%, and 97% in all the cases. The proposed approach
produces higher detection accuracy than other approaches.

Figure 7: Accuracy and loss value of SVM

Figure 8: Accuracy and loss value of RMVDM

Figure 9: Accuracy and loss value of CNN

Table 3: Analysis on defect detection performance

Defect detection performance in %

Methods SVM Adaptive
neuro-fuzzy

CNN RMVDM

500 Images 69 73 78 87

1000 Images 73 77 81 88

2000 Images 79 85 88 97
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In Fig. 10 the accuracy of detecting the defect in PV images is measured for different methods in the
presence of a different number of images. In each class, the proposed RMVDM model has produced
higher accuracy in detection than other approaches.

The ratio of false classification produced by different methods is measured and presented in Tab. 4. The
proposed RMVDM model has produced less false ratio compared to other approaches.

The ratio of false classification produced by different approaches is measured and presented in Fig. 11.
The proposed RMVDM model has produced less false ratio compared to other approaches in all the cases.

The time complexity introduced by different methods in detecting the defect on PV image has been
measured and compared in Tab. 5. The proposed RMVDA approach has produced less time complexity
in all the cases.

The value of time complexity introduced by various methods is measured in Fig. 12. However, the
proposed approach produced less time classification in all the test cases than other methods.

0 20 40 60 80 100

SVM

Adaptive
Neuro
Fuzzy

CNN

RMVDM

Detection Accuracy %

Detection Accuracy

2000 Images

1000 Images

500 Images

Figure 10: Analysis of defect detection accuracy

Table 4: Analysis on false classification ratio

False classification ratio in %

Methods SVM Adaptive
neuro-fuzzy

CNN RMVDM

500 Images 32 27 22 13

1000 Images 27 23 19 7

2000 Images 21 15 12 3

0 20 40 60 80 100

SVM

Adaptive Neuro Fuzzy

CNN

RMVDM

False Classification Ratio %

False Ratio in Defect Detection

2000 Images

1000 Images

500 Images

Figure 11: Analysis on false classification ratio
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The performance of different approaches in localization is measured with different no of images in each
class presented in Tab. 6. The proposed RMVDM model has produced higher localization accuracy in the
ratio 85%, 91%, and 95% in all the cases. The proposed approach produces higher localization accuracy
than other approaches.

Previously, the operator must physically inspect the precise position of each defect to the specific PV
module. Certain photos were not successfully processed by the existing algorithm. The suggested HOLT
method can produce cutting-edge results when it comes to detecting, classifying, and localizing defects.
Furthermore, localizing the defects in the PV panels is done for the first time. In this proposed HOLT
method, each fault’s latitude and longitude may be retrieved automatically.

The accuracy of localizing the defect in PV images is measured in Fig. 13 for different methods in the
presence of a different number of images. In each class, the proposed RMVDM model has produced higher
accuracy in localization than other approaches.

Table 5: Analysis on time complexity

Time complexity in defect detection

Methods SVM Adaptive
neuro-fuzzy

CNN RMVDM

500 Images 47 43 38 21

1000 Images 69 64 57 37

2000 Images 91 87 81 53

0 20 40 60 80 100

SVM

Adaptive
Neuro
Fuzzy

CNN

RMVDM

Time complexity in seonds

Time Complexity in Defect Detection

2000 Images

1000 Images

500 Images

Figure 12: Analysis of time complexity

Table 6: Analysis on localization performance

Localization performance

Methods SVM Adaptive
neuro-fuzzy

CNN RMVDM

500 Images 65 68 73 85

1000 Images 71 75 79 85

2000 Images 77 82 85 95
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A ground truth bounding box and a forecasted bounding box are required when assessing an algorithm
in the context of object detection. Detection can be classed as accurate or wrong based on a provided
threshold. The identified faults are displayed in Tab. 7 which depicts a qualitative view of the results
presented in the preceding sections. Because the computed error after correcting the perspective of all the
detected PV panels is minor, the image has also been classed as accurate.

0 20 40 60 80 100

SVM

Adaptive Neuro Fuzzy

CNN

RMVDM

Localization Accuracy %

Localization Accuracy

2000 Images

1000 Images

500 Images

Figure 13: Analysis on localization accuracy

Table 7: Defects localized by HOLT

Localization output with anchor boxes

Input image Predicted output Accuracy (%) Output image

Hotspot 93.69

Dust 75

Crack 83

Erosion 79
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6 Conclusion

This paper presented a novel RMVDM, HOLT towards defect detection, classification, and localization
on PV images. The method applies RHA preprocessing in the images to improve the quality. Further, the
method that applies GSQA is extracting features. The network has been trained the feature extracted to
compute SDCS, EDCS, CDCS, DDCS measures. Using these values, the method performs detection of a
defect as well as localizing the defect. The proposed RMVDM, HOLT model has produced defect
detection accuracy up to 97.6%. In the future, the problem of defect localization can be approached by
considering time variant images of solar panels to improve higher performance.
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