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Abstract: Metaheuristic optimization algorithms present an effective method for sol-
ving several optimization problems from various types of applications and fields.
Several metaheuristics and evolutionary optimization algorithms have been emerged
recently in the literature and gained widespread attention, such as particle swarm opti-
mization (PSO), whale optimization algorithm (WOA), grey wolf optimization algo-
rithm (GWO), genetic algorithm (GA), and gravitational search algorithm (GSA).
According to the literature, no one metaheuristic optimization algorithm can handle
all present optimization problems. Hence novel optimization methodologies are still
needed. The Al-Biruni earth radius (BER) search optimization algorithm is proposed
in this paper. The proposed algorithm was motivated by the behavior of swarm mem-
bers in achieving their global goals. The search space around local solutions to be
explored is determined by Al-Biruni earth radius calculation method. A comparative
analysis with existing state-of-the-art optimization algorithms corroborated the find-
ings of BER’s validation and testing against seven mathematical optimization pro-
blems. The results show that BER can both explore and avoid local optima. BER
has also been tested on an engineering design optimization problem. The results
reveal that, in terms of performance and capability, BER outperforms the perfor-
mance of state-of-the-art metaheuristic optimization algorithms.

Keywords: Metaheuristics; evolutionary optimization; exploration; exploitation;
mutation; Al-biruni earth radius

1 Introduction

Metaheuristic and evolutionary optimization algorithms are currently used to solve a variety of problems in
a variety of fields, including machine learning [1], formulas estimation [2,3], integrated decision making [4],
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transportation [5], mechanics [6], engineering [7], economics [8], business processes [9], and scheduling [10].
Optimization is the process of selecting the best solution from a large number of options for a given problem.
Typically, a multi-dimensional search issue is turned into an optimization problem. In practice, this entails
reducing or increasing the quality of candidate solutions, which is often represented as a vector in the
search space. The optimization strategy based on metaheuristics yields satisfying results in a reasonable
time [11]. These methods are used to solve complicated and complex issues in science and engineering.

The simplicity and flexibility of optimization algorithms based on metaheuristics make these algorithms
widespread more than the traditional and accurate optimization algorithms such as Local Search and Greedy
Search [12]. The metaheuristic optimization algorithms are easy to understand and use since they are based on
simple concepts. These optimization algorithms are versatile in general because they may be employed in
various applications and domains without requiring major implementation and design changes. Additionally,
their stochastic nature allows them to explore the search space more extensively to avoid stalling at local
optima. Unlike gradient-based algorithms, metaheuristic optimization algorithms do not require derivative
information from the search space. Since the search space is usually highly intricate, metaheuristics are better
suited to tackling real-world problems with expensive or unknown derivative information and many local optima.

2 Literature Review

Metaheuristics are broad techniques for resolving challenging combinatorial problems. In general,
computer scientists have complex time-solving metaheuristic algorithms because they require them to
consider many possibilities, typically exponential and with competing purposes [13]. Water allocation and
crop planning [14], Parkinson’s diagnosis [15], Power load dispatch [16], Image segmentation [17], and
Nurse Rostering [18] and are only a few of the real-world challenges for which metaheuristic algorithms
have been proposed.

Nature-inspired metaheuristic algorithms have piqued the curiosity of scientists who want to solve
complex real-world challenges. Harmony Search (HS) [19], Cuckoo Search (CS) [20], Bat Algorithm
(BA) [21], Biogeography-based Optimization (BO) [22], Social Spider Optimization [23], Grey Wolf
Optimization (GWO) [24,25], Symbiotic Organisms Search (SOS) [26], Whale Optimization Algorithm
(WOA) [27], Firefly Algorithm (FA) [28], Gravitational Search Algorithm (GSA) [29], Bacterial Foraging
Optimization (BFO) [30], Sine Cosine Algorithm (SCA) [31], Genetic Algorithm (GA) [32], and Particle
Swarm Optimization (PSO) [33] are examples of the metaheuristic optimization algorithms.

Many researchers in the literature have proposed hybrid optimization algorithms. These algorithms
combine the benefits of two or more optimization techniques to overcome the limits of a single algorithm.
In [34], for example, SCA is merged with PSO algorithm and the levy fly technique to create PSOSCA, a
novel hybrid optimizer. In the search space, the levy flight technique introduces random walks. These
random walks ensure that there is a lot of investigation and that local optima are avoided. PSO’s
exploration and exploitation capabilities are improved by the position update equations in SCA. Standard
benchmark functions and real restricted engineering situations validated the novel hybrid PSOSCA.
PSOSCA has shown its benefits and efficacy vs. the majority of PSO versions.

The Al-Biruni earth radius (BER) optimization methodology, which is inspired by the computation of
the earth radius to estimate the search space surrounding the solutions in the cooperative behavior of swarm
members to fulfill their global goals, is presented in this paper. BER tries to compromise between
guaranteeing quick convergence and minimizing local optima stagnation. This is accomplished by
employing the Al-Biruni technique, which aids in improving exploitation performance, striking a healthy
balance between exploration and exploitation, expanding search space exploration, and boosting variety
among present population individuals. The introduction of BER as a novel optimization technique with
fresh insights into tackling various optimization issues is a significant contribution to this research.
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According to preliminary results, BER is promising, competitive, and capable of surpassing existing
evolutionary algorithms based on swarm optimization. Furthermore, the performance of the proposed
algorithm has been tested in terms of seven benchmark optimization functions and one design
optimization problem from the engineering domain.

3 The Proposed BER Algorithm
3.1 Inspiration

In the eleventh century, Al-Biruni worked out the radius of the Earth [35]. It was measured the distance
between the horizon and the ground from a hilltop. Al-Biruni measured twice. He began by determining the
elevation of a mountain. From two different points, he measured the angle to the mountain’s peak twice. He
was able to calculate the hill’s height using the following equation, as illustrated in Fig. 1.
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Figure 1: Calculation of hill height based on the Al-Biruni method

Second, Al-Biruni scaled the mountain’s peak and measured the horizon’s dip. He was able to compute
the radius of the Earth using the following equation based on his data, as shown in Fig. 2.
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Figure 2: Calculation of earth radius based on the Al-Biruni method
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The proposed optimization method used the Al-Biruni technique for the cooperative optimization
algorithm’s exploration and exploitation tasks, simulating swarm collaboration to achieve a global
optimization goal. In real life, swarm live in groups and communicate together to achieve their goals.
They usually work together to acquire food and defend themselves from invaders, exchanging
responsibilities as required. They split up into sub-groups, with individuals collaborating both inside their
sub-group and with members of other groups to achieve their ultimate goal. Swarm collaboration may be
seen in ant and bee colonies, for example. Each member of the swarm makes a distinct contribution to
the colony. The colony’s warriors are fed by workers who go out and gather food. The concept of BER
was inspired by the fact that members of groups are frequently separated into sub-groups to complete
various activities at different times and collaborate to reach their goals. The exploration and exploitation
activities are usually performed to find the best solution to an optimization problem. In our case, BER
divides individuals into two sub-groups, each accounting for one of the two activities. In BER, the
exploitation and exploration activities ensure a deep investigation of the search space to avoid the local
optima stagnation. The majority of cooperative optimization approaches need everyone to undertake
exploitation after iterations, which might cause local optima to stagnate. BER avoids this case by keeping
a collection of search agents that explore more areas in the search space through time. BER also swiftly
increases the number of individuals investigating the search space if the algorithm’s performance does not
improve after three iterations through solution mutation.

3.2 Basic Concepts and Formulation

Finding the optimal solution to a problem with a set of constraints is the target of optimization algorithms. In
BER, an individual from the population can be represented by a vector, S = {S1, S, ..., Sa} € Ry, where
S; is a parameter or feature in the optimization problem, and d is the size of the search space. A fitness function f
is used in the proposed method to determine how well an individual performs up to a given point. The
optimization procedure uses the following phases to search through populations for a specific optimum vector
S§* that maximizes the fitness function. The algorithm begins with a group of random individuals (solutions).
For the optimization process to begin, BER requires the following parameters: the fitness function, the lower
and upper bounds for each solution, the dimension, and the population size.

3.3 Exploration-Exploitation Balance

As the population is divided into subgroups in the proposed algorithm, the number of individuals in each
group is modified dynamically to improve the balance between the tasks of exploitation and exploration. The
process starts with dividing the population into two groups for exploration and exploitation [36—44]. The size
of the exploration group is 70% of the population, whereas the size of the exploitation group is 30% of the
population. To improve the fitness values of individuals in each group, the number of individuals in the
exploitation task is set initially at 30%, then increased over the optimization iterations to reach 70% of
the population count. On the other hand, the number of individuals in the exploration group is decreased
to 30% over iterations, where the initial number is set to 70%. This process allows for more remarkable
improvement in the global average of the fitness of individuals. In addition, to guarantee the convergence
of the optimization process for the population, the elitism strategy is employed by keeping the process’s
leading solution if no better solution is found. In the BER optimization algorithm, if the fitness of a
solution does not improve significantly for three iterations, this could be a local optimum and
consequently, another exploration individual can be generated by applying the mutation operation.

3.4 Exploration Operation

Exploration is in charge of not only locating exciting locations in the search space but also of avoiding
local optima stagnation through the movement towards the best solution, as discussed next.
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3.4.1 Heading Towards the Best Solution

The individual in the exploration group uses this strategy to seek prospective regions around its current position in
the search space. This is accomplished by repeatedly searching among surrounding feasible alternatives for a superior
option in terms of fitness value. The following equations are utilized in the BER investigation for this purpose:

B cos(x)
r=h 1 — cos(x) ®)
D=7.(S(t)—1) “4)
S(t+1)=80t)+D.2r — 1) (5)

where 0 <x < 180, 4 is a number that is randomly selected from the range [0, 2], 71 and 7, are coefficient
vectors whose values are measured by Eq. (3), S(¢) is the solution vector at iteration ¢, and D is the diameter
of the circle in which the search agent will look for promising areas.

3.5 Exploitation Operation

The exploitation team is in charge of improving existing solutions. The BER calculates all individuals’
fitness values at each cycle and distinguishes the best individual. The BER employs two different approaches
to achieve exploitation, as detailed in the sections below.

3.5.1 Heading Towards the Best Solution
The following equations are used to move the search agent towards the best solution:

S(t+1)=r* (St) + D) (6)
D =75 (L(r) - S(1)) @)

Where r3 is a random vector calculated using Eq. (3) that controls the movement steps towards the best solution,
S(t (¢) is the solution vector at iteration ¢, L is the best solution vector, and D refers to the distance vector.

3.5.2 Investigating Area Around Best Solution

Most promising is the region surrounding the best solution (leader). As a result, some individuals hunt in
the vicinity of the best solution with the potential of finding a better solution. To realize this operation, the
BER utilizes the following equation.

S(t+1)=r (8% (t) + k) (8)
- 2 X7
Fmze 2 ©)
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where Sx* refers to the best solution, z is a random number in the range [0, 1], ¢ is the iteration number, and N is
the total number of iterations. A demonstration of the exploration and exploitation activities is shown in Fig. 3.

3.6 Mutation Operation

The mutation is another method used by the BER to do research. It is a genetic operator utilized to create
and sustain population variety. It may be considered a probabilistic local random disruption of one or more
components in individuals. It prevents early convergence by helping to avoid local optima—such a shift in
the search field functions as a springboard to another interesting topic. Indeed, the mutation is significant for
the BER’s excellent exploration potential.

cos(x)

(10)
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Algorithm 1 : The proposed Al-Biruni earth radius (BER) based optimization algorithm

1
2: Initialize BER parameters
3: Sett=1 3
4. Calculate fitness F}, foreach S;
5: Find best solution S
6: while t < Maxjte, do
7:  for each solution in the exploration group do
8: Heading towards the best solution
9: r = h 2@
1—cos(z)
e B=m(80)—1)
n: (t+1)=S(t)+ DR - 1)
12:  end for

13:  for each solution in the exploitation group do
14: %itism of the best solution

“R(T0) -5 (1)
16: Sit+1)=r32(S(@t)+ D)

_)
. Initialize population S';(i = 1,2, ..., d) with size d, maximum iterations M axj;er, fitness function F,

17: I_n)vestigaling lhg area around best solution
18: k =1+ 25—
¥ ite il
19: St +1)=r(S50) + F)
= =
20: Compare Sa(t + 1) and Sa(t + 1) and select the best solution ?
21: if best fitness didn’t change from previous 2 iterations then
22: utate the solAtion:
23: %(H—l) =k %2% — hy=sal,
24: end if
25:  end for
26:  Update fitness F,, for each ?
27: end while
. =2
28: Return best solution S*
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Figure 3: Demonstration of the exploration and exploitation activities
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3.7 Selection of the Best Solution

The BER chooses the best solution for the next iteration to ensure the quality of discovered solutions.
Although the elitism method enhances algorithm efficiency, it can cause premature convergence in multimodal
functions. It is worth noting that the BER offers impressive exploration capabilities by employing a mutation
technique and searching around individuals in the exploration group. The BER can avoid early convergence
due to its strong exploration capabilities. Algorithm 1 shows the BER pseudo-code. First, we give the BER
some input parameters: number of iterations, population size, and mutation rate. The individuals are then
separated into two groups by the BER, namely exploration and exploitation groups. The BER algorithm
dynamically controls the number of individuals in each group during the search iterations for the best solution.
To complete their responsibilities, each group employs two distinct strategies. To ensure diversity and high
exploration, the BER randomly orders solutions after each iteration. For example, a solution from the
exploration group in one iteration can become a member of the exploitation group in the next. The elitism
method used in the BER helps avoid the loss of the leader throughout the iterations.

4 Experimental Results

In this section, the evaluation of the proposed algorithm is performed in terms of two scenarios on
experiments. In the first case, seven typical benchmark mathematical functions were utilized to find their
minimum values in a specified domain of the search space to evaluate the performance of the proposed
optimization technique. These functions are commonly used to benchmark optimization algorithms in the
literature. In addition, the second scenario of experiments is based on solving one of the well-known
constrained design engineering problems. These two scenarios of experiments are presented and
discussed in the following sections.

On the other hand, the literature has several optimization techniques. In this research, the performance of
the proposed approach is compared to five well-known optimization algorithms in the literature to show the
superiority and effectiveness of the proposed algorithm. These algorithms are GWO, PSO, GA, WOA, and
GSA. The selection of these three algorithms is based on their usefulness and popularity. Unique
collaboration to attain global goals is a common theme in the proposed BER, WOA, GWO, and PSO. The
GA and GSA are chosen as an example of evolutionary algorithms influenced by natural evolution theory.

4.1 Experimental Setup

In all scenarios of the conducted experiments, we executed 30 runs of the optimization algorithms for
both scenarios due to the random initialization of the individuals in the first population. Each run was
composed of 500 iterations. One of the algorithm’s parameters is the population size. In this research, it
has been set at 30 individuals. The initial parameters of the proposed algorithm are listed in Tab. 1.

4.2 First Scenario: Unimodal Benchmark Functions

Tab. 2 presents the seven unimodal benchmark functions (#/-F7) employed in the first scenario, where
D denotes the function’s dimension and f,,;, refers to the function’s optimal value. Because these functions
have just one global optimum, they are utilized to test how well optimization strategies are exploited.

4.2.1 Performance Analysis

Tab. 3 shows Statistical results of the results achieved by the proposed the BER and other algorithms for
the benchmark functions. As shown in the table, the BER was the most efficient optimizer when compared to
the other four optimizers, namely, WOA, GWO, PSO, and GA. This is because, in every cycle, the BER
employs two separate exploitation strategies. The first method is to go toward the best solution, whereas
the second method is to search for the best solution. These strategies assist the BER in achieving
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exploitation by locating better solutions in the vicinity of the best solution identified thus far. The high
exploitation potential of the BER is due in part to integrated exploitation strategies, but it also has to do
with the balance between exploration and exploitation. The BER, unlike most optimizers, starts the
exploitation process early in the iteration and gradually raises the number of individuals in the exploitation
group. This helps explain why the BER beat other optimizers in most unimodal benchmark functions.

Table 1: The setup parameters of the proposed the BER algorithm

Parameter name

Initial value

Size of population
Iterations count

Mutation probability
Exploration percentage
K (decreases from 2 to 0)
Number of runs

30
500
0.5
70
1
30

Table 2: The set of unimodal benchmark functions

Benchmark Function

f min Range

Fl(x) =

F2(x) =

D
Do xzz
b D
Ejtﬂ!xﬂ-+-I¥\XJ
l:

D ix* + random[0, 1]

0 [-100,100] 30
0 [-10,10] 30

0 [-100,100] 30

oS O O O

[-100, 100] 30
[-30,30] 30
[~100, 100] 30
[-1.28, 1.28] 30

Table 3: Statistical results of the results achieved by the proposed the BER and other algorithms

Function Algorithm BER PSO WOA GWO GA

F1 Mean 0 0.000136 1.41E-30 6.59E-28 4.6E-172
StDev 0 0.000202 4.91E-30 6.34E-05 0

F2 Mean 0 0.042144 1.06E-21 7.18E-17 3.44E-90
StDev 0 0.045421 2.39E-21 0.029014 6.13E-90

F3 Mean 0 70.12562 5.39E-07 3.29E-06 1.7E-127
StDev 0 22.11924 2.93E-06 79.14958 8.6E-127

(Continued)
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Table 3 (continued)

Function Algorithm BER PSO WOA GWO GA

F4 Mean 0 1.086481 0.072581 5.61E-07 1.15E-75
StDev 0 0.317039 0.39747 1.315088 2.45E-75

F5 Mean 0 96.71832 27.86558 26.81258 28.37287
StDev 0 60.11559 0.763626 69.90499 0.582802

F6 Mean 0 0.000102 3.116266 0.816579 3.932626
StDev 0 8.28E-05 0.532429 0.000126 0.431755

F7 Mean 0 0.122854 0.001425 0.002213 0.022992
StDev 0 0.044957 0.001149 0.100286 0.021966

4.2.2 Statistical Significance of the Results

A one-tailed t-test with a significance threshold of 50% is used for each benchmark function to ensure that
the findings generated by the BER have statistical significance. The p-values of the t-test results of comparing
the BER to other optimizers in determining the minimum of each benchmark function are shown in Tab. 4.
According to the findings, the BER outperforms the competing optimization algorithms included in the
conducted experiment. It can be noticed that the BER and other optimizers were able to discover the global
optima of the seven functions with almost identical averages but different standard deviations. This might
explain why no statistical significance has been found. On the other hand, the one-way analysis of variance
(ANOVA) test is performed to study the significant difference between the proposed BER algorithm and the
four different algorithms. The results of this test are presented in Tab. 5. This test is based on two
hypotheses, HO, and H1, where the HO refers to the equality of means of these optimizers. As shown in the
table, the analysis shows no significant difference between the proposed BER and other algorithms.

Table 4: P-value for t-test between the proposed the BER and each of the other optimizers

Function BER vs. PSO BER vs. GWO BER vs. WOA BER vs. GA
F1 1.07E-06 1.07E-06 1.07E-06 1.07E-06
F2 1.07E-06 1.07E-06 1.07E-06 1.07E-06
F3 1.07E-06 1.07E-06 1.07E-06 1.07E-06
F4 1.07E-06 1.07E-06 1.07E-06 1.07E-06
F5 1.07E-06 1.07E-06 1.07E-06 1.07E-06
F6 1.07E-06 1.07E-06 1.07E-06 1.07E-06
F7 1.07E-06 1.07E-06 1.07E-06 1.07E-06

4.2.3 Visual Analysis of the Results

Fig. 4 shows the boxplots of the results achieved by the proposed the BER algorithm and the other
optimization algorithms (BER, PSO, WOA, GWO, and GA). The table shows that the proposed
algorithm could achieve the best performance. In addition, the curves of convergence of the benchmark
functions based on the optimization algorithms are shown in Fig. 5. As shown in the figure, the proposed
algorithm shows a clear superiority when compared to the other algorithms.
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Table 5: ANOVA test results

F1 F2
ANOVA Treatment Residual Total ANOVA Treatment Residual ~ Total
SS 2.42E-07 7.3E-07 0 SS 269.7 1265 1535
DF 4 145 149 DF 4 145 149
MS 6.05E-08 5E-09 MS 67.43 8.723
F (4, 145) 12.04 F 4, 145) 7.73
P-value P <0.0001 P-value P<0.0001

F3 F4
SS 4.25E+10 8.24E+09  5.07E+10  SS 61550 24147 85697
DF 4 145 149 DF 4 145 149
MS 1.06E+10 56830905 MS 15387 166.5
F (4, 145) 186.8 F (4,145) 924
P-value P <0.0001 P-value P <0.0001

F5 F6
SS 59376 50691 110067 SS 355.2 10.21 365.4
DF 4 145 149 DF 4 145 149
MS 14844 349.6 MS 88.79 0.07039
F (4, 145) 4246 F (4, 145) 1261
P-value P <0.0001 P-value P <0.0001

F7
SS 566.5 1221 1788
DF 4 145 149
MS 141.6 8.422

F 4, 145) 16.82
P-value P<0.0001

4.3 Second Scenario: A Constrained Engineering Problem

The proposed BER optimization algorithm is used to solve one of the well-known design engineering
problems, referred to as tension/compression spring design, to prove the effectiveness of the proposed
algorithm in real-world handling challenges in engineering constrained problems. Based on the
components of optimization problems, such as inequality constraints, equality constraints, and upper and
lower limits, the formulation of this engineering problem is expressed by the following equations.

Minimize f (x)

Subject to the constraints:

gi(x) =0, i=1, 2, )
gx) <0 =12 ...
lk < x < Uy , kzl, 2, sy R (11)
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where the objective function, equality, and in-equality constraints are denoted by f(x), g;(x), and gj(x).
The constraints of this problem are handled and characterized using scalar penalty functions since these
restricted optimization problems include numerous equality and inequality requirements. The constraint
optimization problem is obtained from the unconstrained problem through these penalty functions.
Consequently, the description of the new objective function is represented by the following equation:

min @ (x) = (x) + pr g g(ei(x)) (12)
iel
F1 F2 F3
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Figure 4: Boxplots of the BER and other competing algorithms for benchmark functions (f; ... f7)

In this equation, the new objective function is referred to as ¢y (x) is, the penalty function is denoted by
g(ci(x)) = max(0, ¢;(x))?, ¢;(x) refers to the constraints of the problem, f(x) denotes the objective
function, and the penalty coefficient is referred to as py.

4.3.1 The Tension/Compression Spring Engineering Problem

Fig. 6 depicts the structure of the tension/compression spring engineering problem. The main goal of this
problem is to reduce the spring’s weight with respect to a set of constraints referred to as geometry, surge
frequency, stress, and deflection. Four constraints of type inequalities and nonlinear, in addition to three
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continuous variables, namely, a number of coils (L), mean coil diameter (d), and wire diameter (w), are the
design variables of this problem.
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Figure 5: The curves of convergence of BER, PSO, WOA, GWO, and GA for the benchmark functions
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Figure 6: The structure of the engineering design problem of type compression/tension spring

The spring design problem has the following mathematical model:
Minimize g(L, d, w, d) = (L +2) w*d

Subject to the constraints:

_ dL
AT T8 WA S
d(4d —w) 1
_ 1 <0
2 = 12566(dnw? —wh) | 510802
1045w _
4= M _1<0 (13)

where the ranges of design variables are specified as follows:

2.0
0.25

AN
~
A

< 15,

d < 13,

IN

0.05

IN

w < 2.0

4.3.2 Performance Analysis

A Comparison between the best solutions discovered by the proposed BER and the other competing
algorithms is presented in Tab. 6. In this table, the solution found by the BER is better than the other
solutions when compared to the reference solution. In addition, a comparison of statistical results
achieved by the BER and different competing algorithms is listed in Tabs. 7 and 8. These results show
the effectiveness and superiority of the proposed BER when compared to PSO, GSA, and WOA algorithms.

Table 6: Comparing the best solutions found by the BER and other competing algorithms

Algorithm Design variables Optimal cost
L d W

PSO 11.244543 0.357644 0.051728 0.0126747

GSA 13.525410 0.323680 0.050276 0.0127022

WOA 12.004032 0.345215 0.051207 0.0126763

Proposed BER 11.959019 0.345804 0.051231 0.0126695
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Table 7: Comparison of statistical results achieved by the BER and other competing algorithms

Algorithm Function evaluation Standard deviation Average Optimal solution
PSO 5460 0.0033 0.0139 0.012674
GSA 4980 0.0026 0.0136 0.127022
WOA 3600 0.0006 0.0134 0.012668
Proposed BER 2460 0.0013 0.0134 0.012669

Table 8: One sample t-test of the results achieved by the BER and other competing algorithms

BER PSO GSA GWO
Number of values 20 20 20 20
Actual mean 0.01267 0.0129 0.01282 0.01288
Theoretical mean 0 0 0 0
Significant (alpha=0.05)? Yes Yes Yes Yes
One sample t-test
t, df t=1439,df=19 t=93.84,df=19 t=186.4,df=19 t=131.1,df=19
P value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001
SEM of discrepancy 0.000008811 0.0001374 0.00006876 0.00009827
R squared (partial eta 1 0.9978 0.9995 0.9989
squared)
SD of discrepancy 0.0000394 0.0006146 0.0003075 0.0004395
Discrepancy 0.01267 0.0129 0.01282 0.01288
95% confidence interval ~ 0.01266 to 0.01261 to 0.01267 to 0.01268 to
0.01269 0.01318 0.01296 0.01309

On the other hand, a visual analysis of the results achieved by the optimization algorithms is depicted in
the plots shown in Figs. 7 and 8. The histograms of the results achieved by the BER and other competing
algorithms shown in Fig. 7 emphasize the superiority of the proposed algorithms. The analysis plots are
shown in Fig. 8 depict the proposed algorithm’s effectiveness in solving the adopted optimization problems.

Tension/Compression Spring Design Histogram
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Figure 7: Histograms of the results achieved by the BER and other competing algorithms
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Figure 8: Analysis plots of the results achieved by the BER and other algorithms

5 Conclusions

Al-Biruni Earth Radius (BER) search optimization algorithm is a new optimization algorithm that we
proposed in this research. The proposed algorithm is based on exploring the area around the local
solutions using the Al-Biruni method, which can help individuals to reach the global solution. Individuals
are divided into two groups: exploration and exploitation. The exploration group employs the search
strategy to examine the search space for potential solutions thoroughly. On the other hand, the
exploitation group uses two approaches to identify better solutions from excellent ones (Move toward the
leader and Search around the leader). To ensure finding the best solution, the BER permits mutation of
the solutions that do not achieve progress in terms of the fitness function for three iterations. To test the
effectiveness of the proposed algorithm in discovering the optimum points of each function and studying
its convergence behavior, a comparison was conducted on seven typical benchmark mathematical
optimization functions. The findings indicated that the BER is competitive with current metaheuristic and
evolutionary optimization algorithms. Due to its promising exploration and exploitation capabilities and
its ability to avoid local optima, the proposed BER algorithm has a quick convergence characteristic. In
addition, it has been employed to solve a typical engineering design optimization problem referred to as
the tension/compression spring design optimization problem. These findings emphasize the effectiveness
of the proposed BER algorithm in tackling constraint optimization problems optimally. The future
perspective of this research is to include more mathematical optimization functions and engineering
problems in the conducted experiments.
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