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Abstract: The recent developments in smart cities pose major security issues for
the Internet of Things (IoT) devices. These security issues directly result from
inappropriate security management protocols and their implementation by IoT
gadget developers. Cyber-attackers take advantage of such gadgets’ vulnerabil-
ities through various attacks such as injection and Distributed Denial of Service
(DDoS) attacks. In this background, Intrusion Detection (ID) is the only way to
identify the attacks and mitigate their damage. The recent advancements in
Machine Learning (ML) and Deep Learning (DL) models are useful in effectively
classifying cyber-attacks. The current research paper introduces a new Coot Opti-
mization Algorithm with a Deep Learning-based False Data Injection Attack
Recognition (COADL-FDIAR) model for the IoT environment. The presented
COADL-FDIAR technique aims to identify false data injection attacks in the
IoT environment. To accomplish this, the COADL-FDIAR model initially pre-
processes the input data and selects the features with the help of the Chi-square
test. To detect and classify false data injection attacks, the Stacked Long Short-
Term Memory (SLSTM) model is exploited in this study. Finally, the COA algo-
rithm effectively adjusts the SLTSM model’s hyperparameters effectively and
accomplishes a superior recognition efficiency. The proposed COADL-FDIAR
model was experimentally validated using a standard dataset, and the outcomes
were scrutinized under distinct aspects. The comparative analysis results assured
the superior performance of the proposed COADL-FDIAR model over other
recent approaches with a maximum accuracy of 98.84%.
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1 Introduction

The Internet of Things (IoT) networking paradigm is rapidly developing and has turned out to be a fully-
realized technology. The development of IoT systems denotes that billions of several smart devices can be
connected to a network around the community and can collect, store and process the information collected
through sensors [1]. The IoT network is considered a significant aspect of future advancements, and its
applications are expanding across a wide range of businesses [2]. IoT plays an important role in
enhancing performance outcomes in several fields: entertainment, manufacturing, healthcare, environmental
protection, public security, agriculture, accommodation, industrial monitoring, traditional metering system
and intelligent transportation [3]. However, little attention has been paid to adopting high-quality security
measures in [oT gadgets. In such cases, insecure communication and the lack of authentication remain the
foremost issues in several IoT gadgets [4]. The insiders bring several challenges due to the heavy growth of
IoT gadgets.

Privacy and security issues have substantially increased in recent years, especially after the extensive
application of technology in the execution of different activities in organizations [5]. Amongst the issues,
insider attacks are considered the most hazardous and expensive. An insider attack can be defined as a
type of malicious activity executed by users who have authorized access to the information mechanism of
an organization [6]. Since authorization issues are prevalent in insider attacks, it is challenging to identify
intruders. Organizations tend to lose their goodwill and business objectives if the issues are not overcome
within the earliest possible time. A false Data Injection Attack (FDIA) can be defined as the insertion of
commands or data at the source or the time of communication. Data injection manipulates the value
produced by actuators, sensors and other gadgets.

On the other hand, the command ‘injection’ denotes different types of server-issued instructions [7].
FDIA is one of the common attacks launched at any type of critical infrastructure. It is executed by
interrupting the interaction sessions among various gadgets.

FDIAs can damage external elements, incur a heavy economic loss, and produce serious scenarios [8].
Thus, it is important to detect and prevent FDIAs in critical infrastructures. But, the prevailing solutions are
merely theoretical or adopted from the cyber ecosystem, such as Intrusion Prevention Systems (IPS) and
Intrusion Detection Systems (IDS), which are generally utilized in the protection of conventional
computer networks [9]. The existing methods lack specific security needs and critical infrastructures. At
the same time, there is a need to have a robust method with a high rate of events, real-time
communication and identification, proactive defence and complicated physical and cyber interfaces [10].
Thus, the current study attempts to overcome such constraints by implementing Machine Learning (ML)
methods in detecting injection attacks.

The current study introduces a new Coot Optimization Algorithm with a Deep Learning-based False
Data Injection Attack Recognition (COADL-FDIAR) model for the IoT environment. The presented
COADL-FDIAR technique pre-processes the input data and selects the features with the help of the Chi-
square test. To detect and classify false data injection attacks, the Stacked Long Short Term Memory
(SLSTM) model is exploited in this study. Finally, the COA algorithm adjusts the hyperparameters of the
SLTSM model effectually and accomplishes a superior recognition efficiency. The proposed COADL-
FDIAR model was experimentally validated using a standard dataset, and the results were inspected
under distinct aspects.

The rest of the paper is organized as follows. Section 2 provides the information on the literature review;
Section 3 introduces the proposed model. Section 4 validates the results, and Section 5 concludes the study.
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2 Literature Review

In literature [11], a simplified Neural Network (NN) was proposed to detect the False Data Injection (FDI)
assaults that target the communication line overflows. When the proposed method was compared against the
existing techniques, it was found that it not only concentrated on stealthy attacks bypassing the state estimation
(SE) but also helped in the de-congestion of the communication lines in smart grids. Hu et al. [12] modelled a
Cyber-Physical Moving Target Defense (CPMTD) approach focused on detection and attack prevention
methods to mitigate static vulnerabilities. This method amalgamated the defence policies for power
mechanisms. The proposed CPMTD method was designed to prevent attacks that mislead and disturb the
attack preparation methods through the randomization of data acquisition processes. The proposed method
controlled the change-over of multiple system dimensions based on the network programmability of
Protocol Oblivious Forwarding (POF). A physical-MTD strategy was devised for attack detection. It
enhanced the detection probability of the FDIA by occasionally varying the dimension matrices of the SE
related to the gadgets’ capabilities in terms of disturbing the communication line.

Dehghani et al. [13] devised a new cyber-attack detection method for the detection of FDIAs related to
the Fast Fourier Transform (FFT) along with the Singular Value Decomposition (SVD) method. Since the
concentration of the proposed method was to detect the FDIAs, it considered the effect of renewable
energy resources. When malicious data was included in system-state vectors, the vectors’ temporal data
and the spatial data relationship drifted from the usual functioning circumstances. Srinivasan et al. [14]
proposed a Deep Learning (DL)-related location detection method to identify the FDIA regions
continuously. This study used False Data Detector (FDD) and a Convolutional Neural Network (CNN).
The FDD can be installed to capture the fake data. As a multi-label classifier, the CNN method was used
to evaluate co-occurrence dependency, irrespective of the power flow computations that occur due to
possible attacks.

Kumar et al. [15] examined the efficiency of ML techniques in identifying the FDIC. Specifically, the
authors focused on two commonly-employed critical infrastructures, the water treatment plants and the
power systems. This research work emphasized dealing with two key technical problems, such as
identifying optimal features set in a hybrid of methods and resolving class imbalance perplexity using the
oversampling techniques. In the study conducted earlier [16], a new false data detection and prevention
pattern was modelled for the dimension infrastructure in smart grids. In this study, two methods were
projected for the management of cyber-attacks: the variable dummy value method and a fixed dummy
value method. The limits of the fixed dummy value method are recognized and sorted out in the variable
dummy value method.

3 Materials and Methods

This study developed a new COADL-FDIAR algorithm to recognise false data injection attacks in the
IoT environment. To accomplish this, the proposed COADL-FDIAR model pre-processes the input data and
selects the features with the help of the Chi-square test. At last, the COA is exploited with the SLSTM model
in this study. Fig. 1 showcases the overall processes of the proposed COADL-FDIAR approach.

3.1 Data Pre-processing

The proposed COADL-FDIAR technique is applied at the initial level to pre-process the input [oT data.
Initially, the missing values in the dataset are filled with null values. Then, a type casting set is executed in
which the non-integer values are cast with numbers. The symbolic values (like the receiver, transmitter and
destination) are mapped with the integers that are scaled to a value between 1 and max. Here, max denotes the
quantity of the symbolic features. The hexadecimal values (i.e., values of the WEP initialization vector and
integrity check) are mapped into the integers.
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Figure 1: Overall process of the COADL-FDIAR approach

3.2 Chi-Square Feature Selection

To reduce the high dimensionality of the features, the Chi-square test is utilized in this study. Chi-square
is a numerical test that measures the deviations in the predictable distribution, assuming that the feature event
is independent of the class values [17]. The chi-square value is determined for the subsequent metrics such as
the false positives (FP), false negatives (fn), true positives (tp), true negatives (TN), probability of the number
of positive cases P, and the probability of the number of negative cases P,,.

chi — square — metric = t(tp, (tp —|—]§,)Ppos) + t(ﬁq, (fu + ln)Ppas)

+ t(fps (1o +1p) Preg) + 1(tns (fo + 1) Preg) (1)

Here, #(count, expect) = (count—expect)/expect. Following is the list of stages followed in the chi-square
technique; Identify the model, Study the sample data, devise an analysis plan and deduce the outcomes.
Then, the model has stated, whereas the investigation plan identifies when the model employed is
accepted or rejected. The plan must identify the following values; the researchers select an importance
level in the 0.01, 0.05, or 0.10. The values lie somewhere in the range of 0 and 1. The chi-square test
determines the independence levels to determine whether a considerable connection exists between the
categorical elements. The sample data contains information that is examined to calculate the degrees of
freedom, predictable frequency, test value, and P-value linked with the test data.

Degrees of freedom : DF = (r — 1) % (¢ — 1) )

Here, r refers to the amount of one categorical variable level, and ¢ signifies the count of levels to the rest
of the categorical variables. The test statistic is determined as follows

N#(4D — CB)*

L c) = A+ C)(B+D)(A+ B)(C+D)

€)

whereas A = Amount of times’ features ‘t’ and the co-occurrence of the class label ‘c’.
B = number of times ‘t” acts without ‘c’.
C = Count of times ‘c’ performs without t’.
D = number of times both ‘c’ and ‘t’ performs.

N = Entire amount of records.
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3.3 SLTSM Based Classification

This study exploits the SLSTM model to recognize the false data injection attacks. Long Short-Term
Memory (LSTM) is a modified Recurrent Neural Network (RNN) architecture that controls the memory
of a time-sequence dataset with the addition of memory cells into the hidden state [18]. The data is
passed between the cells in the hidden layer through a sequence of programmable gates such as the forget
gate, input gate and output gate. The LSTM method maintains the cell state via gate mechanisms that can
resolve short- and long-term memory dependence issues. This scenario helps in the prevention of
explosions and the gradient vanishing problems. The input gate function monitors the current data in the
memory cell; the output gate controls the distribution of the present data all over the network. The forget
gate defines whether the data must be removed according to the status of the previous layer. Eqs. (4)—(11)
explain the processes to update and implement the LSTM cell state and calculate the output of the
LSTM.

Fy=o(Wef X; + WiH,\ + By) “4)
I, = o(WuX, + WyH,—1 + B;) Q)
C, = (WX, + WyeH,_1 + B.) (6)
C,=F, % C_,+1 % C, (7
O, = o(WeoXi + WioH,—1 + By) ()
H; = o, tanh (Cy) ©)
Y, = o(WiH, + By) (10)
1
o(x) = Txp‘x (11)

In these expressions, Y; = output vector; X, = input vector; F; = forget gate outcome; /, = input gate
outcome; C; = finishing state in memory block; O, = output gate outcome; ¢ = sigmoid function; W,
Wi, Wi, and Wy, refer to the input weight matrices; C;, = temporary, W), indicates the output weight
matrix; Wye, Wy, Wy and W, denote the recurrent weight matrices; and By, B;, B., By, and B, denoting
the bias vectors.

The presented DL-hybrid SLSTM mechanism acts as a prototype for the sequence-to-sequence
(seq2seq) paradigm [19]. Fig. 2 depicts the infrastructure of the SLSTM technique. Recently, the Seq2seq
model has been widely applied in machine translation and is composed of encoder and decoder entities.
When the information is received through the encoder, it compresses the data into a single vector, and the
vector is known as the context vector. Then, the decoder makes use of it to generate the output sequence.
Either LSTM or RNN is utilized as the encoder to transform the input data into a hidden layer.

Accurately, an encoder ¢ is generated through the hidden, and the input layers that compress the input
dataset x from a high-dimension demonstration into a low-dimension demonstration, Z. Meanwhile, a
decoder W is generated through the hidden and output layers that reconstruct the input dataset %’ from a
suitable code. The transition in the seq2seq learning is arithmetically calculated using a typical neural
network system with a ¢ sigmoid function.

X — 7 (12)
r— ¢(x) =c(Wx+b):=z



260 CSSE, 2023, vol.46, no.1

V.77 (13)
2 U() = o 45).,

W refers to the weight matrix, and b denotes the bias.

Y
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Figure 2: Architecture of the SLSTM approach

This study applies the decoder and encoder systems of the LSTM seq2seq paradigm are applied. The
LSTM layer is stacked on the decoder and encoder systems. By stacking the LSTM, it is possible to
enhance the prediction ability of the model to understand the complex representation of the time-
sequence datasets in hidden layers by gathering data at different levels. Furthermore, x and 0 denote the
input and output datasets, respectively, ¢ =encoder context vector and ht and sz =hidden state in the
decoder and encoder are shown below.

hy = LSTMenc(xta htfl) (14)
hy = LSTMdec(Otfl’Szfl) (15)

Every encoder LSTM estimates a ¢ context vector, and it is replicated and transferred to every decoder
element.

3.4 Hyperparameter Tuning

In this study, the COA algorithm productively adjusts the SLTSM model’s hyperparameters. The COA is
a novel optimization technique developed based on coot bird behaviour [20]. The COA approach tries to
mimic the collective behaviour of the coot birds. They are directed by some coots on the surface of the
water. The four distinct behaviours observed amongst the coot birds include chain movement, random
movement, adjusting the position based on the group leader and leading the group towards an optimum
region. This behaviour must be mathematically modelled. Initially, a random population of the coot is
produced. Consider a multi-dimension problem that should be resolved at the D dimension. The
population of the N coots is produced by Eq. (16).

PosCoot(i) = random(1, D) x (UB—LB)+LB, i=1,2, ..., N (16)
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Here, the location of the coots in a multi-dimension space is arbitrarily produced. The Upper Bound
(UB) and Lower Bound (LB) layers are defined for every dimension. Therefore, the coots are prevented
from going above or below the threshold. Also, an initial random population is estimated based on the
Fitness Function (FF) given below.

F(i) = Fitness(PosCoot(i)), i=1,2, ..., N (17)

To model the random movement of the coots, an arbitrary location is generated at first based on the
following equation.

R =rndom(1, D) x (UB—LB)+ LB (18)
PosCoot(i) = PosCoot(i) # A x RN2x(R — PosCoot(i)) (19)
Here, RN2 represents a random value between 0 and 1. Here, A and B are defined as follows:
1 1
A=1—|Tl) x———— |, B=2—|T(() x ——————)i=1, 2, ...[terMax (20)
Iter Max Ite - r Max

Here, T'(i) denotes the current iteration and IterMax refers to the maximal iteration count. To move a
coot towards other costs for the implementation of the chain movement, the average location of two coots
is applied as follows.

PosCoot(i) = 0.5 x (PosCoot(i — 1) + PosCoot(i)) (21)

Also, a coot chooses a leader coot and follows it as given below.
Ling = 1 + (iMODNy) (22)
Now, L;,; denotes the index of leaders and NL denotes the number of leaders defined as a variable. The p
probability is determined. At last, the rules shown in Eq. (8) are applied to determine the position of the
leader.

(23)

LeaderPos(i) — {B X R3 x cos(2Rn) x (gBest — LeaderPos(i)) + gBest R4 <P }

B x R3 X cos(2Rm) x (gBest — LeaderPos(i)) + gBest R4 > P

Now, R3 and R4 refers to the random numbers within [0, 1], gBest denotes the present global best, and 7
is 3.14.

The COA approach derives the FF to achieve enhanced classification outcomes. It sets a positive value
to denote a superior outcome of the candidate solution. Here, the classification error rate reduction is assumed
as the FF as offered below in Eq. (24).

fitness(x;) = ClassifierErrorRate(x;)

number of misclassified samples

100 24
Total number of samples ’ @4)

4 Results and Discussion

The performance of the proposed COADL-FDIAR model was experimentally validated using a dataset
with four classes. The dataset holds a total of 80,000 samples with 20,000 samples under each class as
depicted in Table 1. The parameter settings are as follows: learning rate: 0.01, dropout: 0.5, batch size: 5,
epoch count: 50 and activation: rectified linear unit (ReLU).
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Table 1: Dataset details

Class No. of instances
Normal (NOR) 20000
Injection (INJ) 20000
Impersonation (IMP) 20000
Flooding (FLO) 20000

Total number of instances 80000

Fig. 3 illustrates the confusion matrices generated by the proposed COADL-FDIAR model. The figure
implies that the proposed COADL-FDIAR model proficiently recognized all the classes. For instance, on the
entire dataset, the COADL-FDIAR model recognized 19,815, 19,460, 19,245 and 19,571 samples as NOR,
INJ, IMP and FLO classes, respectively. Moreover, on 70% of the training (TR) dataset, the COADL-FDIAR
technique categorized 13,927, 13,653, 13,313, and 13,755 samples under NOR, INJ, IMP and FLO classes
correspondingly. At the same time, on 30% of the testing (TS) data, the proposed COADL-FDIAR model
classified 5,888, 5,807, 5,932, and 5,816 samples under NOR, INJ, IMP, and FLO classes correspondingly.

The overall analytical results of the proposed COADL-FDIAR model under distinct aspects are shown
in Table 2.

Fig. 4 shows the detailed classification results of the proposed COADL-FDIAR model on the entire
dataset. The proposed COADL-FDIAR model identified the samples under normal (NOR) class with an
accu, of 99.39%, prec, of 98.49%, reca; of 99.08%, Fcor. of 98.78%, Mathew Correlation Coefficient
(MCC) of 98.37% and a Geu, of 99.28%. Similarly, the proposed COADL-FDIAR approach classified
the samples under injection (INJ) class with an accu, of 98.74%, prec, of 97.64%, reca; of 97.30%,
Fyeore of 97.47%, MCC of 96.63% and a Geq, 0of 98.25% correspondingly. Eventually, the proposed
COADL-FDIAR algorithm categorized the samples under the impersonation (IMP) class with an accu, of
98.39%, prec, of 97.30%, reca; of 96.23%, Fi.ore 0f 96.76%, MCC of 95.69% and a G,;cq, of 97.66%.

Fig. 5 depicts the detailed classification results of the proposed COADL-FDIAR model on 70% of the
TR data. The COADL-FDIAR model identified the samples under NOR class with an accu,, 0of 99.41%, prec,
0f 98.51%, reca; of 99.15%, Fi.or of 98.83%, MCC of 98.44% and a Geq, of 99.33%. Then, the proposed
COADL-FDIAR method classified the samples under INJ class with an accu, of 98.69%, prec, of 97.62%,
reca; of 97.14%, Fycore 0f 97.38%, MCC 0f 96.50% and a G4, of 98.17%. Moreover, the COADL-FDIAR
approach identified the samples under IMP class with an accu, of 98.37%, prec, 0f 97.23%, reca; of 96.14%,
Fycore 0f 96.68%, MCC of 95.60% and a Geq, of 97.61%.

Fig. 6 demonstrates the detailed classification results of the proposed COADL-FDIAR model under 30%
of the TS data. The proposed COADL-FDIAR model identified the samples under NOR class with an accu,,
0f 99.33%, prec, of 98.43%, reca; of 98.89%, Fcore Of 98.66%, MCC of 98.22% and a Genn of 99.18%.
Then, the proposed COADL-FDIAR approach classified the samples under INJ class with an accu, of
98.85%, prec, of 97.68%, reca; of 97.68%, Fy.ore 0of 97.68%, MCC of 96.91% and a Gyeqn 0of 98.45%. In
the meantime, the proposed COADL-FDIAR technique categorized the samples under IMP class with an
accu, of 98.43%, prec, of 97.44%, reca; of 96.42%, Fcore of 96.93%, MCC of 95.88% and a Geqn of
97.77%.

Both Training Accuracy (TA) and Validation Accuracy (VA) values attained by the proposed COADL-
FDIAR method on the test dataset are shown in Fig. 7. The experimental outcomes imply that the proposed
COADL-FDIAR technique achieved the maximal TA and VA values, whereas the VA values were higher
than the TA values.
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Figure 3: Confusion matrices of the COADL-FDIAR approach (a) Entire dataset, (b) 70% of TR data, and

(c) 30% of TS data

Table 2: Analytical results of the COADL-FDIAR approach under different measures and class labels

Class labels Accuracy Precision Recall F-Score MCC G-Mean
Entire dataset

Normal 99.39 98.49 99.08 98.78 98.37 99.28
Injection 98.74 97.64 97.30 97.47 96.63 98.25
Impersonation 98.39 97.30 96.23 96.76 95.69 97.66
Flooding 98.71 97.03 97.86 97.44 96.58 98.43
Average 98.81 97.61 97.61 97.61 96.82 98.40

(Continued)
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Table 2 (continued)

Class labels Accuracy Precision Recall F-Score MCC G-Mean
Training phase (70%)

Normal 99.41 98.51 99.15 98.83 98.44 99.33
Injection 98.69 97.62 97.14 97.38 96.50 98.17
Impersonation 98.37 97.23 96.14 96.68 95.60 97.61
Flooding 98.70 96.97 97.89 97.43 96.56 98.43
Average 98.79 97.58 97.58 97.58 96.78 98.38
Testing phase (30%)

Normal 99.33 98.43 98.89 98.66 98.22 99.18
Injection 98.85 97.68 97.68 97.68 96.91 98.45
Impersonation 98.43 97.44 96.42 96.93 95.88 97.77
Flooding 98.74 97.18 97.76 97.47 96.63 98.41
Average 98.84 97.68 97.69 97.68 96.91 98.45

Entire Dataset

s Normal mmm Impersonation
100 A = Injection msm Flooding

97 -

Values (%)

95

94 .
Accuracy  Precision Recall F-Score McCC G-Mean

Figure 4: Analytical results of the COADL-FDIAR approach on entire dataset

Both Training Loss (TL) and Validation Loss (VL) values, acquired by the proposed COADL-FDIAR
approach on test dataset, are displayed in Fig. 8. The experimental outcomes denote that the proposed
COADL-FDIAR algorithm accomplished the least TL and VL values. In contrast, the VL values were
lower than the TL values.

A clear precision-recall analysis was conducted on the COADL-FDIAR method using the test dataset.
The results are exhibited in Fig. 9. The figure denotes that the proposed COADL-FDIAR method produced
enhanced precision-recall values under all the classes.
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Figure 5: Analytical results of the COADL-FDIAR approach on 70% of the TR dataset
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Figure 6: Analytical results of the COADL-FDIAR approach on 30% of the TS data

A brief Receiver Operating Characteristic (ROC) curve analysis was conducted on the proposed
COADL-FDIAR technique using the test dataset. The results are shown in Fig. 10. The results denote
that the proposed COADL-FDIAR approach established its ability to categorize the test dataset under
distinct classes.

Table 3 displays the overall results of the proposed COADL-FDIAR model and other existing models
under several measures [21].
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Table 3: Comparative analysis results of the COADL-FDIAR approach and other existing algorithms

Methods Accuracy Precision Recall F-Score
COADL-FDIAR 98.84 97.68 97.69 97.68
Decision tree algorithm 96.30 97.36 94.31 95.37
SVM model 95.13 94.98 95.50 96.68
Random forest algorithm 96.79 94.59 95.73 95.96
Recurrent NN model 94.25 97.30 94.36 94.14
Deep NN model 95.96 97.05 96.90 97.11
LSTM model 96.78 95.02 95.90 96.98

Fig. 11 reports the brief prec, and reca; assessment results achieved by the proposed COADL-FDIAR
and other existing models. The figure implies that the proposed COADL-FDIAR model produced increased
prec, and reca; values. In terms of prec,, the COADL-FDIAR technique achieved an enhanced prec, of
97.68%, whereas the Decision tree (DT), Support Vector Machine (SVM), Random Forest (RF), RNN,
Deep Neural Network (DNN) and the LSTM approach produced the least prec, values such as 97.36%,
94.98%, 94.59%, 97.30%, 97.05% and 95.02% correspondingly. In terms of reca;, the proposed
COADL-FDIAR approach achieved an enhanced reca; of 97.69%, whereas the DT, SVM, RF, RNN,
DNN and LSTM models accomplished low reca; values such as 94.31%, 95.50%, 95.73%, 94.36%,
96.90%, and 95.90% correspondingly.

100
mmm COADL-FDIAR mmm Recurrent NN Model
mmm Decision Tree Algorithm Deep NN Model
99 -+ = SVM Model s LSTM Model
mm Random Forest Algorithm
98
8 97 1
"
o
3
S 96
95 -
94 -
a3 ~

Precision Recall

Figure 11: Prec, and reca; analyses results of the COADL-FDIAR approach and other existing algorithms

Fig. 12 demonstrates the detailed accu, and F,,.. analysis results of the proposed COADL-FDIAR and
other existing approaches. The figure implies that the proposed COADL-FDIAR approach produced the
increased accu, and Fy.,. values. In terms of accu,, the proposed COADL-FDIAR technique achieved an
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enhanced accu, of 98.84%, whereas the DT, SVM, RF, RNN, DNN and the LSTM models achieved low
accu, values such as 96.30%, 95.13%, 96.79%, 94.25%, 95.96% and 96.78% correspondingly.

100
mmm COADL-FDIAR mmm Recurrent NN Model
= Decision Tree Algorithm Deep NN Model
99 - mm SVM Model = LSTM Model
m=m Random Forest Algorithm
98 1

97 1

96 -

Values (%)

95

93 -

Accuracy F-Score

Figure 12: Accu, and F,,. analyses results of the COADL-FDIAR approach and other existing algorithms

Moreover, in terms of Fj..., the proposed COADL-FDIAR approach outperformed all other methods
and achieved an enhanced Fj.,. of 97.68%, whereas the DT, SVM, RF, RNN, DNN and LSTM
methodologies achieved the least Fi.,. values, such as 95.37%, 96.68%, 95.96%, 94.14%, 97.11% and
96.98% correspondingly. From these results, it can be inferred that the proposed COADL-FDIAR model
achieved effectual outcomes over other models.

5 Conclusion

In this study, a new COADL-FDIAR algorithm has been developed to recognise false data injection
attacks in the IoT environment. To accomplish this, the COADL-FDIAR model initially pre-processes the
input data and selects the features using Chi-square test. For recognition and the classification of false
data injection attacks, the SLSTM model is exploited in this study. Finally, the COA algorithm effectually
adjusts the hyperparameters of the SLTSM model and accomplishes a superior recognition efficiency. The
proposed COADL-FDIAR model was experimentally validated using a standard dataset and the outcomes
were scrutinized under distinct aspects. The comparative analysis results confirmed the superior
performance of the COADL-FDIAR model over other recent approaches with a maximum accuracy of
98.84%. In the future, the projected model can be tested on a large-scale real-time database.
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