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ABSTRACT

Human activity recognition is a recent area of research for researchers. Activity recognition has many applications
in smart homes to observe and track toddlers or oldsters for their safety, monitor indoor and outdoor activities,
develop Tele immersion systems, or detect abnormal activity recognition. Three dimensions (3D) skeleton data is
robust and somehow view-invariant. Due to this, it is one of the popular choices for human action recognition.
This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence. Further
proposed two neural networks: convolutional neural network recurrent neural network_1 (CNN_RNN_1), used to
find the optimal features and convolutional neural network recurrent neural network network_2 (CNN_RNN_2),
used to classify actions. The deep neural network-based model proposed CNN_RNN_1 and CNN_RNN_2 that
uses a convolutional neural network (CNN), Long short-term memory (LSTM) and Bidirectional Long short-
term memory (BiLSTM) layered. The system efficiently achieves the desired accuracy over state-of-the-art models,
i.e., 88.89%. The performance of the proposed model compared with the existing state-of-the-art models. The
NTURGB + D dataset uses for analyzing experimental results. It is one of the large benchmark datasets for human
activity recognition. Moreover, the comparison results show that the proposed model outperformed the state-of-
the-art models.
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1 Introduction

Action is when we do something, especially when dealing with anything like an object or human.
The goal of any human activity recognition system is to recognize ongoing activities from ongoing
videos automatically. Recognition of human activities enables real-time monitoring of public places
like airports and stations can monitor patients, children and elderly persons [1]. Vision-based activity
recognition systems highly impact various motivating application domains, like behavioral biometrics,
Content-based video analysis, security and surveillance, interactive application and environment,
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animation and synthesis [2]. In behavioral biometrics, various approaches are based on Fingerprint,
Face, or Iris and are used to recognize human-based physical or behavioral cues. In this approach, the
subject’s cooperation is not required and only needed to know the subject’s activity. Gait recognition
[3] could be the most challenging application area. After all, a person walking characteristics can
identify the person through closed-circuit television (CCTV) footage because everyone has a distinct
walking style like other biometrics. Today, with fast-growing technology, people can share and
search multimedia content, such as images, music and Video. Searching for desired content is very
challenging for a retrieval system to find a subset of objects with similar content [4]. Summarizing
and retrieving consumer content, such as general activities like sports or cooking videos, are one of
the most commercial applications under content-based video analysis. They were developing a visual
monitoring system that observes moving objects in a site and learns the pattern of activity from those
activities. That system comprises motion tracking, activity classification and event detection.

An area can be significant to observe from a single camera, so many such sensor units use
around the site. Cameras are attached to poles, trees and buildings for an outdoor setting. The
indoor setting involves attaching to walls and furniture [5]. Intelligent surveillance got more research
attention because of effective monitoring of public places, airports, railway stations, shopping malls,
crowded places and military installations, or uses intelligent healthcare facilities like fall detection in
older people’s homes [6]. Often, the motive is to detect, recognize or learn exciting events, defined
as suspicious events, irregular behavior, uncommon behavior, unusual activity/event/behavior and
abnormal behavior, or anomaly [7].

For such activity, using CCTV cameras to record or observe scenes the user has become
ubiquitous. Although recording videos through cameras is cheap, affordable and popular in today’s
scenario. However, the agents for observing outliers and analyzing the footage are also limited and
unreasonable. Wherever video cameras use in the room, they experience poor monitoring due to
genuine reasons like the fatigue of the observer. Due to long monitoring hours, the operator can
skip noticing suspicious activity, which is generally of short duration. This application comes under
security and surveillance because detecting unusual activity at the right time is essential. In interactive
applications and environments, the interaction between humans and computers is one of the challenges
in designing a human-computer interface. In today’s scenario, smart devices are capturing data and
analyzing users. The relevant information can extract from the activity tracker for activity recognition.
The framework explores fog computing to the cloud for reducing computation proposed in [8]. An
interactive domain such as smart rooms responding to a person’s gesture can directly or indirectly
benefit the user [9]. Such as music according to the user’s mood when entering the room. Animation
and synthesis require an extensive collection of motions the animator uses to make high-quality
animation or movies. Any application can relate human motion to any environment, including training
military soldiers, firefighters and other personnel [2,10].

Human activity recognition consists of preprocessing, segmentation, Feature extraction, dimen-
sion reduction, and classification. However, various data modalities are available to detect action
from activities. Instead of other modalities, 3D information uses to track movement. 3D information
contains coordinates value that helps to track body joints efficiently [1 1]. Nowadays, recording videos
at various angles is called multiview data. Multiview learning [12,13] is essential for action recognition.
The camera can employ at any angle for recording actions. There is a requirement for the system to
detect activities, which can handle many views for identifying actions. Nowadays, deep learning-based
methods have accomplished importance in human activity recognition. The recurrent neural networks-
based system is considered adequate for sequential data handling [14] and specially designed with
LSTM [15], or BILSTM [16] layered recurrent networks.
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It is interesting to know the recent development in activity recognition. The skeleton data has
joints describing the body’s movement and pose. In multiview action recognition, 3D information
can prefer and get more attention. In [17], the hand-crafted feature has been calculated and given
to the CNN-based model for skeleton-based action recognition. The work has high computational
complexity based on the state-of-the-art comparison. In other words, a convolutional network uses
additional features like joint distribution trajectories [ 1 §]. Instead of CNNss, recurrent neural networks
(RNNSs) can prefer because they store the information based on time dependencies which is the
essential information in action recognition. In [19] shows multi-model strategies using LSTM. LSTM
has proven to be a good choice for data where time-based information is a concern. A few selective
frames can choose to find features in the proposed method. Finding features from a smaller number of
frames can reduce the computational complexity of the system because frames in videos have replicated
activities also. The method [20] used a deep neural network and suggested selecting a keyframe.
The LSTM is often applied [21] differential LSTM, which proposes feature enhancement. A densely
BiLSTM network is presented in [22], which outperforms spatial and temporal data. In contrast to all
these methods, the proposed method in this paper with two neural networks designed with LSTM and
BiLSTM layers.

This section includes a survey of the current knowledge, including essential findings based on
applications. Providing a machine that can detect or recognize activities from videos through which a
human can understand or act based on activity. Main contribution towards action recognition with
the proposed work:

1) Technique for preprocessing of 3D skeleton information.

2) The deep neural network can use as a pretrained network for multiview data.
3) Network which can use for feature reduction.

4) Deep neural network for classification of action from 3D skeleton information.
5) This proposed method is independent of multiview and multiple subjects.

The rest paper organizes as follows: Section 2 presents the proposed method. Section 3 includes
experimental details. In the last, concluded remarks in Section 4.

2 Proposed Method

The NTURGB + D dataset has various data modalities from these modalities, 3D joint infor-
mation used in the proposed methodology. The information in a skeleton file from which three
coordinates, X, Y and Z, have been extracted and used for further representation in the form of optimal
features. The steps for extracted 3D data has given in Fig. 1.

The skeleton file has various information, i.e., body ID, Clipped edges, hand left confidence, hand
left state, hand right confidence, hand right state, lean X, lean Y, joint count and Joints. Take further
on Joints: X, Y, Z, depth X, depth Y, color X, color Y, orientations and tracking details are available.
Each frame of the Video has information on X, Y and Z, shown in Fig. 2.

The X, Y and Z are the 3D coordinates values of joints. There are 25 Joints body positions
for activity recognition, as given in Fig. 3. The dimension of each vector is [25 x 1]. Each vector is
rearranged in the tree so that network can train in a more appropriate form.

The proposed method consists of three significant components illustrated below.
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Figure 2: Step for 3D coordinates of skeleton 3D NTURGB + D dataset

2.1 3D Skeleton Pre-Processing ( Representation of 3D Skeleton Data into Sequences Using
Transversal Tree)

For human activity recognition, the features play an essential role. The skeleton sequences of
NTURGB + D contain Skeleton 3D data for all videos of 60 classes. Each Video from the dataset
has a different number of frames. The random ten frames have been considered for the same size
output to make the Skeleton feature. For example, if any video contains 100 frames. Then, the index
of frame selection is [1 11 21 31 41 51 61 71 81 91]. Each frame has joint information containing the
details of X, Y and Z coordinates values. The X, Y and Z are the 3D coordinates of skeleton sequences.
The 25 joints correspond to which point of the human body, as given in Fig. 3. The size of each X, Y
and Z is [25 1]. All coordinates are arranged as transversal tree orders [17], in which the index of the
joint number has stores accordingly. The order of making a new sequence is [221 3432191011 12
2524251211109215678232223876521211718192019181711314151615141312]. The
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total number of joints available is 25. To give the network a sequence with that it can train efficiently.
Make that number of the joint index 49 for each X, Y and Z as per the transversal tree. Concatenate
the ten frames X, Y and Z, 3D skeleton data and size becomes [10 x 49] where 10 is the number of
frames chosen from each Video and 49 is the X, Y and Z data index. There is a requirement to give
a pattern for system learning. Joints arrange to give relative motion information of coordinates. The
joints arrange in the manner of body parts, i.e., the torso, right arm, left arm, right leg and left leg.
Each Video from the dataset has represented a new skeleton 3D of fixed size [10 x 147]. These are the
feature which is the input to CNN_RNN_1.

Figure 3: Joint location of the human body of skeleton 3D data [25 joints]

2.2 CNN_RNN_]1 for Optimal Features

In this work, multiple LSTMs and CNNs uses for human activity recognition. Generally,
researchers use a pre-trained network to find optimal features. There is no such pre-trained network
that acts optimally for the NTURGB + D dataset. The LSTMs-based model is contextually dependent
on the temporal domain. Moreover, CNN-based models focus on spatial information. Temporal and
spatial information are essential features for action classification using Videos. CNN_RNN_1 trains to
find optimal features for another network called CNN_RNN_2. First, the CNN_RNN_1 trains using
a dataset then the network is used to find optimal features. Input videos dataset fix for CNN_RNN_1
as well as CNN_RNN_2 for training purposes. The video dataset for validation and testing is distinct
from training for CNN_RNN_1.

The CNN_RNN_1 consists of 20 layers, including LSTMs and CNNs with other essential layers.
After giving the input, the first layer is the folding layer, which converts a batch of an image sequence
to a collection of images and it converts the sequence for the next layer to do convolution. The three
consecutive convolutional layers have 32, 48 and 64 kernels, respectively. After each Convolutional
layer, there is a ReLLU layer and a Maxpooling layer. The ReLU layer uses to operate any value zero if
the value is less than zero.

Furthermore, the Max pooling layer uses to downsample the input and half the number of
samples is the output. The unfolding layer restores the sequence data of input data after sequence
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folding. After the unfolding layer, a flattened layer converts data into a single column. The flattened
sequence passes to LSTM layers. Each LSTM layer ended with a dropout layer, half the sample
length. The number of neurons is the same in the LSTM layer, which is 128. The dropout layer with
a probability of 0.5 to avoid network overfitting during learning. The last three layers fully connect
with the number of neurons, same as the number of classes, i.e., 60. Softmax layer for determining the
probability corresponding to each class and classification layer for assigning class as per probability
based determined with softmax layer.

2.3 CNN_RNN_2 for Action Classification

CNN_RNN_2 is proposed for the classification and is first required to load the trained proposed
CNN_RNN_I1. With CNN_RNN_, optimal features calculate for the same training, validation and
testing data used for CNN_RNN_2. The dimension for Skeleton 3D features of each Video is [128
1], as mentioned in Fig. 4. The sequence input gives to the flattened layer. In CNN_RNN_2, the
BiLSTM layer uses as in Fig. 5. The two LSTM networks are connected in opposite directions to make
BiLSTM. In other words, using the BILSTM network in our model results in long-term bidirectional
relationships, subtracted by going back and forth several times in the vector sequence embedded in
all parts of the Video [23]. BILSTM layer uses to store time dependencies of data and preference for
classification of CNN_RNN_2 used here to classify the action from videos.
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Figure 5: Architecture of CNN_RNN_2 for classification
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3 Experiment
3.1 About Dataset (NTURGB + D)

The proposed method evaluates on dataset NTURGB + D. There are 4 data modalities available,
i.e., depth maps, 3D joints information, RGB frames and IR sequences. In this paper, the 3D joints
information only use. The joint information consists of 3-dimensional locations of 25 major body
joints, as shown in Fig. 2. The major body joints help to detect and track the movement of each body
part of the human body. The dataset contains 60 actions classes-based information and 56880 videos
recorded using the Microsoft Kinect v2 sensor. There are 40 distinct subjects between the age of 10
to 35 years. The dataset videos recording at three different angles, i.e., 45°, —45° and 0°, as shown in
Fig. 6. The activities are divided into three major groups: 40 daily actions, 9 human health-related and
11 mutual actions in the dataset. This dataset has a variation in the number of subjects and ages of
subjects [24].

Figure 6: Three views in NTURGB + D (side view (+45°), front view (0°) and side view (—45°))

3.2 Implementation Details

The experiment performs on the system with a 1.6 GHz Intel Core 15-4200U, 8 GB RAM and
1 TB SSD running a Windows 10 with the 64-bit operating system. There are CNN_RNN_1 and
CNN_RNN_2; both train, validate and test with the dataset. The CNN_RNN_1 has 20 layers which
train by using a dataset. No pre-trained network is available for this application to find optimal
classification features. The filter size is [3 3] for the convolutional 2D filter. The Adam optimizer
uses during training with a learning rate of 10~*. The minibatch size is 128, with the number of
iterations per epoch being 32 upon max epoch 500. The same hyperparameter has been considered for
CNN_RNN_2 also. The experiment performs on a total of 960 videos of NTURGB + D. It includes
three angled-view videos for all 60 classes.

3.3 Results

The arrangement of joints aims to represent the 3-dimensional coordinates in some pattern. So,
networks can learn the pattern in a way; it can identify the activities efficiently. The captured 3D
information preprocess for the network. After preprocessing, the 20-layer CNN_RNN_1 network
train with some videos. The same CNN_RNN_1 uses to calculate optimal features of which dimension
is much less than the input data. It can use as a feature reduction technique to represent a video in a
single column of length [128 1]. When all the videos are the same size as [128 1], these features are the
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input to the second network called CNN_RNN_2. CNN_RNN_2 is used to classify the action from
3D information. The conclusion is that there are two networks, one for feature reduction technique and
another for classification. The experimental results show using two graphsin Figs. 7 and 8. Monitoring
the training and validation accuracy progress plot is helpful when training any network. It shows
how quickly accuracy is improving and whether a network is starting to overfit with data or not. The
training and validation accuracy plot shows that the network is not overfitting or underfitting. Fig. 7
shows the training and validation accuracy plot vs. the number of iterations. This designed network is
not having any overfitting issue with data. Initially, at zero iteration, accuracy is low. However, after
the 100th iteration, the accuracy increases and becomes constant for a few iterations and at max epoch
500th, it ends up with an accuracy of 88.89%.
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Figure 7: Training progress plot (Accuracy vs. number of iterations) [Blue line represents training
progress and the black line represents validation progress]
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Figure 8: Validation loss plot (Loss vs. number of iterations) [Red line represents training loss progress
and the black line represents validation loss progress]
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Fig. 8 shows the training and validation loss function vs. the iteration plot. The training and
validation losses perfectly fit with the data. However, the loss is more when the batch size is small. As
batch size increases, the loss decreases, as given in Fig. 8. The wiggle is minimal when the batch size is
the entire dataset because gradient update improves the loss function monotonically. At the maximum
epoch, the final validation loss ends up at 1.45. Table | compares proposed methodologies with other
states of art methods in terms of accuracy. That comparison shows that the proposed method can
prefer for action recognition.

Table 1: Comparison with other methods based on accuracies

Method Accuracy (%)
Multidimensional indexing [25] 84.6
HMM [26] 88.3
PCA and HMM [27] 87.5
Memory-based attention control system [2§] 80
Dynamic time warping [29] 80.05
Bipartite graph [30] 82.8
Multi-sensor fusion [31] 88
Deep learning-based hierarchical feature model [32] 70.32
Deep convolutional neural network [33] 41.5
Collaborative sparse coding [34] 79.18
Convex multiview semi-supervised classification [35] 59.08
Scene flow to action map and ConvNets [36] 61.94
Convolutional neural network [37] 66.29
Multiview fusion [14] 85.9
Graph convolutional networks [38] 88.2
Proposed method 88.89

Fig. 9 shows the confusion matrix for 60 classes where each row instance depicts actual classes
and each column as predicted classes. The diagonal green colored boxes show the correct number of
classes identified. For example, considering the first row and column, the class label with A001 is the
same in 6 videos. However, one Video of A001 recognizes as A003. Likewise, the whole matrix can
understand. Table 2 shows the class label with the activity name as recognized actions.
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Actual Class

Figure 9: Confusion matrix (Actual class vs. predicted class)
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Table 2: Activity ID with activity name

2769

Activity_ID  Name of

Activity_ID Name of

Activity_ID Name of

Activity_ID Name of

activity activity activity activity
A001 Drink water AO016 Put on a shoe A031 Point to A046 Back pain
something
A002 Eat meal A017 Take offa  A032 Taking a A047 Neck pain
shoe selfie
A003 Brush teeth A018 Put on A033 Check time A048 Nausea/
glasses (from watch) vomiting
A004 Brush hair  A019 Take off A034 Rub two A049 Fan self
glasses hands
A005 Drop A020 Putona A035 Nod A050 Punch/slap
hat/cap head/bow
A006 Pick up A021 Take offa  A036 Shake head A051 Kicking
hat/cap
A007 Throw A022 Cheer up A037 Wipe face ~ A052 Pushing
A008 Sit down A023 Hand waving A038 Salute A053 Pat on
back
A009 Stand up A024 Kicking A039 Put palms  A054 Point
something together finger
A010 Clapping A025 Reachinto  A040 Cross hands A055 Hugging
pocket in front
A011 Reading A026 Hopping A041 Sneeze/cough A056 Giving
object
A012 Writing A027 Jump up A042 Staggering  A057 Touch
pocket
A013 Tear up A028 Phone call  A043 Falling down A058 Shaking
paper hands
A014 Put on jacket A029 Play with A044 Headache  A059 Walking
phone/tablet towards
A015 Take off A030 Typeona  A045 Chest pain ~ A060 Walking
jacket keyboard apart

4 Conclusion

This paper presents multiview-based skeleton action recognition using deep neural networks. This
paper proposes the networks, i.e., CNN_RNN_1 and CNN_RNN_2, where CNN_RNN_1 uses for
feature reduction technique and CNN_RNN_2 for action classification. The activities classification
uses 3D skeleton information of all three views from the dataset NTURGB + D for 60 classes.
The designed system outperforms all the other state-of-the-art methods. The accuracy of action can
improve by including more layers in the network. The system can also design with two-stream or
three-stream input networks to improve evaluation parameters. This work will extend by developing
two-stream networks.
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