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Abstract: One of the elementary operations in computing systems is multiplica-
tion. Therefore, high-speed and low-power multipliers design is mandatory for
efficient computing systems. In designing low-energy dissipation circuits, rever-
sible logic is more efficient than irreversible logic circuits but at the cost of higher
complexity. This paper introduces an efficient signed/unsigned 4 × 4 reversible
Vedic multiplier with minimum quantum cost. The Vedic multiplier is considered
fast as it generates all partial product and their sum in one step. This paper pro-
poses two reversible Vedic multipliers with optimized quantum cost and garbage
output. First, the unsigned Vedic multiplier is designed based on the Urdhava Tir-
yakbhyam (UT) Sutra. This multiplier consists of bitwise multiplication and adder
compressors. Compared with Vedic multipliers in the literature, the proposed
design has a quantum cost of 111 with a reduction of 94% compared to the pre-
vious design. It has a garbage output of 30 with optimization of the best-compared
design. Second, the proposed unsigned multiplier is expanded to allow the multi-
plication of signed numbers as well as unsigned numbers. Two signed Vedic mul-
tipliers are presented with the aim of obtaining more optimization in performance
parameters. DesignI has separate binary two’s complement (B2C) and MUX cir-
cuits, while DesignII combines binary two’s complement and MUX circuits in
one circuit. DesignI shows the lowest quantum cost, 231, regarding state-of-
the-art. DesignII has a quantum cost of 199, reducing to 86.14% of DesignI.
The functionality of the proposed multiplier is simulated and verified using
XILINX ISE 14.2.

Keywords: Vedic multiplier; Urdhava Tiryakbhyam; reversible logic; signed/
unsigned multiplier; B2C

Nomenclature
B2C Binary to two’s Complement
C Carry
CI Constant Inputs
DFG Double Feynman gate
FA Full Adder
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FG Feynman gate
GO Garbage Outputs
HA Half Adder
K Boltzmann constant
LSB Least Significant Bit
MSB Most Significant Bit
MUX Multiplexer
NG New Gate
PG Peres Gate
QC Quantum Cost
S Sum
T Temperature
TG Toffoli Gate
UT Urdhava Tiryakbhyam

1 Introduction

The demand for high-performance systems has been increasing due to the development of signal
processing, machine learning, and many digital aspects. Moreover, since multiplication is crucial in many
applications, optimizing the multiplication circuit design is essential. Power dissipation is a challenging
issue in designing digital/electronic circuits. Multipliers are considered one of the primary sources of
power dissipation in any system. Using reversible circuits is one of the feasible solutions to reduce power
dissipation [1]. Reversible logic gates are the gates where every input is mapped to an output; hence they
are NxN gates.

Multipliers play an essential role in any computing or processing, or system. Multipliers are utilized in
various digital signal processing applications such as wavelet compression, FFT, digital filtering, ALU, and
image processing. It is essential to employ a faster multiplier to improve the system performance, as the
system performance is primarily based on the multiplier unit performance. The Vedic multiplier is one
such multiplier that outperforms traditional multipliers while having a lower latency.

The Vedic multiplier depends on Vedic mathematics, which consists of 16 Sutras. One of these Sutras is
the UTwhich means “vertical and crosswise.” The multiplication process starts vertically and then moves to
crosswise multiplication. The design of the N × N Vedic multiplier is performed using two design
approaches. The first approach is to design a 2 × 2 Vedic multiplier using vertical and crosswise
multiplication and generate its equations. Then use the Karatsuba methodology to build the 4 × 4 Vedic
multiplier using 2 × 2 multiplier blocks and design an 8 × 8 multiplier using 4 × 4. The second approach
is to develop the N × N multiplier using the “vertical and crosswise” multiplication for all the N-bits and
generate 2N equations. Each equation constitutes the direct addition of the product terms generated from
the bitwise multiplication.

With the need to implement a low-power, high-performance system, merging the low-power benefit of
reversible architecture with the extraordinarily fast speed of the Vedic multiplier is important. In this paper,
we propose the design of a reversible 4 × 4 Vedic multiplier that uses the generation of 8 equations for the
multiplication process. To the best of our knowledge, this is the first reversible design using this approach.
Unfortunately, Vedic multipliers are unsigned, generating incorrect output if the multiplier and/or
multiplicand inputs are a signed number. Therefore, when using a Vedic multiplier with signed inputs, it
is essential to convert the negative numbers to positive numbers and then perform the multiplication
process using a Vedic multiplication. Finally, adjust the output sign according to the sign of the inputs.
This methodology is explained and designed in traditional logic in previous research [2].
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The main objective of this paper is to design a signed/unsigned 4 × 4 reversible Vedic multiplier with
minimum quantum cost to reduce the energy dissipation and the design complexity. A binary two’s
complement circuit and multiplexers (MUX) are used to adjust the sign of the inputs and outputs for
signed numbers multiplication. The article presents the first implementation of a reversible signed/
unsigned Vedic multiplier to the best of our knowledge.

The contribution of this paper can be summarized as follows:

� Implementation of minimum quantum cost, garbage output, and TRLIC unsigned 4 × 4 reversible
Vedic multiplier design.

� An optimized reversible 4-bit binary 2’s complement circuit is designed. Moreover, a generic n-bit
binary 2’s complement circuit is proposed.

� A reversible 4 × 4 signed/unsigned Vedic multiplier is proposed using the designed unsigned
multiplier, the binary 2’s complement circuit, and MUXs to choose between the signed or
unsigned cases.

� Furthermore, this design is optimized by merging the binary 2’s complement circuit with the MUX
circuit. We introduced a generic n-bit merged B2C and MUX circuit, which reduces the Quantum
Cost of the multiplier design.

The rest of this paper is organized as follows: Section 2 provides background on the reversible logic
circuits, the UT sutra, and adder compressors, while Section 3 reviews the related work. Section 4
describes our proposed design of an unsigned Vedic multiplier, while Section 5 introduces the combined
multiplier for signed and unsigned. The results and analysis of the proposed multipliers are presented in
Section 6, along with the comparison of related designs. Finally, the paper is concluded in Section 7.

2 Background

2.1 Reversible Logic

Power consumption is considered the bottleneck in developing large, complex, and high-speed designs.
Landauer [3] proved that there is energy dissipation in traditional logic circuits. The energy loss is directly
proportional to the lost bits of information during the circuit operation. The thermal energy loss is up to
kTln2, where K = 1.3806505 × 10−23 J/K is the Boltzmann constant, and T is the environment’s
temperature around the circuit operation [4,5]. Although this looks to be a modest quantity of energy, the
dissipated energy can be enormous when considering the whole CPU, which has millions of transistors.
However, if the system can return from its final state to its initial state, it consumes no energy and
theoretically functions as a lossless system. Bennett [6] proved that reversible circuits could avoid the
energy dissipation of kT ln2 because there is no loss of information. Reversible logic circuits have the
following characteristics [7–9]:

� No fanout or feedback is allowed.

� They have a one-to-one correspondence between inputs and outputs.

� Constant inputs (CI) are the inputs to a reversible circuit that are kept at a constant value of 0 or 1 to
achieve the required functionality.

� Garbage Outputs (GO) are unused outputs in further computation.

� Quantum Cost (QC) is the sum of the quantum cost of the gates that constitutes the design. The 1 × 1
gate has a quantum cost of 0, while each 2 × 2 gate has a quantum cost of 1.

� Total Reversible Logic Implementation Cost (TRLIC) is the sum of the constant inputs, garbage
outputs, quantum cost, and the number of gates.
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When designing a circuit using reversible gates, it is required to reduce the garbage output, therefore,
reducing the energy loss. Also, it is recommended to reduce the constant input and the quantum cost. It is
challenging to optimize the reversible circuit, and there is much research to perform that task. Reversible
circuits have many applications, such as quantum computing, nanotechnology, and low-power systems.

2.2 Reversible Gates

Reversible gates are used to implement reversible circuits with the mentioned characteristics. Several
reversible gates were introduced in the past several years through the literature; below is the investigation
of some reversible gates.

� Feynman Gate: A 2 × 2 Feynman gate (FG), known as controlled-NOT, has two inputs and two
outputs, as shown in Fig. 1a. It is frequently utilized for fanout purposes, and its quantum cost
equals one.

� Toffoli Gate: Toffoli gate (TG) is a 3 × 3 reversible gate known as a “Controlled-Controlled Not gate
(CCNOT), shown in Fig. 1b. In a TG, the third input is complemented when the first two inputs are
connected to 1; otherwise, it remains the same. TG has a quantum cost of 5.

� Peres Gate: Peres gate (PG) shown in Fig. 1c has three inputs and outputs. A PG consists of one
Feynman gate and one Tofolli gate. The Quantum cost of PG is four.

� SAM Gate: A 3 × 3 SAM gate has three inputs and three outputs, as shown in Fig. 1d, and its
quantum cost is equal to four. It can obtain three operations if the last input is set to zero. The first
operation complements one of its inputs, while the second is AND between the first two inputs.
Finally, the last operation is an OR operation between these two inputs.

� BMEGate: The BME gate was introduced in [10]. It is a 4 × 4 reversible gate, as illustrated in Fig. 1e.
The quantum cost of a BME gate is 5.

� RMUX Gate: A 3 × 3 RMUX gate has three inputs and three outputs, as introduced in Fig. 1f. It can
be used as a 2 × 1 MUX by connecting the first input to the selector and the MUX inputs to the second
and third inputs of the RMUX gate. The output of the MUX is the gate’s second output, and the rest of
the outputs are considered garbage outputs. It has a quantum cost of four.

2.3 4 × 4 Vedic Multiplier

Vedic Mathematics is an ancient system that provides efficient calculations in engineering and science
fields. Vedic mathematics consists of 16 sutras for different problems. One of the most known sutras is the
UT; it is used in multiplying two numbers of any number of digits and in any numbering system. The

Figure 1: Reversible gates examples
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multiplication process starts in the vertical direction and then moves crosswise multiplication, hence its name
“Vertical and Crosswise” [11,12]. The significant advantage of Vedic mathematics is its simplicity, therefore
implementing them using less complex and low-power circuits. In other multiplying algorithms like Booth
and array multipliers, the multiplication process latency increases proportionally with increasing the inputs’
length. However, increasing the inputs’ size in the Vedic multiplier does not increase the multiplication
process latency [5]. Moreover, Vedic multipliers improve the performance concerning the processing time
because they require fewer adders than other multiplication methods [13].

There are two approaches to designing a 4 × 4 Vedic Multiplier. The first approach is to use the
Karatsuba divide and conquer algorithm. First, split the multiplicand and multiplier into two groups, 2-
bits in each, then use 2 × 2 Vedic multipliers generating four partial products. Finally, use three 4-bits
binary adders to add the partial products, as shown in Fig. 2 [1,13].

Figure 2: 4 × 4 Vedic multiplier using four 2 × 2 multipliers

The second approach uses the UT sutra directly shown in Fig. 3. It generates the system of equations
(Eq. (1) to Eq. (8)). The generation of product terms is similar to the product terms generation in the
array multiplier. The difference is that the product terms are added concurrently instead of generating
partial products and adding them by n-bit binary adders [2].

The following equations of 4 × 4 Vedic are concluded using this mechanism illustrated in Fig. 3 and
following the same steps as in [14].

S0 ¼ A0:B0 ¼ X0 (1)

C1 S1 ¼ A1:B0 þ A0:B1 ¼ X1 þ X2 (2)

C21C20 S2 ¼ C1þ A1:B1 þ A2:B0 þ A0:B2 ¼ C1þ X3 þ X4 þ X5 (3)

C31C30 S3 ¼ C2þ A3:B0 þ A0:B3 þ A1:B2 þ A2:B1 ¼ C20 þ X6 þ X7 þ X8 þ X9 (4)

C41C40 S4 ¼ C3þ A3:B1 þ A1:B3 þ A2:B2 ¼ C30 þ C21 þ X10 þ X11 þ X12 (5)

C51C50 S5 ¼ C4þ A3:B2 þ A2:B3 ¼ C40 þ C31 þ X13 þ X14 (6)

C6 S6 ¼ C5 þ A3:B3 ¼ C50 þ C41 þ X15 (7)

S7 ¼ C6 þ C51 (8)
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2.4 Adder Compressors

Full adders are used to add three bits simultaneously, generating the result in two bits sum and carry. As
shown in Eqs. (1)–(8) of UT, some equations require four bits addition (Eqs. (3), (6)), and others require the
addition of five bits (Eqs. (4), (5)). Adder compressors are used to perform the addition of more than three
bits [14,15]. Adding four or five bits generates the result in three bits sum, carry 0, and carry 1.

A 4:3 adder compressor is designed to add 4 bits, as shown in Fig. 4a. The circuit consists of a full adder
and two half adders to implement Eqs. (9)–(11). Likewise, we need to add 5 bits, so a 5:3 adder compressor is
utilized. This compressor uses two full adders and a half-adder, as presented in Fig. 4b.

Cint0 Sint ¼ Aþ Bþ C (9)

Cint1 S ¼ Sint þ D (10)

C1 C0 ¼ Cint0 þ Cint1 (11)

Figure 3: Steps of 4 × 4 multiplication using Vedic mathematics

Figure 4: Adder compressors
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3 Related Work

Much research has been proposed for the Vedic multiplier in both irreversible and reversible logic. In the
irreversible logic, some designs built on the first approach using the Karatsuba algorithm, while others built
on the second approach using the system of equations. In reversible logic, most research depends on the first
approach, to the best of our knowledge. Ariafar et al. [1] proposed two 4 × 4 Vedic multiplier designs
depending on the first Vedic multiplication approach. They used ripple-carry adders to implement the
three required 4-bit adders. Their second design introduced a parity-preserved multiplier that employed a
2 × 2 parity-preserved Vedic multiplier and parity-preserved adders. However, this design suffers from a
high TRLIC of about 279, mainly from a high quantum cost that equals 162. Rashno et al. [5] proposed a
low-power 4 × 4 reversible Vedic multiplier. First, they introduced a 2 × 2 multiplier in four designs to
reduce the gate count and quantum cost. Then the authors proposed a 4 × 4 multiplier using the four
2 × 2 multiplier building blocks. Finally, the authors proposed a general formula to extend the multiplier
to the N × N multiplier. Although their design provided a lower quantum cost than the designs in the
literature, it is still considered high. The reduction was only a quantum cost of 2 (from 162 of the
literature design to 160). Awade et al. [13] provided a comparative study between three designs for 8 × 8
reversible. Each of them was implemented using different adders to study the impact of adder type on the
multiplier circuit. The designed adders are ripple-carry, carry skip, and carry select adders. Although the
multiplier designed with the ripple carry adders utilized the highest area, it provided the minimum
number of reversible gates and the lowest garbage outputs design. The multiplier design used carry select
adders utilized the minimum area with the minimum power dissipation. However, it was implemented
using the highest number of reversible gates and garbage outputs. Swathi et al. [16] proposed six
different reversible Vedic multiplier architectures for 2 × 2, 4 × 4, 8 × 8, and 16 × 16. They designed the
multiplier N × N using the blocks of the M × M where M = N/2. The main shortcomings of the literature
studies are high quantum cost, and the lack of handling the multiplication of signed numbers using Vedic
multiplier.

The Vedic multiplier is used to multiply unsigned numbers. There are different methods to utilize the
multiplication for signed number multiplication, such as Booth, Baugh Wooley, and Wallace tree.
Nagamani et al. [17] presented a reversible radix-4 booth multiplier that can be used as signed or
unsigned. They designed the multiplier based on three units: control, arithmetic, and MUX units. The
control unit generates three signals: A, S, and M, where A equals one if it is required to perform an
arithmetic operation by the arithmetic unit. The arithmetic unit performs two operations, addition, and
subtraction, based on the S signal. Finally, the MUX unit was selected to perform one shift depending on
the M value. This paper optimized the garbage outputs and ancillary input at the expense of quantum
cost. Barati [18] implemented three 32 × 32 multipliers: Vedic mathematics, Baugh Wooley, and Wallace
tree. Three different methods were proposed to design a ripple carry adder with 16 × 16 Vedic multipliers
to produce a 32 × 32 multiplier without details about the design of the multiplier. Also, this paper didn’t
compare with the state of the art in that field to analysis the performance parameter such as CI, GO and
QC. PourAliAkbar et al. [19] proposed four parity-preserving reversible multiplier circuits. The first two
circuits multiply unsigned numbers with size 4 × 4 and extended to N × N while the last two circuits are
utilized with signed numbers with size 5 × 5 and extended to N × N. They divided the design to two
parts: partial product generation and partial product addition. They proposed three blocks which used to
output multiplication and addition of the bits depending on the setting of inputs. This paper optimized the
CI, GO and QC but they didn’t combine the two multipliers, signed and unsigned, in one circuit.
Raveendran et al. [20] proposed 8 × 8 signed Baugh-Wooley Wallace tree multiplier using inexact, exact
compressors, half adders, and full adders. All these blocks were implemented using reversible logic. This
paper introduced only signed multiplier.
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4 The Proposed 4 × 4 Unsigned Vedic Multiplier

A 4 × 4 Vedic multiplier design is proposed using the system of equations (Eq. (1) to Eq. (8)) approach.
This approach needs the generation of product terms, a direct AND gate between one bit of the multiplier
input to its corresponding bit of the multiplicand, and then adding these product terms. Some equations
can be implemented simply using half adder (Eqs. (2), (8)) or full-adder circuits (Eq. (7)). While other
equations should be realized using adder compressors since the number of bits to be added is more than
three bits (Eq. (3) to Eq. (6)). The block diagram of the proposed design is illustrated in Fig. 5. This
block diagram does not include the generation of the product terms since it is implemented by an AND
gate to generate the sixteen product term from x0 to x15. The design includes a full adder, two half-
adders, two 4:3 compressors, and two 5:3 compressors. In pursuance of implementing this design using
reversible circuits, the main repeated blocks throughout the design are a bitwise multiplication circuit to
generate the product terms, a half adder, and a full adder. The following subsections investigate the
reversible design of each block.

4.1 Bitwise Multiplication

Product terms are bitwise multiplication between a bit from the multiplier input and a bit from the
multiplicand input, implemented logically by an AND gate. For example, a 4 × 4 Vedic multiplier
requires 16 product terms. Therefore, the BME gate generates the product terms, as illustrated in Fig. 6.
The main advantage of using the BME gate is that a gate can generate two product terms and hence
reduce the total number of required gates from 16 to 8 gates. Each BME gate has one constant input
(input C shown in Fig. 1e is attached to 0). The first output of each gate in Fig. 6a is fed to the first input
of its corresponding input in Fig. 6b. The total garbage output of the bitwise multiplication circuit is 11.

4.2 Adder Circuits

Half adder circuit can be implemented using a Peres gate by connecting the third input of a PG (the input
C) to 0, as illustrated in Fig. 7. The PG gate is used to implement all the half adders shown in Fig. 5 except for
the last half adder. The last half adder implements Eq. (8), where the carry result is neglected. So, an FG is
used instead of the PG to reduce the quantum cost.

Figure 5: The block diagram of the proposed unsigned 4 × 4 Vedic multiplier
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Many reversible full-adder circuits have been designed in the last years [21–24], and each design tries to
improve the performance of the adder circuit. This paper adopts the full adder in [22] illustrated in Fig. 8.
This circuit is used to implement the standalone full adder shown in Fig. 5 and implement the full-adder
circuits needed in 4:3 adder compressors and 5:3 adder compressors shown in Fig. 4.

4.3 Reversible Unsigned 4 × 4 Vedic Multiplier

The proposed unsigned 4 × 4 Vedic multiplier shown in Fig. 5 is implemented using the reversible gates
explained in the previous subsections. The quantum realization of the proposed 4 × 4 Vedic multiplier is
illustrated in Fig. 9.

5 Signed/Unsigned Reversible Vedic Multiplier

AVedic Multiplier is an unsigned multiplier. In order to convert it to a signed multiplier, there are two
approaches; the first one is to use the multiplier design in Fig. 2, but instead of using 2 × 2 Vedic multipliers,
use Booth multipliers. The Booth multiplier can multiply both signed and unsigned numbers. However, the
disadvantage of this method is that it is not scalable easily. For example, an 8 × 8 signed Vedic multiplier uses
4 × 4 Booth multipliers blocks instead of 2 × 2. Similarly, designing a 16 × 16 Vedic multiplier requires 8 ×
8 Booth multipliers, creating new blocks for each expansion.

Figure 6: Bitwise multiplication to generate the product terms

Figure 7: Peres gate as a half adder and its quantum realization

Figure 8: The block diagram of the reversible full adder and its quantum realization

CSSE, 2023, vol.46, no.2 1835



The second approach is to use the rule of signed numbers multiplication. When multiplying two positive
or negative numbers, the result is the positive multiplication of the inputs. In contrast, when multiplying
dislike sign numbers, the result would be the negative of multiplying the positive inputs.

The second technique is used in [2]. The advantage of this technique is that Vedic Multiplier can be
expanded for the required number of input digits, then use the appropriate 2’s complement circuit and a
mux to select between the signed/unsigned and positive/negative numbers. Also, there is no restriction on
building the N × N Vedic multiplier; it can be implemented using the system of equations or from four
N/2 Vedic multipliers. This approach is illustrated in Fig. 10.

It is required to use an efficient binary two’s complement circuit, MUX, and the proposed Vedic
multiplier circuit to realize the design in Fig. 10 using reversible logic. In the following subsections, we

Figure 9: The quantum realization of the proposed 4 × 4 unsigned Vedic multiplier

Figure 10: Signed/Unsigned Vedic multiplier proposed in [2]
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will introduce two designs to the Signed/Unsigned Vedic Multiplier. We seek to reduce the quantum cost and
garbage output.

5.1 Signed/Unsigned Proposed DesignI

The Signed/Unsigned Vedic multiplier consists of B2C (4-bit and 8-bit) and 2 × 1 MUXs. In the first
proposed design, we introduced a new design for the B2C to reduce the quantum cost compared to
previous research and make it easier to be extendible.

5.1.1 B2C
There are different ways to represent a negative number; Signed magnitude, 1’s complement, and 2’s

complement. The 2’s complement representation is considered the best way to represent the negative
numbers for the following reasons.

� In the subtraction with complements method, only one addition is required if the 2’s complement is
used, while using the 1’s complement requires two additions because of the end carry addition.

� The 1’s complement representation has two representations for zero.

As introduced in [25,26], there are different implementations for 2’s complement circuit. To the best of
our knowledge, the design in [25] has the minimum quantum cost [11] for 4-bit. They used two NG and one
FG gate. Our proposed B2C achieved 9 QC, which outperformed the previous design. Furthermore, the 8-bit
B2C using this procedure outperforms the B2C implementation in [25] in the QC as our 8-bit B2C needs
25 while their design requires 31.

For a B2C circuit with A, B, C, and D are the inputs while W, X, Y, and Z are the outputs, Karnaugh maps
are used to simplify and generate the equations: Z ¼ D; Y ¼ C � D; X ¼ �C �D� �B ; W ¼ �B�C�D � �A. The
block diagram for our proposed B2C is introduced in Fig. 11a. The Proposed B2C use one SAM, one PG, and
one FG gate. The SAM gate has three inputs and three outputs, as shown in Fig. 1d. We set the third input of the
SAM gate to zero to obtain C + D and CD, as the C + D expression will be complemented to obtain �C �D, which
constitutes the X output. Moreover, the �C �D is ANDed by �B to be used in getting the final output, W. The second
output (Y) is obtained by taking the last two outputs from SAM as inputs to FG. The PG gate produces the last
two outputs (X andW). The first output of FG is complemented to �C �D to be the first input of PG gate. While A
and B are the last two inputs of the PG. SAM and PG are supposed to have two garbage outputs (CD and �C �D
respectively). The connections of the FG gate by one of these outputs (CD) result in reducing two garbage
outputs to one garbage output. Using the FG gate with C and D as its inputs to obtain Y output will result
in three garbage outputs in the proposed B2C, not one garbage output.

To extend the B2C to 5 bits, the third input of the last PG gate is connected to zero and use one more PG
gate. The added PG gate has three inputs; the first input is the last output of the previous PG gate, and the two
inputs are the most significant two bits of the input number. The outputs of the second PG gate are one
garbage output and the last two outputs of the 2’s complement of the input. To have generic B2C, the last
PG should have the third input connected to zero, and the third output should be connected to one more
PG gate. The added PG gate has one input from the previous PG gate, and the other two inputs are the
two bits of original input from the left. The generic N-bit B2C is introduced in Fig. 11b.

5.1.2 The MUX
The second part of our design uses MUX to select between the input number or its 2’complement. To the

best of our knowledge, the best implementation for MUX 2 × 1 is the RMUX gate shown in Fig. 1f, which
has QC equal to 4. The input number and its complement consist of four bits, while the Vedic multiplier
output consists of eight. The number and its complement have a common LSB equal to the bit itself,
while the difference begins afterwards. Therefore, six 2 × 1 MUX are needed to select between the
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numbers (multiplicand and multiplied) and their complement in part preceding the Vedic multiplier. In part
following the Vedic, seven 2 × 1 MUX are needed to select between the result and its complement. Therefore
13 RMUX gates are required for the first proposed design.

5.1.3 The Fanout Generator
Since the reversible circuit does not permit the use of the output more than once, we need a fanout

generator circuit to use the output more than once. Different gates can be used as fanout generators, such as
FG, DFG, and BVF. The FG results in two copies of the input if the second input is connected to zero,
while the DFG generates three copies of the input if the second and third inputs are cleared. Depending on
the connections, the BVF can generate two copies of two different inputs or four copies of the same input.
In the first case, if the first and third inputs of BVF are connected to the two different inputs while the other
inputs are connected to zero, we obtain two copies of the first input on the first two outputs. The copies of
the second input are introduced in the third and fourth outputs. While in the second case, if we connect the
first and third inputs of the BVF gate to the same input, we generate four copies of the same input.

The proposed design requires a fanout generator between the multiplicand out from the MUX and Vedic
multiplier. Also, the design needs a fanout generator following the Vedic multiplier to generate two copies of
the Vedic result. There is no need to use a fanout circuit for multiplier input as the Vedic generates different
copies from the BME gate. We need four copies of the last three bits of the multiplicand. There are various
options to generate four copies of input; the best option is to use one BVF, three DFG, and one FG gate,
which leads to the minimum number of gates. We connect the A1 and A2, the second and third bits of the
multiplicand, to the first and third input of BVF and connect the first output of BVF to the first input of
DFG to obtain another two copies. Also, A2 is connected to another DFG gate to get its other three
copies. Finally, A3 is connected to the first input of FG and connects its first output to the DFG gate to
generate three more copies. Moreover, we need seven FG gates to generate two copies of the last seven
bits of Vedic output.

Figure 11: The reversible B2C (a) 4-bit B2C (b) n-bit B2C circuit
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5.2 Signed/Unsigned Proposed DesignII

We propose a new design that combines the B2C and MUX in one circuit, intending to reduce the
quantum cost. Fig. 12 introduced the four-bit combined B2C with a 2 × 1 MUX. We add one more SAM
gate to the B2C circuit presented in Fig. 11a to give the option to choose between the LSB of the input
or logic one, depending on the selector. The zero value of the selector chooses the LSB if 2’complement
is required. While to get the original input, logic one is chosen by the one value of the selector. If the
output is the LSB, the circuit works as B2C explained in the previous section. If the SAM1 gate outputs
logic one in its second output connected to the second input of the SAM2 gate (the first gate in B2C in
the previous design), this input equals one. In this case, the second output of the SAM2 gate produces
Logic one (1 OR the second LSB input), which is then complemented and fed to the first input of the PG
gate. The last two inputs of the PG gate are generated from the DFG gate to select the input or its
complement. Finally, the last two outputs of the PG gate are the circuit’s final outputs which equal the
original inputs. These outputs are the output of XOR, where its inputs are logic zero and the input itself.
The second output has to be controlled to obtain the correct expression if the selector equals one. In that
case, the obtained output is �C not C so we add another FG gate. This FG has two inputs, the selector and
the second output from FG1, respectively.

This circuit can be easily extended as we add one PG and one FG gate for every added bit except for the
last two MSBs of the input. For these bits, we use only one PG, not two gates, and one DFG instead of the FG
gates to reduce the quantum cost and the number of gates. For the following added PG gate, the first input is
the last output of the previous PG gate, and the second input is from the FG gate, where its input is the
extended bit and selector. The last input of this PG is logic zero. The last PG gate in the extended circuit
resembles the last PG gate introduced in Fig. 12. The merged B2C with MUX eliminates the need for a
fanout generator for the result of the Vedic multiplier as we no longer need two copies of the result to be
the inputs to B2C and MUX.

6 Results and Discussion

The proposed 4 × 4 unsigned Vedic multiplier shown in Fig. 5 and the signed/unsigned Vedic multiplier
shown in Fig. 10 are verified using XILINX ISE 14.2. The design codes are written in VHDL language and
then compiled, tested, and simulated. The simulation area is divided into four regions, as shown in Fig. 13.
The signed_a and the signed_b control inputs are set to 1 for sign multiplication in the first three regions. In
the last region, they are set to 0 for unsigned multiplication. Region A illustrates the multiplication of two
positive signed numbers. While region B demonstrates the multiplication of one signed positive number,
and the other one is a negative number. Region C shows the result of multiplying two signed negative
numbers. The last region, Region D, illustrates the multiplication of unsigned numbers.

Figure 12: The four-bit merged B2C with MUX
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6.1 Results of the Unsigned 4 × 4 Vedic Multiplier

The results of the proposed unsigned 4 × 4 Vedic multiplier shown in Fig. 5 are represented in Table 1.
The first three columns of Table 1 represent the reversible characteristics of each gate, and then the utilized
number of each gate is shown in column 4. The last three columns denote the reversible gate characteristics
for the utilized gates of the whole multiplier design, and the design characteristics are summarized in the last
row. Finally, the results of the proposed multiplier compared to the previous work are provided in Table 2 and
are illustrated in Fig. 14.

Design in [16] is considered the best in the literature regarding QC, CI, gate count and TRLIC. In
contrast, the design provided in [5] is regarded as the best literature design in the GO. The proposed 4 ×
4 unsigned Vedic multiplier is superior to the previous designs in terms of the different figures of merit.
Table 2 explores the reduction of the reversible design characteristics of the proposed design. The
quantum cost is reduced to 94% of the design in [16], and a total TRLIC reduction to 90.3%. This

Figure 13: Simulation results

Table 1: The proposed unsigned multiplier design analysis

Circuit/Gate CI/unit QC/unit GO/unit COUNT Total CI Total QC Total GO

BME 1 5 1 8 8 40 8

FA 1 6 2 7 7 42 14

HA 1 4 1 7 7 28 7

FG 0 1 1 1 0 1 1

Total 23 22 111 30

Table 2: Comparison of the proposed unsigned 4 × 4 Vedic multiplier with the previous work

Performance parameter Quantum cost Constant input Garbage outputs Total gates TRLIC

Design in [1] 162 40 41 44 279

Design in [5] 160 32 36 36 264

Design in [9] 130 23 42 31 226

Design in [12] 140 30 44 28 242

Design in [16] 118 23 38 27 206

Design in [27] 162 29 62 37 290

The proposed design 111 22 30 23 186
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reduction is because the design of 4-bit binary adders utilizes more gates and generates more garbage outputs
than compressor adders. Hence, it is apparent that concurrently adding the product terms is more efficient
than producing all the partial products and then using a 4-bits binary adder to add them.

Despite designing the Vedic multiplier using the equations approach provided the minimum number of
gates, quantum cost, and TRLIC, this method is efficient for 2 × 2 and 4 × 4 multipliers; more than an 8 ×
8 multiplier will require more complex compressors and increase the delay and complexity. For example, the
8 × 8 multiplier equations in [28] require the addition of 8 terms simultaneously (hence the need for an
8:4 compressor). Moreover, the equations of the 16 × 16 multiplier in [29,30] require the addition of
19 terms simultaneously, leading to the use of very complex cascaded compressors and adders that will
increase the delay.

6.2 Results of the Signed/Unsigned 4 × 4 Vedic Multiplier

We introduced two designs for signed/unsigned Vedic multipliers in this paper. The first design
constitutes the proposed B2C circuit, the RMUX gate, and the proposed unsigned Vedic multiplier in
Fig. 9. This design is refined with the merged B2C and MUX circuits in the proposed DesignII.

A B2C circuit is used in DesignI to allow the multiplication of signed numbers using the Vedic
multiplier. The proposed 4-bits B2C circuit shown in Fig. 11a is compared with other B2C designs, as
shown in Table 3. The improvement percentage compared to [25] regarding QC is the reduction to
81.82%. The proposed design outperforms the previous work in terms of quantum cost but not in terms
of CI and GO. A generic n-bit B2C is also proposed; we propose a generic equation to calculate the
quantum cost of any n-bit B2C as QC ¼ 4� n� 2ð Þ þ 1 where n is the number of bits. The merged
B2C and MUX circuit for any number of bits is also introduced, and its quantum cost can be calculated
as QC ¼ 5� n� 1ð Þ þ 1.

One of the most important of evaluating a reversible circuit is quantum cost. The first design has a
quantum cost of 231. This design consists of two 4-bit B2C, two AND gates, 13 2 × 1 MUX, the
proposed unsigned Vedic multiplier, one 8-bit B2C, one XOR, and two fanout generators for both the

Figure 14: Comparison of 4 × 4 unsigned Vedic multiplier with previous work

Table 3: Comparison between the proposed 4-bit B2C circuit and the existing designs

Performance parameter Quantum cost Constant input Garbage outputs Total gates

Design in [26] 29 0 0 9

Design in [25] 11 1 1 3

The proposed B2C design 9 1 1 3
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multiplicand and result of the Vedic. The quantum cost for each part is 2 × 9, 2 × 4, 13 × 4, 111, 25, 1, and 16
(3 × 3 + 7) respectively. The second design consists of two merged 4-bit B2C with MUX, two AND gates, the
proposed Vedic multiplier, one merged 8-bit B2C with MUX, one XOR, and a fanout generator for the
multiplicand. The quantum cost for each part is 2 × 16, 2 × 4, 111, 36, 1, and 3 × 3, leading to a total of
199 QC. The design in [17] has a total quantum cost of 364.

The results of signed/unsigned 4 × 4 Vedic multipliers DesignI and DesignII are illustrated in Table 4.
The second design reduces 86.14% of the first proposed design while reducing the quantum cost to 54.67%
of the design [17]. Regarding total quantum cost, we can say that DesignII is superior to all current designs.
However, the proposed two designs do not give the best results in garbage output and constant inputs. To the
best of our knowledge, there is no proposed design for a reversible signed/unsigned Vedic multiplier.

7 Conclusion

This article proposed two reversible Vedic multipliers with optimized quantum cost and garbage output.
First, an unsigned Vedic multiplier is designed using (UT) Sutra by generating eight equations to get the
8 product bits. To implement this circuit, 4:3 and 5:3 adder compressors are used. The proposed
reversible multiplier reduces the quantum cost, garbage output, and the number of gates compared to the
best previous design without increasing the constant inputs. Second, the design is expanded to allow the
multiplication of signed numbers as well as unsigned numbers. To our knowledge, this is the first
proposed reversible Vedic signed/unsigned multiplier with complete design and analysis. Two designs are
offered to accomplish this operation. DesignI employs using a binary 2’s complement circuit design with
minimum quantum cost, then uses a MUX to select between signed/unsigned multiplication. We designed
a B2C circuit superior to the B2C circuits in the literature designs regarding quantum cost. Furthermore,
a signed/unsigned 4 × 4 reversible multiplier DesignII is introduced. In this design, we merged the design
of the binary 2’s complement circuit with the MUX circuit for additional optimization.
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