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Abstract: Cognitive radio wireless sensor networks (CRWSN) can be defined
as a promising technology for developing bandwidth-limited applications.
CRWSN is widely utilized by future Internet of Things (IoT) applications.
Since a promising technology, Cognitive Radio (CR) can be modelled to
alleviate the spectrum scarcity issue. Generally, CRWSN has cognitive radio-
enabled sensor nodes (SNs), which are energy limited. Hierarchical cluster-
related techniques for overall network management can be suitable for the
scalability and stability of the network. This paper focuses on designing the
Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering
(MDMO-EAC) Scheme for CRWSN. The MDMO-EAC technique mainly
intends to group the nodes into clusters in the CRWSN. Besides, the MDMO-
EAC algorithm is based on the dwarf mongoose optimization (DMO)
algorithm design with oppositional-based learning (OBL) concept for the
clustering process, showing the novelty of the work. In addition, the presented
MDMO-EAC algorithm computed a multi-objective function for improved
network efficiency. The presented model is validated using a comprehensive
range of experiments, and the outcomes were scrutinized in varying measures.
The comparison study stated the improvements of the MDMO-EAC method
over other recent approaches.

Keywords: Cognitive radio wireless sensor networks; clustering; dwarf
mongoose optimization algorithm; fitness function

1 Introduction

The growing use of wireless communications increases the challenge of spectrum usage efficiency
challenge. Cognitive radio technology has developed as a productive solution for allowing other users,
named secondary users (SUs) or cognitive radio users, to share the underused spectrum, offering that
there will be no intrusion with primary users (PUs) [1]. When SU is detected, the PU will have appeared;
it has to switch to other available channels but not employed by PU. Dynamic spectrum accessibility
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refers to a spectrum-efficient interaction pattern for Wireless Sensor Networks (WSN) [2]. Such later
face an augmented level of intrusions from several wireless mechanisms functioning on the available
frequency band like Bluetooth, WiFi, WIMAX, etc. A Cognitive Radio Sensor Network (CRSN)
becomes a novel sensor network pattern that accepts the cognitive radio abilities of sensor network
systems [3]. CRSNs will be a solution to unscrupulously use the idle parts of the approved spectrum.
Presenting to sensor nodes (SNs) temporary use of the accessible licensed networks advances the utility
efficacy of the spectrum itself. It offers enhanced quality of service (QoS) regarding prevailing wireless
technologies [4]. Cognitive radio users can access any part of the spectrum. Significant interference is
made to approved and other users. Schedule-related MAC protocol for cognitive radio networks was
devised to solve this complexity. Similarly, there were several difficulties which should be solved [5–7].
Fig. 1 illustrates the infrastructure of WSN.

Figure 1: Architecture of WSN

The common control channel issue is mostly unresolved in cognitive radio technology. Then, it was
proved that single-user detection methods must execute more effectively to find primary user activity.
Lastly, several solutions were devised for only a limited-sized network. A probable solution for such
problems was splitting the system into clusters [8]. Unlike earlier studies, that allows different channels
to adjacent clusters to avoid collision and income from the whole spectrum remaining by the PUs to
raise the correspondence of interactions done by SUs.

Logically consolidating and grouping the same SNs in their closeness with some objects is termed
node clustering [9]. A gathered WSN structure becomes beneficial to a non-cluster-related structure
in many ways. This non-cluster-related structure is termed a single-tier network structure and depends
on flat topologies. Node clustering allows bandwidth reprocessing and effectual resource distribution
so that it could enhance system capability [10]. Predominantly, a dense sensor network and, on a large
scale, single-tier networks could be overloaded the gateway node, resulting in congestion and commu-
nication delay. These single-tier networks were not ascendable for a large set of sensors positioned in
a big area. Clustering in CR-WSNs becomes infancy [11]. There was enormous work in clustering for
cognitive radio networks (CRNs), mobile ad hoc networks (MANET), and WSNs. Though certain
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clustering complexities were solved in the study, clustering will remain a vast unexplored field in CR-
WSNs [10].

The contribution of the paper is given as follows. This paper focuses on designing the Modi-
fied Dwarf Mongoose Optimization Enabled Energy Aware Clustering (MDMO-EAC) Scheme for
CRWSN. The MDMO-EAC technique mainly intends to group the nodes into clusters in the CRWSN.
Besides, the MDMO-EAC algorithm is based on the dwarf mongoose optimization (DMO) algorithm
design with oppositional-based learning (OBL) concept. In addition, the presented MDMO-EAC
algorithm computed a multi-objective function for improved network efficiency. The presented model
is validated using a comprehensive range of experiments, and the results are inspected under varying
measures.

2 Related Works

Prajapat et al. [12] introduce a neighbour discovery technique and 2 greedy k-hop clustering
methods (k-SACB-WEC and k-SACB-EC) for CRSN to concentrate on IoT application that needs
constant intercluster and intracluster interactions. The researchers concentrate on attaining channel
connectivity while optimizing network lifetime. In this clustering, several variables, like nodes’ remain-
ing energy, spectrum awareness, appearance possibility of PUs channel, channel qualities, strength on
the arrival of PUs, and the Euclidean distance among nodes were considered for selecting the common
channels and hop count for clusters. Bhagyalakshmi et al. [13] provide the optimizing capability of the
network lifespan via joint routing and resource allotment with an isolated nodes approach (JR-IN)
among isolated nodes and cluster head in a cognitive oriented WSN. In the JR-IN algorithm, the
network area can be separated into distinct layers, and cluster size can be developed in every layer so
that the cluster size will remain unequal whenever it transfers against the sink. Later the cluster size
was large in the outer layer when a comparison was made with the cluster size in the inner layers.

Stephan et al. [14] devise an energy and spectrum-aware unequal clustering (ESAUC) protocol
that jointly overwhelms the limits of spectrum and energy for optimizing the CRSN span. This devised
protocol enhances equality by attaining remaining energy equilibrium between the SNs and improves
the network lifespan by reducing general energy utilization. The deep Belief Networks technique was
used for predicting the spectrum holes. ESAUC enhances the cluster constancy through the adjustment
of the common channel count optimally. Zheng et al. [15] devise a new stability-aware cluster-related
routing (SACR) protocol for CRSNs. The major novelty of SACR is the unified incorporation of
opportunistic sending and a stable clustered structure. In cluster creation, the novelists considered
energy consumption and spectrum dynamics in the clustering procedure. The resulting clustered
structure can be stable, evading large interaction overhead because of high clustering frequency.

In [16], a new technique—energy preservation and network critics-related channel scheduling
(EPNCS) approach in CRSNs was devised that regulates the slot time for SNs. Dependent on
ecological data traffic, the sleeping period of SNs can be changed, which diminishes energy stylization.
A scalable, dynamic slot is calculated for every SN related to the average buffer occupancy, resulting in
optimum channel usage. An RF EH-related multi-hop clustering routing protocol (RFMCRP) related
to the non-linear EH method was devised in [17]. At First, by using statistical analysis and curve
fitting tool, the most reasonable non-linear EH method can be detected and was used by RFMCRP
for measuring the harvested energy precisely. Second, the optimum cluster number was hypothetically
extracted, and its value was employed as a benchmark for assessing the proposal’s validity. Then,
the energy control system was presented for managing node state, which could help enhance cluster
building stability. Zheng et al. [18] suggest a short preamble cognitive MAC (SPC-MAC) protocol



108 CSSE, 2023, vol.47, no.1

for CRSNs. The main input of SPC-MAC was the smart grouping of short opportunistic forwarding
and preamble sampling. So, SPC-MAC can support fast spectrum access and be reliable whenever
minimizing power usage. Additionally, SPC-MAC was a distributed cognitive MAC protocol deprived
of any common control channel.

3 The Proposed Model

In this study, a new MDMO-EAC technique has been projected for CRWSN. The MDMO-EAC
technique mainly intends to group the nodes into clusters in the CRWSN. Besides, the MDMO-
EAC algorithm is based on the design of the DMO algorithm with the OBL concept. In addition,
the presented MDMO-EAC algorithm computed a multi-objective function for improved network
efficiency. Primarily, the nodes are randomly deployed in the target area, and the initialization phase
occurs where the nodes exchange information with their neighbours. Moreover, the BS executes the
clustering process and advertises the CHs.

3.1 System Model
In this section, the complete system method adopted in this work was discussed briefly [19].

Network model: The SNs were cognitive radio-assisted. The SNs were distributed haphazardly in
the sensor domain. The cognitive radio SNs were resource-limited, and the nodes were mobile, having
low speed, 2–4 m or min.

Channel model: It is regarded that there were N channels accessible that should be retrieved
through the SUs resourcefully. The PUs approved every N channel. Every channel is devised as
Rayleigh fading channel. Based on the proximity of the interactive nodes, there can be meddling
amongst the SUs. The words CR and SU node were employed intervariable.

Energy model: In CRWSN, the CR nodes, separately from data transmission and reception,
execute supplementary tasks of spectrum switching and sensing. Hereafter, the power utility was higher
in CRWSN when compared with the conventional WSN. Therefore, when devising the power utility
method, all 4 tasks are under consideration. Assuming that Ess is the power used at the time of spectrum
sensing, is the power used at the time of spectrum switching. The power utilized by ith SU at the time
of data communication of L bits was articulated as follows.

Etxi (L) =
{(

eRF + eampd2
) × L, d < d0(

eRF + e′
ampd

4
) × L, d ≥ d0

(1)

whereas eRF denotes the power utilized by the radio frequency circuits for receiving and transmitting
the signal, e′

amp and eamp were the amplifier power based on the path loss method utilized, d refers to
the distance among receiver and transmitter nodes, and d0 denotes the distance threshold utilized for

distinguishing path loss method where d0 =
√

eamp/e′
amp.

As the ith SU obtains L bits of data, the power used up at the time of the reception mode can be

Erx,i (L) = eRF × L (2)

Mobility model: The purpose of this study was to achieve stable clusters. Thus, the cluster
head nodes were predictable, and the nodes had comparatively less mobility. For characterizing the
instantaneous nodal mobility Mj, the following expression was employed.
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Mi = 1
T

∑T

t=1

√
(xt − xt−1)

2 + (yt − yt−1)
2 (3)

Whereas (xt, yt) and (xt−1, yt−1) were node coordinates that are ni at time instants t and t − 1
correspondingly. Then, T was the period for which this stricture remains as projected. It can be taken
into account that the nodes transfer succeeding the random waypoint mobility method.

3.2 Design of MDMO Algorithm
The mathematical process of the DMO technique was established. The nature of the mongoose

inspires it in food-finding procedures [20]. In general, it initializes with the assumption of primary
values to solutions by Eq. (4):

xi,j = lj + rand × (
uj − lj

)
(4)

Whereas rand refers the arbitrary numbers. uj and LJ suggests the restrictions of the search
domain. The swarming of the DMO comprises 3 sets: alpha, babysitter, and scout. Every individual
set owns respective outcomes in food determination. The fitness of each solution can be computed
once the number of individuals is introduced. Eq. (5) finds the probability value to all the population
fitness, and alpha female (α) was selected dependent upon this probability

α = fiti

�n
i=1fiti

(5)

n relates the count of mongoose from α set. Bs indicate the babysitter count. The mongoose sleeps
from the main sleeping mound, which is predefined ∅. It generates candidate food locations using
Eq. (6):

Xi+1 = Xj + phi × peep (6)

The sleeping mound was offered in Eq. (9), phi denotes the uniform distribution of random value
in −1 and 1.

smi = fiti+1 − fiti

max {|fiti+1, fiti|} (7)

Eq. (8) denotes average sleeping mound values.

ϕ = �n
i=1smi

n
(8)

Once the babysitting exchange criteria gets fulfilled, the technique develops into scouting phases,
whereas the sleeping mound or next food source is assumed.

As mongooses are recognized to not return to previous sleeping mounds, the scout arrives for the
following sleeping mound. Here, scouting as well as foraging were carried out simultaneously. This
movement was modeled then an unsuccessful or successful searching sleeping mound. This is because
once the family forages far sufficient, it is derived into a novel sleeping mound. The scout mongoose
was demonstrated by Eq. (9).

Xi+1 =

⎧⎪⎪⎨
⎪⎪⎩

Xi − CF ∗ phi ∗ rand ∗
[
Xi − −→

M
]

if ϕi+1 > ϕi

Xi + CF ∗ phi ∗ rand ∗
[
Xi − −→

M
] (9)
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whereas rand represents the arbitrary number from the range between zero and one, CF =(
1 − iier

Maxiter

)⎛
⎜⎝2

iter
Maxiter

⎞
⎟⎠
.
−→
M = �n

i=1

Xi × smi

Xi

, whereas the mongoose drive to a novel sleeping mound

was defined as this vector.

The babysitter fitness weighted is fixed to zero, making sure that the alpha group’s average weight is
decreased under the next iteration, obstructing group movement and intensifying development. Fig. 2
represents the flowchart of the DMO technique.

Figure 2: Flowchart of DMO

In the MDMO approach, the OBL can be employed to foster the DMO technique’s presentation.
The OBL method was used to create a complete opposition solution to the prevailing solutions [21].
It tries to regulate the optimal solutions that increase the convergence speed rate.

The opposite
(
X 0

)
of a specified real number (X ∈ [U , L]) is computed below.

X 0 = U + L − X (10)

Opposite points: Supposing that X = [X1, X2, . . . , XDim] becomes a point in a Dim-dimensional
search space, and X1, X2, . . . , XDim ∈ R and Xj

[
Uj, Lj

]
. Therefore, the opposite point

(
X 0

)
of X can be

given b below:

X 0
j = UBj + Lj − Xj, where j = 1 . . . .D. (11)

Furthermore, 2 points ( X and X 0) were selected in accordance with the fitness function (FF)
values, and the other can be ignored. For minimizing issues, if (X) ≤ f

(
X 0

)
, X denotes is maintained;

oppositely, X 0 represents maintained.
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Based on the opposite point, the dynamic opposite preference
(

DXO
)

of the value X can be given
below:

X Do = X + w × r8

(
r9 × X 0 − X

)
, w > 0 (12)

where r9 and r8 are random values in the range of [01], w indicates the weighting agent.

3.3 Design of Clustering Process
Here, the presented MDMO-EAC algorithm computed a multi-objective function for improved

network efficiency. The optimization problem has two primary objective functions, f1 and f2, that aim
at characterizing the optimum part of the load of the CH role that must be allocated to all the nodes in
the cluster. Hence, the dimension of particles is equivalent to the node count in a cluster involving the
CH nodes. Based on f1, all the nodes must bear a part of the load of the CH role, which is appropriate
to its RE (the more RE of a node, the large part of the load of the CH role is allocated to the node).
The following equation evaluates the f1 function.

Minimize f1 = 1
m

∑m

i=1
| Ri

Ravg

Ti

Tavg

| (13)

In Eq. (13), Ri, Ti, Ravi, Tag, and m denotes the similar parameter that has been employed; in other
words, once an RW is higher than the energy of another node, the node would be transferring a massive
quantity of energy than the energy transferred by the other nodes.

The next objective function is to decrease the energy utilization of the node. Therefore, the node
with a higher traffic load must bear a smaller part of the load of the CH role. The following equation
evaluates the f2 function:

Maximize f2 = 1
m

∑m

i=1
|Li Ti| (14)

In Eq. (14), m shows the number of nodes in the cluster, Li indicates node i, and Ti shows the
candidate part of a load of CH role allocated to node i. The optimization problem has constraints in
Eq. (4) that guarantees that a load of CH role ECH is distributed accurately through all nodes in the
cluster.

Assume that a bio-inspired optimization algorithm was used for unconstraint optimization
problems. Therefore, the study used an effective constraint-handling method (a penalty function).
The penalty function transforms the constraint optimization problem into un-constraint optimization
problems that are resolved using bio-inspired optimization approaches. It can be accomplished by
adding the term “quadratic loss function” to the objective function and converting the constraints
into objectives in the objective function. It is expressed in the following equation:

F = λ
1

f1 + 1
+ (1 − λ) f2 − B

(∑m

i=1
Tj − ECH

)2

(15)

The quadratic loss function becomes squared for making the constraints most serious about being
employed, B is constant whose value ranges from 10 to 100, and λ shows a weight value.

4 Simulation Results and Analysis

Here, the experimental results of the MDMO-EAC approach are examined under several aspects.
The parameter setting is as follows: target region: 200 ∗ 200 m2, number of sensor nodes: 100–500,
number of primary users: 5, number of available channels: 5, and data packet size: 50bytes.
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Table 1 and Fig. 3 portray the energy level analysis of CH nodes (ELCHN) of the MDMO-
EAC model with compared methods on 100 nodes [19]. The experimental values indicated that the
MDMO-EAC model had shown improved output with increased ELCHN value. On 20 nodes, the
MDMO-EAC approach has obtained increased ELCHN of 97.75%, whereas the NCP-CRWSN, SAC,
LEACH, and RATE models have attained reduced ELCHN of 92.92%, 78.05%, 74.33%, and 68.39%
respectively. Similarly, with 40 nodes, the MDMO-EAC approach has acquired a higher ELCHN of
97.38%, whereas the NCP-CRWSN, SAC, LEACH, and RATE methodologies have achieved reduced
ELCHN of 95.15%, 73.96%, 70.62%, and 66.16% correspondingly. Also, with 60 nodes, the MDMO-
EAC method has attained increased ELCHN of 94.40%, whereas the NCP-CRWSN, SAC, LEACH,
and RATE algorithms have obtained reduced ELCHN of 89.57%, 68.76%, 67.64%, and 61.32%
correspondingly.

Table 1: Comparative ELCHN study of MDMO-EAC approach with 100 nodes

(%) Energy level of CH nodes (No. of nodes = 100)

No. of nodes MDMO-EAC NCP-CRWSN SAC LEACH RARE

20 97.75 92.92 78.05 74.33 68.39
40 97.38 95.15 73.96 70.62 66.16
60 94.40 89.57 68.76 67.64 61.32
80 88.09 84.74 63.55 59.84 53.52
100 85.86 80.65 61.70 56.86 53.89

Figure 3: ELCHN analysis of MDMO-EAC approach under 100 nodes

A detailed energy consumption (ECOM) examination of the MDMO-EAC model with recent
models is performed under 100 nodes in Table 2 and Fig. 4. The simulation values pointed out
the supremacy of the MDMO-EAC model with minimal ECOM values. For instance, with 300 s
simulation time, the MDMO-EAC model has resulted in a minimal ECOM of 18 J, whereas the
NCP-CRWSN, SAC, LEACH, and RATE models have reached maximum ECOM of 25, 40, 46, and
52 J respectively. Furthermore, with 600 s simulation time, the MDMO-EAC approach has resulted
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in minimal ECOM of 21 J, whereas the NCP-CRWSN, SAC, LEACH, and RATE techniques have
achieved maximum ECOM of 34, 48, 58, and 59 J correspondingly. In the meantime, with 900 s
simulation time, the MDMO-EAC method has resulted in a minimal ECOM of 58 J, whereas the
NCP-CRWSN, SAC, LEACH, and RATE approaches have attained maximum ECOM of 85, 104,
114, and 125 J correspondingly.

Table 2: Comparative ECOM study of MDMO-EAC model with 100 nodes

ECOM (J) (No. of nodes = 100)

Simulation time (S) MDMO-EAC NCP-CRWSN SAC LEACH RARE

300 18 25 40 46 52
600 21 34 48 58 59
900 58 85 104 114 125
1200 71 107 130 140 152
1500 92 116 144 156 168

Figure 4: ECOM analysis of MDMO-EAC approach under 100 nodes

Table 3 and Fig. 5 represent the lifetime time (LTT) of the MDMO-EAC algorithm with compared
methodologies on 100 nodes. The experimental values highlighted the MDMO-EAC approach had
displayed improved output with increased LTT value. On 20 nodes, the MDMO-EAC methodology
has attained an increased LTT of 1582 s, whereas the NCP-CRWSN, SAC, LEACH, and RATE
methodologies have gained reduced LTT of 1456, 1225, 1046, and 1019 s correspondingly. Further,
with 40 nodes, the MDMO-EAC method has reached an increased LTT of 1708 s, whereas the NCP-
CRWSN, SAC, LEACH, and RATE approaches have gained reduced LTT of 1522, 1244, 1059, and
960 s correspondingly. Similarly, with 60 nodes, the MDMO-EAC technique has obtained an increased
LTT of 1615 s, whereas the NCP-CRWSN, SAC, LEACH, and RATE algorithms have reduced LTT
of 1516, 1225, 1053, and 920 s correspondingly.
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Table 3: Comparative LTT study of MDMO-EAC approach on 100 nodes

Lifetime time (S) (No. of nodes = 100)

No. of nodes MDMO-EAC NCP-CRWSN SAC LEACH RARE

20 1582 1456 1225 1046 1019
40 1708 1522 1244 1059 960
60 1615 1516 1225 1053 900
80 1635 1469 1218 1053 920
100 1522 1423 1165 1053 887

Figure 5: LTT analysis of MDMO-EAC approach under 100 nodes

Table 4 and Fig. 6 portray the ELCHN of the MDMO-EAC technique with compared approaches
on 500 nodes. The experimental values indicate the MDMO-EAC approach has exhibited improvised
output. On 100 nodes, the MDMO-EAC algorithm has achieved an increased ELCHN of 94.82%,
whereas the NCP-CRWSN, SAC, LEACH, and RATE methodologies have achieved reduced ELCHN
of 90.76%, 78.58%, 71.94%, and 64.93% correspondingly. Likewise, with 200 nodes, the MDMO-EAC
technique has reached an increased ELCHN of 94.08%, whereas the NCP-CRWSN, SAC, LEACH,
and RATE methodologies have gained reduced ELCHN of 90.39%, 79.32%, 71.20%, and 64.93%
correspondingly. Also, with 300 nodes, the MDMO-EAC approach has reached an ELCHN of 94.08%,
whereas the NCP-CRWSN, SAC, LEACH, and RATE algorithms have gained reduced ELCHN of
87.81%, 74.52%, 67.14%, and 62.72% correspondingly.
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Table 4: Comparative ELCHN study of MDMO-EAC technique on 500 nodes

(%) Energy level of CH nodes (No. of nodes = 500)

No. of nodes MDMO-EAC NCP-CRWSN SAC LEACH RARE

100 94.82 90.76 78.58 71.94 64.93
200 94.08 90.39 79.32 71.20 64.93
300 94.08 87.81 74.52 67.14 62.72
400 92.60 83.75 69.73 60.13 52.39
500 90.76 82.64 63.82 59.77 53.49

Figure 6: ELCHN analysis of MDMO-EAC approach under 500 nodes

Table 5 and Fig. 7 illustrate the ECOM of the MDMO-EAC method with compared method-
ologies on 500 nodes. The experimental values denote the MDMO-EAC approach has displayed
superior performance with increased ECOM value. On 300 nodes, the MDMO-EAC algorithm
has attained an increased ECOM of 16 J, whereas the NCP-CRWSN, SAC, LEACH, and RATE
approaches have acquired reduced ECOM of 30, 41, 50, and 67 J correspondingly. Similarly, with 600
nodes, the MDMO-EAC methodology has attained an increased ECOM of 19 J, whereas the NCP-
CRWSN, SAC, LEACH, and RATE methods have attained reduced ECOM of 37, 60, 69, and 93 J
correspondingly. Moreover, with 900 nodes, the MDMO-EAC method has outperformed the increased
ECOM of 44 J, whereas the NCP-CRWSN, SAC, LEACH, and RATE methods have reached reduced
ECOM of 72, 104, 117, and 127 J correspondingly.

Table 6 and Fig. 8 describe the LTT of the MDMO-EAC technique with compared methods on
500 nodes. The experimental values indicate the MDMO-EAC algorithm has exhibited exceeding
performance with increased LTT value. Under 100 nodes, the MDMO-EAC technique has attained
an increased LTT of 1682 s, whereas the NCP-CRWSN, SAC, LEACH, and RATE methodologies
have reached reduced LTT of 1473, 1217, 1132, and 910 s correspondingly. Additionally, with 200
nodes, the MDMO-EAC technique has attained an increased LTT of 1689 s, whereas the NCP-
CRWSN, SAC, LEACH, and RATE methods have attained reduced LTT of 1512, 1224, 1073, and
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903 s correspondingly. Also, with 300 nodes, the MDMO-EAC technique has gained an increased LTT
of 1663 s, whereas the NCP-CRWSN, SAC, LEACH, and RATE approaches have achieved reduced
LTT of 1479, 1217, the 1080, and 884 s correspondingly.

Table 5: Comparative ECOM analysis of MDMO-EAC technique on 500 nodes

ECOM (J) (No. of nodes = 500)

Simulation
time (S)

MDMO-EAC NCP-CRWSN SAC LEACH RARE

300 16 30 41 50 67
600 19 37 60 69 93
900 44 72 104 117 127
1200 57 90 121 131 144
1500 92 116 137 154 163

Figure 7: ECOM analysis of MDMO-EAC approach under 500 nodes

Table 6: LTT analysis of MDMO-EAC approach with existing algorithms under 500 nodes

Lifetime time (S) (No. of nodes = 500)
No. of nodes MDMO-EAC NCP-CRWSN SAC LEACH RARE

100 1682 1473 1217 1132 910
200 1689 1512 1224 1073 903
300 1663 1479 1217 1080 884

(Continued)
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Table 6: Continued
Lifetime time (S) (No. of nodes = 500)

No. of nodes MDMO-EAC NCP-CRWSN SAC LEACH RARE

400 1636 1414 1257 1047 890
500 1519 1440 1204 1021 844

Figure 8: LTT analysis of MDMO-EAC approach under 500 nodes

5 Conclusion

An effective MDMO-EAC technique has been developed for CRWSN. The MDMO-EAC
technique focused on clustering sensor nodes into several clusters to accomplish energy efficiency in
the CRWSN. The MDMO-EAC algorithm is primarily based on the design of the DMO algorithm
with the OBL concept. In addition, the presented MDMO-EAC algorithm computed a multi-
objective fitness function for improved network efficiency. The presented model is validated using
a comprehensive range of experiments, and the outcomes were reviewed in varying measures. The
comparison study stated the improvements of the MDMO-EAC approach over other recent methods.
The comparison study stated the improvements of the MDMO-EAC approach over other recent
methods. In the future, data aggregation protocols will be designed to enhance the efficacy of the
network.
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