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Abstract: Three-dimensional (3D) reconstruction using structured light projection
has the characteristics of non-contact, high precision, easy operation, and strong
real-time performance. However, for actual measurement, projection modulated
images are disturbed by electronic noise or other interference, which reduces
the precision of the measurement system. To solve this problem, a 3D measure-
ment algorithm of structured light based on deep learning is proposed. The
end-to-end multi-convolution neural network model is designed to separately
extract the coarse- and fine-layer features of a 3D image. The point-cloud model
is obtained by nonlinear regression. The weighting coefficient loss function is
introduced to the multi-convolution neural network, and the point-cloud data
are continuously optimized to obtain the 3D reconstruction model. To verify
the effectiveness of the method, image datasets of different 3D gypsum models
were collected, trained, and tested using the above method. Experimental results
show that the algorithm effectively eliminates external light environmental inter-
ference, avoids the influence of object shape, and achieves higher stability and
precision. The proposed method is proved to be effective for regular objects.
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1 Introduction

Three-dimensional (3D) reconstruction technology in vision is an important area of research [1,2] in the
computer field. It uses a vision test system to collect two-dimensional image information of objects, analyze
image features, and process the acquired data to generate a point cloud. Finally, 3D reconstruction is used.
The emergence of 3D imaging technology has transcended the limitations of traditional 2D imaging systems
to enhance our understanding of the world.

The structural light method is one of the main research directions to have sprung from 3D reconstruction
technology [3,4]. Its traditional form is based on the method of projecting an encoded image onto a depth
image formed on the surface of a 3D object and recovering the depth information through an algorithm [5,6].
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However, such algorithms have major problems related to stability, real-time performance, and reliability.
Deep learning is a feature-learning method that transforms low-level raw data to higher-level expressions
through simple nonlinear models [7]. In deep-learning studies, 3D reconstruction methods based on
structured light have been proposed, mainly including structural light center extraction, image feature
extraction, and real-time algorithms. Guo et al. [8] researched a multi-scale convolution parallel approach
using an end-to-end depth learning method to extract the line structure light center. The first network was
used for target detection, which in turn was used to extract the image feature area of interest and detect
the line structure light. A second network of line structure light centers was obtained using the second
network and a sparse algorithm. Li [9] selected the appropriate sensor for secondary development and
obtained point-cloud data, which were processed using point-cloud filtering and segmentation algorithms
to obtain a pure target point cloud and map it to a normalized depth image of size 227 � 227. Li used
the Caffe deep-learning framework, replaced the classifier with regression, and iteratively trained the data
with the weight as a label. A deep learning regression model was obtained to accurately measure weight.
Liu [10] used a depth convolutional neural network (CNN) and conditional generative adversarial
network (CGAN) to estimate depth information from a single image, and converted the depth map to a
point cloud on the NYUD V2 dataset to achieve 3D reconstruction. Hong et al. [11] and Xu et al. [12]
researched the application of deep learning to different fields, and improved the performance of the CNN
that was used. Zhu et al. [13] combined deconvolution with a feature pyramid network to propose an
extraction feature based on the heat map of a solder joint identification network, and used the pyramid
strategy to map the features of different scales into the feature-point heat map to obtain the solder joint’s
exact location. An algorithm based on self-supervised deep learning with strong robustness was proposed
to effectively auto-map the feature points of 2D faces into 3D space to realize 3D face reconstruction [14].
Wang [15] combined the deep-learning GoogleNet framework with image knowledge to reconstruct a 3D
human body model, using skeleton extraction technology to predefine feature points to assist the positioning
of human feature points, increasing the robustness of anthropometric measurements.

The 3D reconstruction algorithm using structured light based on deep learning is an improvement on a
traditional algorithm, but problems exist, such as the generalization ability and accuracy of the network
model. Therefore, it is necessary to increase the reconstruction resolution, improve the network structure,
improve the reconstruction effect, and widen the use of deep learning. Aiming to solve these problems,
the convolution operation is used to extract the features of the 3D image, and the different convolution
kernels are used for multi-scale parallel feature extraction to obtain the fine-layer features. Through the
continuous deepening of the number of network layers, the abstraction of feature information is increased
to improve the ability of feature information to describe the target. The coarse- and thin-layer features are
connected and convoluted, and nonlinear regression is used to obtain the reconstruction model.

2 Basic Principle

2.1 3D Reconstruction Technology Based on Structured Light

The principle of 3D measurement [7] is shown in Fig. 1. P is the position of the optical center of the
projector, C is the position of the camera center, the curved surface represents the object surface, L is
the distance from the charge-coupled-device camera to the bottom of the experimental platform, and d is
the distance between the camera center and the projection center of the projector in the horizontal
direction. When the object is not placed, the light intersects with the object at point A in the plane.
After the object is placed, the propagation direction of the beam changes, and the extension line of the
reflected light intersects with the plane at point B. According to trigonometry, we have the following equation:
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h ¼ LTD’

2pdþ TD’
(1)

where T is a stripe grating, and D’ is a phase change due to height information.

Due to the measurement environment, image equipment, and measured objects, the measurement results
cannot be expressed by a simple linear formula. The collected raster image is expressed as follows:

Iðx; yÞ ¼ Rðx; yÞ½Aðx; yÞ þ Bðx; yÞ cos’ðx; yÞ� (2)

The phase-shifting method can more accurately obtain the phase value. One-quarter of the grating period
is moved each time, so the phase-shifting amount is p=2. The four acquired fringes are:

I1ðx; yÞ ¼ Rðx; yÞ½Aðx; yÞ þ Bðx; yÞ cos’ðx; yÞ� (3)

I2ðx; yÞ ¼ Rðx; yÞ½Aðx; yÞ � Bðx; yÞ sin’ðx; yÞ� (4)

I3ðx; yÞ ¼ Rðx; yÞ½Aðx; yÞ � Bðx; yÞ cos’ðx; yÞ� (5)

I4ðx; yÞ ¼ Rðx; yÞ½Aðx; yÞ þ Bðx; yÞ sin’ðx; yÞ� (6)

The phase can be calculated as

’ðx; yÞ ¼ arctan
I4ðx; yÞ � I2ðx; yÞ
I1ðx; yÞ � I3ðx; yÞ (7)

To accurately obtain the 3D size of the object requires us to determine the corresponding relationship
between the phase of the projection image in the 2D coordinate system and the position of the 3D
coordinate system, i.e., to determine the scale factor between the object and the image. Using a square
calibration board, the relative relationship between the camera and reference plane is established
according to the number of corresponding pixel points and the geometric characteristics of the image.
The scale relationship between the real object and image is calculated by the size of the calibration board
and the number of corresponding pixel points in the image.
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Figure 1: 3D measurement principle of structured light
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2.2 Convolutional Neural Network

As a typical deep-learning method, a CNN [16] is a feedforward neural network with convolution
computation and a depth structure. It is essentially a multilayer perceptron, which adopts local connection
and weight sharing. It reduces the number of weights of the traditional neural network, making it easy to
optimize, and it reduces the complexity of the model and the risk of overfitting.

A CNN has obvious advantages in image processing. It can directly take the image as input of the
network, avoiding the complex process of feature extraction and data reconstruction in a traditional
image-processing algorithm. The basic CNN usually consists of a convolution layer and a pooling layer.
In the convolution layer, the different features of the input image are extracted by the sliding of the
convolution kernel. The output vector is decided and excited by the activation function, and the network
scale is simplified by the pooling layer to reduce the computational complexity, so as to achieve
compression of the input characteristic map.

3 Algorithm Design

In the multi-scale CNN model, as shown in Fig. 2, coarse-layer feature-extraction includes two
convolutional layers, which extract the features of the 3D object, such as the edge and the corner points.
To reduce the parameters and simplify the model, the number of convolution kernels per layer in the two
convolutional layers is set to 10, and the size is 3 � 3. Multiple 3 � 3 convolution kernels replace the
traditional 5 � 5 and 7 � 7 convolution kernels, so the CNN can extract more shallow information of 3D
images, and can reduce the complexity of convolution operations. A zero-padding operation is used for
convolution to ensure that the feature map is consistent with the original image size after convolution.
The 10 convolution kernels of each layer perform convolution operations on input images by local
connection and weight sharing to realize feature learning. The convolution formula of the coarse layer is

Collecting images

3*3 convolutional
net work 

3*3 convolutional
net work 

7*7 convolutional
net work 

3*3 convolutional
net work 

1*1 convolutional
net work 

Final image

5*5 convolutional
net work 

Figure 2: Schematic of CNN
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fn;lþ1 ¼ s
X

m
ðfm;l � km;n;lþ1Þ þ bn;lþ1

h i
(8)

where fm;l and fn;lþ1 represent the characteristic maps of the (l + 1)th convolutional layer input and output,
respectively; r is the activation function; k is the convolution kernel; and b is the bias term. The traditional
neural network sigmoid activation function has a gradient divergence problem due to the differential chain
law in backpropagation. To calculate the differentiation of each weight, when the backpropagation passes
through multiple sigmoid functions, the weight will have little effect on the loss function, which is not
conducive to optimization of the weight. A parametric rectified linear unit (PReLU) activation function is
used to select the activation function σ. Compared to the sigmoid function, the PReLU function has the
advantages of faster convergence and a small slope in the negative region, which can mitigate the
gradient divergence problem to some extent, as shown in Fig. 3.

The PReLU function is expressed as

xPRcLU ¼ maxðxi; 0Þ þ ai minð0; xiÞ (9)

where xi is the input signal for the positive interval of the ith layer, and ai is the weight coefficient of the
negative interval of the ith layer, which is a learnable parameter in the PReLU function.

After the first two convolution layers, feature extraction is used to retrieve the thick-layer features, such
as the edge of the input image. The image also contains numerous deep details, such as texture and other deep
information, but the deep information, which only relies on simple feature extraction, is not available. Hence
we propose a multi-scale convolutional network model to further extract the detailed information of the 3D
image. In the third layer of the network, three sets of filters, of size 3 � 3, 5 � 5, and 7 � 7, are used for
parallel convolution. The convolution kernels perform parallel feature extraction to extract the fine-layer
features of the input image, and the convolution calculation uses zero padding.

The multi-scale convolution formula of the fine layer is

f in;lþ1 ¼ s
X

m
ðfm;l � kim;n;lþ1Þ þ bn;lþ1

h i
(10)

where f in;lþ1 is the nth feature maps output by different multi-scale convolution operations for the (l + 1)th
convolutional layer, r is the activation function, and kim;n;lþ1 is the mth sets of different-size convolution
kernels with multi-scale convolution. Five feature maps are obtained after each set of convolution kernel
operations, and the feature maps obtained by each group are combined to obtain 15 feature maps.

To achieve a better reconstruction effect, the calculated point-cloud data must be fine, and the individual
coarse- or thin-layer features cannot realize this. Hence it is necessary to extract more comprehensive image
feature information. First, features extracted by different-scale convolution kernels are connected. To obtain

f (y)

y

f (y) = y

f (y) = ay

Figure 3: Activation function
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these detailed features, a small network consisting of two consecutive 3 � 3 convolutional layers is used
instead of a single 5 � 5 or 7 � 7 convolutional layer stacking method. This greatly reduces the
parameters of the multi-convolution kernel, better optimizes the calculation time, increases the network
capacity, and enhances the feature-extraction capability of the activation function. The coarse-layer
features obtained by feature extraction and the fine-layer features extracted by multi-scale extraction are
connected and convolved, so the obtained feature map contains both the coarse-layer features of the 3D
image and more details to avoid loss of information during subsequent processing. In the process of
mapping 3D structured light images and point-cloud images, since the feature map has multiple channels
before the output and the model finally needs a single-channel point-cloud map, the last layer is
nonlinear, and the final output is produced by a 1 � 1 convolution kernel and a PReLU activation function.

The CNN model is used to obtain the mapping relationship between the 3D image and the depth image
through deep learning. During the training process, the parameters must be updated continuously to achieve
the optimal result. It is important to choose the correct loss function. A good one can provide a better
convergence direction and obtain better results. Common loss functions [17] include log loss, absolute
value loss, and square loss functions. We use the BerHu function,

BðxÞ ¼
xj j
x2 þ c2

2c

xj j � c
xj j � c

8<
: (11)

where c ¼ k �maxð y� y1j jÞ, y is the point-cloud tag data, and y1 is the predictive data for deep learning. The
function takes c as the limit and makes a first-order differential jump at the critical point. When the predicted
value exceeds the critical value, the gradient is rapidly reduced while ensuring a large residual error. When
the predicted value is less than the critical value, the prediction result is kept close to the label data, and the
gradient slow-down speed can be maintained, which significantly improves the convergence performance of
the network. The output result is filtered before the loss function is calculated, and pixel points with missing
depth-information values in the real depth map are removed to avoid interference of irrelevant information.
Training incorporates backpropagation and a 0.9 momentum gradient-descent method to minimize the loss
value. The input image has a batch size of 100, initial learning rate of 0.001, decay after every 10 rounds,
attenuation rate of 0.99, and iteration count of 100.

4 Experiment and Analysis of Results

The 3D shape measurement experiment system, shown in Fig. 4, consisted of a projector, camera, and
computer. The projector used a BenQ es6299 photo sensor with a highest resolution of 1920 � 1200, and a
VGA interface to connect with a notebook computer. MATLAB (MathWorks, USA) was used to write a
program to project stripe images onto a 3D object through the projector. A Canon EOS550D digital
camera collected images of objects with stripes. The deep learning network implementation was based on
a TensorFlow framework. The training data were taken from the laboratory, and the size of each picture
was 1920 � 1200.

To verify the performance of the proposed algorithm in 3D reconstruction, the image-acquisition process
with structured light, as shown in Fig. 5, was used. A dataset for different locations of multiple objects was
established, each sampled from a different angle. Of the generated data, 70% was used as a training set and
30% as a test set. Caffe was selected as the deep learning framework, and the algorithm was implemented in
MATLAB. Stochastic gradient descent was chosen as the optimizer, and the learning rate of neural network
regression decayed exponentially.
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The reconstruction results of the 3D image are shown in Fig. 6. For the 3D reconstruction of four
selected objects, the basic contour can be obtained. The measured effect of the object size parallel to the
incident angle of the lens is very good, and the boundary between the object and background is better
searched. Compared with other objects, the cone is not occluded. The reconstruction effect of the cone is
better than others. For a beveled cylinder, the size of the stripe projected on the slope will influence
the accuracy of measurement, because the larger the stripe the less obvious the inclined lines.
The reconstruction of the slope of the beveled cylinder is affected by the angle, and it is necessary to
estimate the images with different angles to ensure accuracy. Since the shooting position is on top of the
subject, the outline of the image exhibits some wrinkling and is not smooth. This is mainly because the
illumination angle during the acquisition process cannot guarantee uniform sampling of the object,
especially in the cuboid shape and cylinder.

Figure 4: Experimental environment

Figure 5: Image with stripe structured light
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To further verify the performance of the proposed algorithm, a measurement tool, an Intel RealSense
depth camera, a traditional CNN algorithm, and the proposed algorithm were used to reconstruct the
image. Taking the beveled cylinder as an example, the data analysis of the experimental results is shown
in Tab. 1. The size errors of the radius, height, and bevel angle of the object, measured by the proposed
algorithm, are 0.52%, 2.07%, and 2.43%, respectively. Compared with the Intel RealSense depth camera
and CNN neural network, the accuracy is improved significantly.

Figure 6: 3D reconstruction results (a) cuboid (b) cylinder (c) cone (d) beveled cylinder

Table 1: Measurement data of different methods

Method/parameter Radius (mm) Height (mm) Bevel angle (o)

Measuring tool 57.0 70.0 33.21

Intel RealSense 63.34 73.35 36.89

CNN 60.32 68.93 35.54

Proposed algorithm 58.31 71.45 34.03
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5 Conclusions

A 3D reconstruction algorithm based on deep learning was proposed. An end-to-end full CNN model
was designed, the coarse-layer features of the 3D image were obtained by a convolutional layer
operation, and the fine-layer features were obtained through multi-scale convolution kernel operation
mapping. The two features were connected and fused, and the trained model was obtained through
nonlinear regression to obtain the 3D image point-cloud model. Analysis of experimental data indicated
that 3D reconstruction based on the deep-learning CNN model showed great improvement in accuracy
and could be applied to actual measurement, providing a reference for the subsequent processing of 3D
reconstruction. Although certain results were achieved, several problems must be addressed: (1) The
algorithm improves matching accuracy, but it has a certain impact on the calculation speed, and the real-
time effect is not good; (2) The measured object is a regular object and cannot have wide adaptability, so
the next step is reconstruction of complex objects and adaptability to the environment.
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