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Abstract: In recent times, real time wireless networks have found their applicabil-
ity in several practical applications such as smart city, healthcare, surveillance,
environmental monitoring, etc. At the same time, proper localization of nodes
in real time wireless networks helps to improve the overall functioning of net-
works. This study presents an Improved Metaheuristics based Energy Efficient
Clustering with Node Localization (IM-EECNL) approach for real-time wireless
networks. The proposed IM-EECNL technique involves two major processes
namely node localization and clustering. Firstly, Chaotic Water Strider Algorithm
based Node Localization (CWSANL) technique to determine the unknown posi-
tion of the nodes. Secondly, an Oppositional Archimedes Optimization Algorithm
based Clustering (OAOAC) technique is applied to accomplish energy efficiency
in the network. Besides, the OAOAC technique derives a fitness function com-
prising residual energy, distance to cluster heads (CHs), distance to base station
(BS), and load. The performance validation of the IM-EECNL technique is car-
ried out under several aspects such as localization and energy efficiency. A wide
ranging comparative outcomes analysis highlighted the improved performance of
the IM-EECNL approach on the recent approaches with the maximum packet
delivery ratio (PDR) of 0.985.

Keywords: Wireless networks; real time applications; clustering; node
localization; energy efficiency; metaheuristics

1 Introduction

Since wireless node is powered generally by batteries and is anticipated to continue in operation for
longer time period, how to save energy for extending network lifetime and node lifetime is a significant
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challenge in almost all wireless networks [1]. One-way of conserving energy is to function this node at low-
powered as far as feasible. But this would considerably decrease their functionality [2]. Once “quality” is
measured based on the latency, the tradeoff is in-between time and energy [3]. An example arises in
wireless communication, in which transmitter trades off transmission speed to energy, and in real-world
computing, in which processor trades-off processing rate to energy [4]. Once the energy of wireless nodes
is mostly expended by the transmission task, scheduling an RF transmission effectively becomes very
significant in preserving the energy of nodes. It can be familiar that there is an explicit connection among
channel capacity and broadcast power [5]; broadcast power could be adapted by altering the rate of
transmission, only if suitable coding systems are employed. This offers a choice to preserve the broadcast
energy of wireless nodes with slowing down the rate of transmission. E.g., extreme delay might create
buffer overflow that augments the packet dropping rate. The presence of these trade-offs among latency
and energy stimulates Dynamic Transmission Control technology to design energy-effective wireless
systems [6]. Fig. 1 illustrates the overview of node localization.

Energized sensors in hostile environments need to survive for longer period of time, however, it is
almost impossible or ambiguous to change or boost their battery [7], and this necessitates discovering
novel energy-effective alternates to any advanced wireless network challenges that contian self-
organization, intermediate access control, security, routing, and bandwidth distributions [8]. Certain
factors to consider in extending network lifetime are using the gain of trade-offs like accuracy, power,
and latency, combined with hierarchical (tiered) frameworks. The location of a localized unknown node
was significant since it assists in solving big WSN challenges such as data aggregation and routing. For
these reasons, it can be essential to focus on localization method in WSN work [9]. Clustering has a
preferred methodology to attain competent and available overall performances in WSN [10]. The
clustering node minimizes disputes and preserves power at the network because the node transmits its
data to cluster head (CH) via decreased distances.

This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node
Localization (IM-EECNL) approach for real-time wireless networks. Firstly, Chaotic Water Strider
Algorithm based Node Localization (CWSANL) technique to determine the unknown position of the
nodes. Secondly, an Oppositional Archimedes Optimization Algorithm based Clustering (OAOAC)
technique is applied to accomplish energy efficiency in the network. Besides, the OAOAC technique
derives a fitness function (FF) comprising residual energy, distance to cluster heads (CHs), distance to

Figure 1: Overview of clustered wireless networks
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base station (BS), and load. The performance validation of the IM-EECNL technique is carried out under
several aspects such as localization and energy efficiency.

The rest of the paper is arranged as follows. Section 2 offers the literature survey, Section 3 elaborates
the proposed model, Section 4 investigates the results, and Section 5 concludes the paper.

2 Related Works

Ahmad et al. [11] projected a novel wireless localization method based on social network analysis
(SNA), in order to explore the dissimilar properties of the network as graph. The node with maximum
amount of CC is selected as a CH, then all the CHs could form its trilateration method for collecting
information from its cluster. Khriji et al. [12], presented a localization-based RSSI technique to describe
the node location. Next, a fuzzy-based unequal clustering method has been designed for balancing the
power utilization amongst each sensor node. An actual application of energy aware routing method was
performed on wireless sensors PanStamp NRG 2.0. In Sackey et al. [13], the standard GA method would
be expanded by a clustering method that contributes to the increase in localization accuracy. The amount
of clusters made in the network assist to enhance the performance. The election of the primary cluster
centre is performed for reducing the intensity of distant points.

Tamtalini et al. [14] introduce a new method for localization in WSN. To forecast unknown node
position, they choose top-3 anchor node with hybrid techniques such as CSO-ANFIS method. For
making decision, fusion centre is utilized that discards the reported locational data when the distance
among anchor and unknown nodes is beyond a threshold. To decrease the power utilization, they
presented a secure cluster-based routing for data forwarding by validating all the nodes to sink nodes.
Tamtalini et al. [15] suggest a new packet routing algorithm and grid based joint localization in WSN
based beacon node for enhancing the accuracy from place prediction. Initially, system framework of Grid
based WSN node localization has been created. Next, localization method of WSN is presented by
utilizing Hybrid Algorithm named Type-2 Fuzzy Logic Filter and Particle Swarm Optimization. Then,
form dynamic clusters with node energy. Next, accomplish packet routing with Enriched Ant Colony
Optimization Algorithm (E-ACO).

Yu et al. [16] present a hybrid localization system to deep mine monitoring throughWSN. The method is
developed for optimum efficiency and accuracy. clustering based wheel graph theory is presented to decrease
the difficulty of succeeding CSO and normalize the subnetwork quantity. Chen et al. [17] proposed energy-
effective clustering and localization cantered on genetic algorithm (ECGAL), where the coverage
connection, RE, and distance estimation are designed for procedure the FF. The presented method
exhausts a smaller number of energy and expands the existence of wireless networks.

3 The Proposed IM-EECNL Technique

In this study, a novel IM-EECNL technique has been derived to accomplish effective energy efficiency
and node localization performance. The proposed IM-EECNL technique involves two major processes
namely CWSANL based node localization and OAOAC based clustering. Fig. 2 shows the brief
workflow involved in the IM-EECNL technique and the detailed working of every stage is elaborated in
the following sections.
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3.1 Stage 1: Process Involved in CWSANL Technique

During the node localization process, the CWSANL approach is derived for determining the exact
position of the sensors. In recent times, Kaveh et al. [18] presented a novel way of this metaheuristics,
named the WSA to provide well-improved outcomes. This method resolves complex optimization
problems dependent upon simulating territorial behavior of Water Strider bugs. The initial phase in WSA
is the Birth phase. It can be arithmetically expressed by:

Xið0Þ ¼ Lbþ r � ðUb� LbÞ (1)

i ¼ 1; 2; . . . ; n

whereas r denotes an arbitrarily generated values among zero and one, n determines the quantity of
individuals, Xi(0) indicates the primary location of ith individual, and Ub & Lb describes the up as well
as down ranges, correspondingly. Then, the novel generation has been evaluated by estimating its
objective value that defines the food accessibility for an individual. The next step is for simulating the
model of founding territories. Next, the mating initiates. According to this beginning, a huge part of
keystone utilizes subsequent searching the females and mating. It can be performed by transmitting
certain signals in the keystone to female water strider. In this phase, 2 decisions could be found: when a
female was fascinated by the signals, it would be react as transmitting a signal and mating would be
initiated. or else, mating would be cancelled while keystone tries to forced mating, it isn’t going to
happen because of the female strong shield on its body. It can be arithmetically expressed by:

Xiðt þ 1Þ ¼ XiðtÞ þ R� r; if mating happens
Xiðt þ 1Þ ¼ XiðtÞ þ R� ð1þ rÞ; Otherwise

�
(2)

Figure 2: Overall process of IM-EECNL model
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whereas, Xi(t) represent the ith water strider position, R characterizes the distance among the keystone
position (Xi(t)) and the female territory (XF(t)) the endpoint is attained by:

R ¼ XFðtÞ � XiðtÞ (3)

Later, the foraging phase initiates. It can be arithmetically expressed by:

X tþ1
i ¼ XiðtÞ þ 2� rand � ðXBLðtÞ � XiðtÞÞ (4)

Lastly, in the final phase (called death and succession), for keeping the solution from the determined
boundary, when it can be outlandish water strider under the novel territory [19], the keystone provide a
violent behavior to novel member to bring/kill him out. The arithmetical method can be expressed in the
following equation:

X tþ1
i ¼ LbjðtÞ þ r � ðUbjðtÞ � LbjðtÞÞ (5)

In which, Ubj(t) and Lbj(t) denotes the maximal as well as minimal values of position of the water strider
place from jth territory. Lastly, the process finishes while the end state has been achieved.

The CWSANL technique uses chaotic parameters with changeable nature rather than arbitrary
parameters. It could be found in dynamic and non-convergent and non-linear methods are bounded, and
non-periodic processes. It gives a higher convergence rate and simple searching when compared to
arbitrary searching. This method assists the method to offer good exploration in the solution space i.e.,
due to thier dynamic nature of turbulence sequence. Different types of chaotic maps are applied in
optimization methods which depend on different sequences, and primary conditions [20]. The current
research exploits the sinusoidal chaotic map for improving the premature convergence and convergence
speed of the AOA for considering the trade-offs among exploration and exploitation phases to provide
better outcomes in the solution space therefore it doesn’t get trapped on the local optimum. For
modifying the AOA with a chaos map, the chaos value is replaced by an arbitrary value,

riþ1 ¼ P:r2i sinðp:riÞ (6)

whereas, P represent the control variables, ri & ri+1 represents the chaotic arbitrary number generated in
the former and the current iteration, correspondingly. Now r0 = 0.7 and P = 2.3.

The CWSANL localization manner has been typically employed to evaluate the coordinate point of
sensors from WSN. The purpose is for defining the coordinate point of target nodes with minimized main
function. The developments contained from the CWSANL approach has been offered from the subsequent:

i) Initialize of N unidentified node and M anchor node arbitrarily from the sensing area with
communication radius R. Each anchor node is determined to locate as well as send the
coordinate point to neighboring nodes. In each iteration, the node that resolves down at the
end has been recognized as location nodes and their role as anchor nodes from the successive
iteration.

ii) The set of 3 or higher to 3 anchor nodes take place from the communication radius of node has
been determined as localization nodes.

iii) The distance among the target as well as anchor nodes have been resolved and attains different
utilizing additive Gaussian noises. The target nodes compute the distance with d̂i ¼ di þ ni in
which di implies the actual distance that has resolved among the place of target nodes ðx; yÞ
and location of beacon (xi, yi) employing in Eq. (7):
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iv)
di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2

q
(7)

v) where ni stands for the noise affects the determined distance in di � di
Pn
100

� �
where Pn signifies the

ratio of noise from projected distance.
vi) The target nodes have been named as localizable node when it comprises 3 anchor nodes in

communication range of target nodes. Due to utilized trigonometric law of sine or cosine, the
coordinate point of target nodes has been evaluated.

vii) The CWSANL manner has been working for resolving the coordinate points ðx; yÞ of target
nodes that minimize the localized error. The primitive applied from localizing issue has
average square distance among the target as well as anchor nodes that are minimized
employed in Eq. (8):

viii)
f ðx; yÞ ¼ 1

N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2

q
� d̂

 !2

(8)

ix) where N ≥ 3 indicates the anchor node count that communication range.
x) A better measure ðx; yÞ has been estimated by employing of SSA-DE approach last iteration.
xi) The whole localized error has been evaluated next for estimating of localizable target node NL. It

could be validated measured as average square of distance in resolved node coordinate point
ðXi; YiÞ while the novel node coordinate point ðxi; yiÞ are defined as:

xii)
EL ¼ 1

N1

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � XiÞ2 þ ðyi � YiÞ2

q
(9)

xiii) Steps 2–5 progress iterated until the position of target node has been recognized. The localization
technique depends on maximal localization errors E1 and unlocalized node counts NNL which is
evaluated by the employ of NNL ¼ M � NL. The minimal score of E1 and NNL results from
proficient localization performance.

3.2 Stage 2: Process Involved in OAOAC Technique

Once the nodes are localized, the next stage lies in the selection of CHs and constructing clusters using
the OAOAC technique. As with other meta heuristic methods, the AOA initiates by a certain data of an
arbitrary population of objects as a candidate (immersed object). In this phase, the object has been
initiated by its arbitrary position. The primary location of all the objects is accomplished by:

xðiÞ ¼ xlðiÞ þ rand � ðxuðiÞ � xlðiÞÞi ¼ 1; 2; . . . ; N (10)

In which, x(i) represent the ith object from the population with N object, and xl(i) & xu(i) denotes the
lower as well as upper limits of solution space. Besides the location, the AOA initiates acceleration (A),
volume (V), and density (D) for i object,

V ðiÞ ¼ rand (11)

DðiÞ ¼ rand (12)

AðiÞ ¼ xlðiÞ þ rand � ðxuðiÞ � xlðiÞÞ (13)

Afterward initialization, the cost value of candidate was estimated and kept as Abest, Vbest, and Dbest

based early population. Next, the candidate has been upgraded by the model parameter. The upgrading of
the object acceleration is depending on their collision conditions with another neighboring object.
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The recently upgraded location of an object can be defined by acceleration, volume, and density. The
mathematical expression has been described in the following. In order to update the algorithm, the
density, and volume of ith object for t + 1 iteration number was upgraded as:

V tþ1ðiÞ ¼ V tðiÞ þ rand � ðVbest � V tðiÞÞ (14)

Dtþ1ðiÞ ¼ DtðiÞ þ rand � ðDbest � DtðiÞÞ (15)

In the equation, ybest and Dbest represents the volume and density related to optimal object attained until
now, also rand defines an arbitrary number i.e., uniformly distributed.

TF ¼ exp
t � tmax

tmax

� �
(16)

In which, TF gradually step up in a period till attaining 1, t and tmax represents the iteration value and the
maximal iteration count, correspondingly. Similarly, reducing factors of density (d) assist the model to offer
global to local search. It can be expressed by:

Dtþ1 ¼ exp
tmax � t

tmax

� �
� t

tmax

� 	
(17)

Let, Dt+1 decreases with time that offers the capacity to converge. This term provides an appropriate
tradeoff among exploitation and exploration phases. The exploration phase is inspired according to the
collision between the objects [21]. It would take place when TF ≤ 0.5. In such cases, a random material
(mr) is chosen for updating the acceleration of an object for t + 1 iteration:

Atþ1 ¼ Dmr þ Vmr � Amr

Dtþ1ðiÞ � V tþ1ðiÞ (18)

While AðiÞ; V ðiÞ and D(i), represents, acceleration, volume, and density of an ith object,
correspondingly. Where AðiÞ; Dmr; and ymr, represents the acceleration, density, and volume of mr.
Founding a value distinct from 0.5 would alter exploitation and exploration behaviors. The Exploitation
phase is inspired by considering no collision among the objects. It would take place when TF > 0.5. In
such cases, updating the object is determined as:

Atþ1ðiÞ ¼ Dbest þ Vbest � Abest

Dtþ1ðiÞ � V tþ1ðiÞ (19)

Let, Abest be the optimal object acceleration. The following step is to standardize the acceleration for
estimating the altering percentage by:

Atþ1ð�iÞ ¼ u� Atþ1ðiÞ �minðAÞ
maxðAÞ �minðAÞ þ l (20)

whereas, At+1(i) defines the percentage of step that all the agents would alter, l & u represents the
standardization limit i.e., fixed to 0.9 and 0.1, correspondingly. In the following step, when TF ≤ 0.5, the
location of an i object for the following iteration is accomplished:

xtþ1ðiÞ ¼ xtðiÞ þ c1 � rand � Atþ1ð�iÞ � D� ðxrand � xtðiÞÞ (21)

In the equation, C1 indicates a constant equivalent to 2. Otherwise, when TF > 0.5, the location for an
object was upgraded by:
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xtþ1ðiÞ ¼ xbest
t þ F � c2 � rand � Atþ1ð�iÞ � D� ðT � xbest � xtðiÞÞ (22)

In which, c2 defines a constant value. T rises with time in the interval [c3 × 0.3, 1] and take a percentage
from an optimal location. This percentage gradually increases to reduce the differences among the present
and optimal locations to offer an improved balance among exploitation and exploration. F describes the
flag to change the direction of movement:

F ¼ þ1; if P � 0:5
þ1; if P. 0:5

�
(23)

In which,

P ¼ 2� rand � c4 (24)

Eventually, the values of every object are estimated by the cost function and return the optimal solution
when the end criteria condition is met.

The initial modification is to utilize opposition-based learning (OBL). Such modifications are employed
for improving the variety of the early population. The OBL model is a common methodology to improve the
efficacy of metaheuristics [22]. In optimization, the algorithm initiates by producing an arbitrarily distributed
population. In this method, it is expected to be moving from the way of proper solution. Hence, when the
arbitrarily created early population has a result closer to the optimum solution, the accurate solution
would be accomplished. Optimization initiates by an arbitrary value farther in the optimum solution, or
possibly in the opposite position of solution that increases the time to optimized. The OBL method
provides an opposite position to the solution from early population:

XOBL
i ð0Þ ¼ Xið0Þmax þ Xið0Þmin � Xið0Þ (25)

In the equation, XOBL
i represent the opposite setting of Xi, and Xi(0)

min and Xi(0)
max signifies the lower

and the higher limits, correspondingly. The novel location gives highly efficient way to achieve the optimal
solution. XOBL

i ð0Þ is estimated by the cost function and consequently, when XOBL
i ð0Þ is in the best location

then Xi(0), it would be substate.

Generally, there are 4 objective functions that include important factors needed for energy-efficient
clustering such as identifying current energy ratio, preserving the energy by constraining overall number
of CHs, mitigation of intracluster distance, balancing the load amongst CHs, reducing the distances
between BS and CH, as well as enhanced intercluster distance from CH.

The recently proposed OAOAC method generates an optimum solution by obtaining a network load, FF
with energy, distance to neighbor, and distance to BS. Thus, FF is defined in the recently deployed method as:

FF ¼ minimumðmly1 þ m2y2 þ m3y3 þ m4y4Þ (26)

In which m1, m2, m3, and m4 indicates the weight constants defined by user, and FF implies the FF. In
addition, y1, y2, y3, and y4, means the objective function.

The proposed method is employed for identifying the best solution-based FF. Now, result is attained
using an agent. Therefore, the enhanced results for the abovementioned FF are made up of minimum
number of clusters using maximal link < quality and vigorously determined CH with maximum residual
energy (RE). The primary operation is regarded for preserving energy, and energy ratio is described in the
following. When there are R clusters, M nodes, then the existing CH energy and ratio of nodes energy are
represented in the following equation.
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y1 ¼
PM

p¼1 EnergyðnodepÞPR
q¼1 EnergyðclusterheadpÞ

(27)

The following function defines the distance to neighbor, i.e., described as a Euclidean distance amongst
the SNs.

y2 ¼
XR
q¼1

P
8nodej 2 clusterq

euclidean�distanceðnodej; cluster�headqÞ
minimum8nodej 2 clusterrqeuclidean�distanceðnodej; cluster�headqÞ

(28)

The 3rd function decreases the distances among BS and CH. In this method, the region is regarded as
A × A; the total clusters are R as follows

y3 ¼
1

R

XR

q¼1
euclidean�distanceðcluster�headq; base� stationÞ

A

2

(29)

The final function is employed to handle the load from CH. Eq. (30) limits the higher load amongst CHs.
|CNq| indicates the overall number of nodes in cluster q. Subsequently, the region is represented as A × A;
overall clusters are R.

y4 ¼ MAXIMUMðjCNqjÞ
1

R

XR

q¼l
ðjCNqjÞ

(30)

4 Experimental Validation

The performance validation of the IM-EECNL technique with existing ones takes place interms of
different measures. In addition, the localization and energy efficient performance of the IM-EECNL
technique is performed under varying anchor nodes [23,24].

Tab. 1 and Fig. 3 demonstrate the NLN analysis of the IM-EECNL technique with other ones under
distinct anchors. The results pointed out that the IM-EECNL technique has gained proficient results with
the maximum NLN.

For instance, with 10 anchors, the IM-EECNL technique has offered an increased NLN of 132 nodes
whereas the GTOA, KHA-NL, PSO-NL, CSO-NL, and GWO-NL techniques have resulted to lower NLN

Table 1: Comparative NLN analysis of IM-EECNL with recent approaches

No. of anchors IM-EECNL GTOA KHA-NL PSO -NL CSO-NL GWO-NL

10 132 128 117 97 111 102

20 144 140 128 101 118 113

30 169 165 140 113 133 115

40 173 169 152 116 142 128

50 192 187 170 126 154 138

CSSE, 2023, vol.44, no.1 9



of 128, 117, 97, 111, and 102 nodes respectively. In addition, with 50 anchors, the IM-EECNL manner has
offered an increased NLN of 192 nodes whereas the GTOA, KHA-NL, PSO-NL, CSO-NL, and GWO-NL
methods have resulted to lesser NLN of 187, 170, 126, 154, and 138 nodes correspondingly.

Next, a detailed LE results analysis of the IM-EECNL technique with recent methods are performed in
Fig. 4. The outcomes reported the supremacy of the IM-EECNL technique with the least LE. For instance,
with 10 anchors, the IM-EECNL technique has gained a reduced LE of 0.36 while the GTOA, KHA-NL,
PSO-NL, CSO-NL, and GWO-NL systems have accomplished to higher LE of 0.44, 0.72, 0.54, 0.70, and
0.63 respectively. Followed by, with 50 anchors, the IM-EECNL approach has reached a lower LE of
0.16 but the GTOA, KHA-NL, PSO-NL, CSO-NL, and GWO-NL methods have accomplished to
superior LE of 0.30, 0.50, 0.39, 0.57, and 0.50 correspondingly.

Figure 3: NLN analysis of IM-EECNL model under varying anchors

Figure 4: Localization error analysis of IM-EECNL model
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Tab. 2 and Fig. 5 showcases the LR analysis of the IM-EECNL manner with other ones under distinct
anchors. The results pointed out that the IM-EECNL system has gained proficient results with the maximal
LR. For instance, with 10 anchors, the IM-EECNL approach has offered a higher LR of 0.660 nodes whereas
the GTOA, KHA-NL, PSO-NL, CSO-NL, and GWO-NL methodologies have resulted in minimal LR of
0.640, 0.585, 0.485, 0.555, and 0.510 nodes correspondingly. Furthermore, with 50 anchors, the
IM-EECNL system has obtainable a superior LR of 0.960 nodes whereas the GTOA, KHA-NL, PSO-NL,
CSO-NL, and GWO-NL methodologies have resulted to lower LR of 0.935, 0.850, 0.630, 0.770, and
0.690 nodes correspondingly.

Afterward, a comparative PDR analysis of the IM-EECNL with recent techniques takes place in Tab. 3
and Fig. 6. The outcomes exhbited that the IM-EECNL technique has accomplished maximal PDR under
different rounds. For instance, with 1000 rounds, the IM-EECNL technique has obtianed an increased
PDR of 1.000 J but the GWO-CA, IABC-CA, FUCHAR, and BWO-IACO techniques have reached
decreased PDR of 0.966, 0.973, 0.981, and 1.000 J respectively. Besides, with 7000 rounds, the
IM-EECNL manner has gained an enhanced PDR of 0.489 J while the GWO-CA, IABC-CA, FUCHAR,
and BWO-IACO techniques have reached reduced PDR of 0.262, 0.387, 0.422, and 0.435 J correspondingly.

Table 2: Localization rate vs. number of anchors

No. of anchors IM-EECNL GTOA KHA-NL PSO-NL CSO-NL GWO-NL

10 0.660 0.640 0.585 0.485 0.555 0.510

20 0.720 0.700 0.640 0.505 0.590 0.565

30 0.845 0.825 0.700 0.565 0.665 0.575

40 0.865 0.845 0.760 0.580 0.710 0.640

50 0.960 0.935 0.850 0.630 0.770 0.690

Figure 5: Localization rate analysis of IM-EECNL model
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An extensive ADE analysis of the IM-EECNL technique with other techniques takes place under
different nodes in Tab. 4 and Fig. 7. The experimental values pointed out that the IM-EECNL technique
has gained effective outcomes with the least ADE under distinct nodes. For instance, with 100 rounds,
the IM-EECNL technique has gained lower ADE of 80 ms whereas the GWO-CA, IABC-CA, FUCHAR,
and BWO-IACO techniques have accomplished increased ADE of 123, 106, 93, and 86 ms respectively.
In addition, with 1000 rounds, the IM-EECNL methodology has gained lower ADE of 134 ms whereas
the GWO-CA, IABC-CA, FUCHAR, and BWO-IACO methods have accomplished improved ADE of
211, 195, 161, and 154 ms correspondingly.

Table 3: Comparative average residual energy analysis of IM-EECNL algorithm

No. of rounds Average residual energy (J)

GWO-CA IABC-CA FUCHAR BWO-IACO IM-EECNL

0 1.000 1.000 1.000 1.000 1.000

1000 0.966 0.973 0.981 1.000 1.000

2000 0.894 0.924 0.952 0.992 0.995

3000 0.781 0.848 0.853 0.874 0.890

4000 0.724 0.784 0.805 0.827 0.853

5000 0.437 0.527 0.587 0.763 0.811

6000 0.317 0.413 0.492 0.657 0.756

7000 0.262 0.387 0.422 0.435 0.489

8000 0.000 0.295 0.352 0.328 0.375

9000 0.000 0.000 0.000 0.210 0.256

10000 0.000 0.000 0.000 0.000 0.000

Figure 6: Average residual energy analysis of IM-EECNL algorithm

12 CSSE, 2023, vol.44, no.1



An extensive PLR analysis of the IM-EECNL approach with other techniques takes place under varying
nodes in Tab. 5 and Fig. 8. The experimental values pointed out that the IM-EECNL system has achieved
effective outcomes with the least PLR under distinct nodes. For instance, with 100 rounds, the IM-
EECNL technique has reached minimal PLR of 0.015 whereas the GWO-CA, IABC-CA, FUCHAR, and
BWO-IACO approaches have accomplished increased PLR of 0.156, 0.140, 0.110, and
0.040 respectively. Moreover, with 1000 rounds, the IM-EECNL algorithm has gained lower PLR of
0.116 whereas the GWO-CA, IABC-CA, FUCHAR, and BWO-IACO techniques have accomplished
increased PLR of 0.360, 0.320, 0.230, and 0.160 correspondingly.

Table 4: Comparative average end to end delay analysis of IM-EECNL algorithm

No. of nodes Average delay (ms)

GWO-CA IABC-CA FUCHAR BWO-IACO IM-EECNL

100 123 106 93 86 80

200 133 121 106 96 91

300 141 136 121 106 102

400 151 143 126 114 107

500 156 151 136 128 109

600 171 159 141 133 112

700 176 171 146 135 118

800 193 181 151 141 125

900 201 190 156 148 130

1000 211 195 161 154 134

Figure 7: Average delay analysis of IM-EECNL algorithm

CSSE, 2023, vol.44, no.1 13



Finally, a comparative PDR analysis of the IM-EECNL with recent approaches takes place in Tab. 6 and
Fig. 9. The outcomes depicted that the IM-EECNL technique has accomplished maximum PDR under
distinct nodes.

For instance, with 100 rounds, the IM-EECNL approach has reached a superior PDR of 0.985 but the
GWO-CA, IABC-CA, FUCHAR, and BWO-IACO techniques have reached reduced PDR of 0.844, 0.860,
0.890, and 0.960 respectively. Moreover, with 1000 nodes, the IM-EECNL system has obtained an enhanced
PDR of 0.884 while the GWO-CA, IABC-CA, FUCHAR, and BWO-IACO techniques have reached
reduced PDR of 0.640, 0.680, 0.770, and 0.840 respectively. By looking into the above mentioned tables
and figures, it is evident that the proposed model is an effective tool for improving the performance of
the wireless networks.

Table 5: Comparative packet loss rate analysis of IM-EECNL algorithm

No. of nodes Packet loss rate

GWO-CA IABC-CA FUCHAR BWO-IACO IM-EECNL

100 0.156 0.140 0.110 0.040 0.015

200 0.170 0.150 0.140 0.045 0.017

300 0.180 0.160 0.150 0.054 0.022

400 0.210 0.210 0.160 0.066 0.049

500 0.230 0.220 0.170 0.075 0.055

600 0.270 0.240 0.180 0.085 0.061

700 0.280 0.260 0.190 0.096 0.074

800 0.310 0.280 0.200 0.115 0.097

900 0.330 0.300 0.210 0.135 0.110

1000 0.360 0.320 0.230 0.160 0.116

Figure 8: Packet loss rate analysis of IM-EECNL algorithm
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5 Conclusion

This study has been presented an IM-EECNL approach for real-time wireless networks. Firstly,
CWSANL technique for determining the unknown place of nodes. Secondly, an OAOAC technique is
applied to accomplish energy efficiency in the network. Besides, the OAOAC approach develops an FF
comprising RE, distance to CHs, distance to BS, and load. Moreover, the design of CWSANL and
OAOAC technique helps to optimally improve the overall network performance. The performance
validation of the IM-EECNL technique is carried out under several aspects such as localization and
energy efficiency. A wide-ranging comparative outcomes analysis highlighted the improved performance
of the IM-EECNL approach on the recent approaches. Therefore, the IM-EECNL technique can be
extended to the design of time synchronization techniques and sleep scheduling mechanisms. In future,
data aggregation schemes can be designed to boost energy efficiency.

Table 6: Comparative PDR analysis of IM-EECNL algorithm

No. of nodes Packet delivery ratio

GWO-CA IABC-CA FUCHAR BWO-IACO IM-EECNL

100 0.844 0.860 0.890 0.960 0.985

200 0.830 0.850 0.860 0.955 0.983

300 0.820 0.840 0.850 0.946 0.978

400 0.790 0.790 0.840 0.934 0.951

500 0.770 0.780 0.830 0.925 0.945

600 0.730 0.760 0.820 0.915 0.939

700 0.720 0.740 0.810 0.904 0.926

800 0.690 0.720 0.800 0.885 0.903

900 0.670 0.700 0.790 0.865 0.890

1000 0.640 0.680 0.770 0.840 0.884

Figure 9: PDR analysis of IM-EECNL algorithm
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