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Abstract: Many traffic accidents occur in parking lots. One of the serious safety
risks is vehicle-pedestrian conflict. Moreover, with the increasing development of
automatic driving and parking technology, parking safety has received significant
attention from vehicle safety analysts. However, pedestrian protection in parking
lots still faces many challenges. For example, the physical structure of a parking
lot may be complex, and dead corners would occur when the vehicle density is
high. These lead to pedestrians’ sudden appearance in the vehicle’s path from
an unexpected position, resulting in collision accidents in the parking lot. We
advocate that besides vehicular sensing data, high-precision digital map of the
parking lot, pedestrians’ smart device’s sensing data, and attribute information
of pedestrians can be used to detect the position of pedestrians in the parking
lot. However, this subject has not been studied and explored in existing studies.
To fill this void, this paper proposes a pedestrian tracking framework integrating
multiple information sources to provide pedestrian position and status information
for vehicles and protect pedestrians in parking spaces. We also evaluate the pro-
posed method through real-world experiments. The experimental results show
that the proposed framework has its advantage in pedestrian attribute information
extraction and positioning accuracy. It can also be used for pedestrian tracking in
parking spaces.

Keywords: Pedestrian positioning; object tracking; LiDAR; attribute information;
sensor fusion; trajectory prediction; Kalman filter

1 Introduction

It is difficult to regulate the behavior of vehicles and pedestrians in parking lots because there is not
enough traffic guidance information, such as signals and signs on the road. For example, a car suddenly
coming out of a parking space; a car driving in front of a pedestrian and then reversing into a garage; or
a pedestrian suddenly appearing in front of a car. There are potential hazards everywhere that threaten
pedestrian safety. With the development of advanced driver assistance systems and automated parking
systems, the issue of pedestrian safety in parking vehicles has also attracted the attention of academics
and engineers. To detect hazards as soon as possible, it is necessary to pay attention to the people around
and perform adequate safety confirmation. Especially for pedestrians, even if the vehicle moves slowly,
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there is a risk of vehicle-person collision injuries and sometimes even fatal accidents. As representatives of
vulnerable road users, older people and children need special protection. Older people have a narrower vision
and weaker hearing; therefore, they often do not notice oncoming cars. Additionally, if they pay attention to
the vehicle in front of them, their attention to other cars becomes negligent because it is not easy to divide
their attention as they age. A study published in the Journal of Safety Research [1] found that a large
percentage of young children were left unsupervised in parking lots or out of reach of their adult
guardians. If a child crash into a slow-moving car in a parking lot, he or she will not be bounced up;
instead, the child may fall in front of the car. If the driver continues driving, the child’s body will be
bearing more than a ton of weight of the car, generating the risk of a fatal accident. The sensing dead
zone created by adjacent vehicles with a tall profile is a major factor that causes accidents in parking lots.
In this case, even if the vehicle is equipped with a driver assistance system, it is not easy for the sensors
to detect pedestrians nearby. Additionally, drivers and pedestrians tend to let their guard down due to the
relatively low speed of vehicles in parking lots. Moreover, when parking lots are congested, the
pedestrian walking route becomes more unpredictable. These factors combine to make parking lot
pedestrian safety assurance difficult.

As one of the most important functions of the autonomous driving system, pedestrian detection systems
have become a hot topic of research and development in recent years. It is typically integrated into collision
avoidance systems using radar cameras and sensors to detect pedestrians and slow down and brake in time to
reduce accident injuries. Major car manufacturers have introduced advanced pedestrian detection systems to
identify pedestrians on the road and perform dynamic analysis to predict whether they will suddenly break
into the driving route. In addition to traditional automotive manufacturers, Internet companies are developing
pedestrian detection systems to enable smart mobility. For example, Google’s latest pedestrian detection
system relies on camera images to capture pedestrians’ movement and optimize the efficiency of
pedestrian detection. Other computer programs, such as vehicle-assisted driving systems, intelligent video
surveillance, robotic navigation, drone monitoring, and pedestrian tracking, are also beginning to be
applied to pedestrian protection. However, most of these existing methods are based on detecting sensors,
such as camera, LiDAR, and RADAR, which are powerless when dealing with complex conditions and
observing dead zone in parking lots. Therefore, we advocate that in addition to information from sensors,
such as LiDAR and cameras, multiple sources of information, such as high-precision maps, pedestrian
device sensors, and pedestrian attribute information, can be used to detect pedestrian location in parking
lots. However, this subject has not been studied and explored yet. To fill this gap, we propose a
pedestrian tracking method that integrates multiple information sources to provide pedestrian location and
status information for vehicles to protect pedestrians in parking spaces. The contributions of this paper
are summarized as follows:

e A framework for persistent pedestrian tracking in parking space. We proposed in this paper a
framework that can be used to estimate the pedestrian position under occlusion and pedestrian
attribute information extraction.

e Implementation of the proposed pedestrian tracking framework. We develop a pedestrian tracking
system for pedestrian tracking in parking space using C++.

e An evaluation of the proposed system. To evaluate the proposed framework and system, we carry out
real-world experiments in the parking space of a municipal service center. The experimental results
indicate that compared with sensor fusion based method, the proposed framework has its
advantage in pedestrian attribute information extraction and positioning accuracy.

The remainder of this paper is organized as follows. Section II introduces the work related to pedestrian
detection and tracking. Section III introduces the structure, target, and function of the proposed framework
for pedestrian detection and tracking. Section IV describes the implementation of the proposed method. In
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Section V, we conduct an experiment to evaluate the proposed method. Section VI discusses the
effectiveness, novelty, and limitations of the proposed framework. Finally, Section VII presents the
conclusion and future work.

2 Related Work

There are many published pedestrian protection theories and methods. As a pioneering work, Gandhi
and Trivedi conducted a systematic literature review of research on the enhancement of pedestrian safety
to develop a better understanding of the nature, issues, approaches, and challenges surrounding the
problem [2]. Some authors conducted a comprehensive survey of recent advances in tracking-by-
detection-based (TBD-based) multiple pedestrian tracking algorithms [3].

The most popular pedestrian detection and tracking solutions are object tracking methods based on
passive sensors, such as surveillance cameras, LiDAR, and RADAR. Dai et al. proposed an improved
labeled multi-Bernoulli (LMB) filter with inter-target occlusion handling ability for multi-extended target
tracking using laser range finder [4]. Chavez—Garcia et al. improved the perceived model of the
environment by including the object classification from multiple sensor detections as a key component of
the object’s representation and the perception process [5]. Zhao et al. proposed a system for dynamic
object tracking in three-dimensional (3D) spaces to recover tracking after the target is lost [6]. The
system combines a 3D position tracking algorithm based on a monocular camera and LiDAR for
the dynamic object and a re-tracking mechanism that restores tracking when the target reappears in the
camera’s FOVs. Wang et al. investigated the pedestrian recognition and tracking problem for autonomous
vehicles using a 3D LiDAR. They used a classifier trained by a support vector machine (SVM) to
recognize pedestrians and improved the recognition performance using tracking results [7]. Zhao et al.
explored fundamental concepts, solution algorithms, and application guidance associated with using
infrastructure-based LiDAR sensors to accurately detect and track pedestrians and vehicles at
intersections [8]. Cui et al. proposed a two-stage network flow model for multiple pedestrian tracking [9].
A tracking-by-detection framework is used in the local stage to generate confident tracklets with boosted
particle filter. Meanwhile, the data association is formulated as a maximum-a-posteriori (Map) problem in
the global stage and solved using a typical min-cost flow algorithm. Wu et al. proposed a method for
pedestrian-vehicle near-crash identification that uses a roadside LiDAR sensor [10]. The proposed system
extracts the trajectory of road users from roadside LiDAR data through several data processing
algorithms: background filtering, lane identification, object clustering, object classification, and object
tracking. Pedestrians’ and vehicles’ features are extracted from video data using detection and tracking
techniques in computer vision. Zhang et al. proposed a long short-term memory neural network to predict
the pedestrian-vehicle conflicts 2s ahead [11]. Farag introduced a real-time road-object detection and
tracking (LR_ODT) method for autonomous driving based on the fusion of LIDAR and RADAR data
[12]. Xu et al. developed a seamless indoor pedestrian tracking scheme using least square-SVM (LS-
SVM) assisted unbiased finite impulse response filter to achieve seamless reliable human position
monitoring in indoor environments [13]. Wang et al. proposed a multi-sensor framework to fuse camera
and LiDAR data to detect objects on a railway track, including small obstacles and forward trains [14].
Stadler et al. proposed an occlusion handling strategy that explicitly models the relation between
occluding and occluded tracks to achieve reliable pedestrian re-identification when occlusion occurs [15].
Wong et al. presented a methodology for pedestrian tracking and attribute recognition. The method
employs high-level pedestrian attributes, a similarity measure integrating multiple cues, and a probation
mechanism for robust identity matching [16]. Chowdhury et al. designed a multi-target tracking algorithm
for dense point clouds based on probabilistic occlusion reasoning [17].
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In addition to these passive tracking methods, there are pedestrian tracking methods based on active
devices, such as smartphones and inertial measurement unit (IMU) sensors carried by road users. Park
et al. designed a stand-alone pedestrian tracking system for indoor corridor environments using
smartphone sensors, such as a magnetometer and accelerometer [18]. Kang et al. presented a smartphone-
based pedestrian dead reckoning system to track pedestrians through a dead reckoning approach using
data from inertial sensors embedded in smartphones [19]. Tian et al. proposed an approach for pedestrian
tracking using dead reckoning enhanced with a mode detection using a standard smartphone [20]. Jiang
et al. presented an approach to resolve the problem of tracking cooperative people, such as children, the
elderly, or patients, by combining passive tracking (surveillance cameras) and active tracking (IMU
carried by targets) techniques [21]. Geng et al. proposed an indoor positioning method based on the
micro-electro-mechanical system sensors of smartphones [22].

Although several pedestrian tracking methods have been explored, the results of our literature survey
suggest that there is no research on pedestrian tracking using multiple information sources (e.g., LIDAR
and global positioning system (GPS) sensor data, IMU sensor data, and pedestrian attribute information)
at the same time. On the other hand, there are studies on multiple data integration such as [23,24], but the
purposes of these studies are improving the robustness of data processing. In this paper, we propose a
persistent pedestrian tracking framework and evaluate the effectiveness of the proposed framework
through real-world experiments.

3 System Architecture and Framework

This section introduces the structure of the proposed pedestrian tracking system for parking spaces.

3.1 System Architecture

The proposed framework for persistent pedestrian tracking in parking spaces is based on an ongoing
project of DM consortium called Dynamic Map (DM2.0) platform [25,26], which is proposed as a city-
level dataset that allows the overlaying of sensor data onto a high-definition digital map. It is also seen as
the next-generation road map to integrate and share traffic-related information for autonomous driving
and traffic situation analysis.

As shown in Fig. 1, DM2.0PF is designed with a three-layer physical architecture: cloud server, edge
servers, and Internet of things. Furthermore, the platform has a four-layer logical architecture: highly
dynamic, transient dynamic, transient static, and permanent static data. As one of the contents of highly
dynamic data, pedestrian real-time location and attribute information are of great significance to
autonomous driving, road safety, and traffic condition analysis [26]. However, tracking pedestrians
seamlessly still remains a challenge in parking spaces where observation dead spots are peculiarly prone
to be produced. To propose a framework that can seamlessly track pedestrians forms the main motivation
of this paper.

Fig. 2 shows the hardware composition of our system. The system consists of roadside infrastructure,
edge server, smart devices, and DM2.0 platform. The roadside infrastructure includes three 3D LiDARs
connected to the edge computer through Ethernet. The edge server is connected to the DM2.0 deployed
on the cloud server through a wide area network, and the smart devices carried by pedestrians are
connected to the edge server through Wi-Fi.

3.2 The Proposed Framework

The proposed framework is shown in Fig. 3. LiDAR and smartphone data are processed in parallel.
LiDAR point cloud data are received from multiple roadside units to form data fusion and coordinate
transformation. Then, ground points are separated from the LiDAR point cloud data for accurate object
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clustering. After that, we use several pedestrian feature filters to extract pedestrians from the detected object
clusters [27]. GPS and IMU data are also received from the pedestrian’s smartphone built-in sensors. We
convert the raw GPS data from longitude and latitude values to the same coordinate system of the
converted LiDAR point cloud data. Next, the converted GPS position of the smartphone is matched with
the pedestrian’s position detected by LiDAR to calculate the probability that the detected pedestrian is the
smartphone user. We treat the matching result of the pedestrian position with the largest probability as the
optimal solution of the actual pedestrian position. The result of the pedestrian position matching is sent to
the DM2.0 platform to be linked with the personal attribute information of the pedestrian.

Figure 1: System architecture of the Dynamic Map 2.0 Platform (DM2.0 PF)

We use the pedestrian’s present position, walking direction, and attribute information (e.g., position of
parking spaces and average walking speed) to predict the pedestrian’s approximate position at the next time
step. If the pedestrian can be detected by LiDARs, the optimal matching position of pedestrians is regarded as
the optimal estimation position. However, if the pedestrian is occluded, we use the extended Kalman filter to
fuse the pedestrian device position (GPS&IMU fusion) and the predicted pedestrian position to obtain the
optimal estimation of pedestrian position. When occlusion continues to occur, the optimal estimated value
of the pedestrian position at the previous time step is taken as the real position of the pedestrian and
iterated into the pedestrian position estimation at the next time step until the LiDAR and GPS matching
successfully detects the pedestrian again. Meanwhile, when the occlusion is lifted, we calculate the
deviation of the predicted pedestrian position and pedestrian device position data based on the actual
pedestrian position to evaluate the reliability of these two information sources and decide the weight for
data fusion when occlusion occurs again. Finally, the edge server publishes pedestrians’ position data and
attribute information to DM2.0 PF and AVs for traffic data analysis and collision warning, respectively.

4 The Proposed Framework for Seamless Multiple Pedestrian Tracking in Parking Space

This section elaborates on the implementation of the proposed pedestrian tracking framework. We aim to
provide a pedestrian tracking system in contract parking space to enhance parking safety. Then, we postulate
that our target operating environment is as follows.
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Figure 3: Proposed framework for persistent pedestrian tracking in parking space

1. All parking lot users are equipped with a smart device and have completed the registration of
DM2.0 PF.
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2. For any parking lot user, a fixed parking space is guaranteed.

4.1 User Device Position Acquisition

The common defect of pedestrian detection and tracking methods based on computer vision and LiDAR
is that these methods are ineffective in solving the occlusion handling and pedestrian re-identification
problems. Therefore, we advocate that more pedestrian information should be integrated to track
pedestrians in an environment prone to produce observation blind spots. Among the easily available
pedestrian information, user device data are one of the most meaningful information sources for
pedestrian detection and tracking. Generally, smartphones are the most widely used user devices.
Although the positioning accuracy of smartphone built-in sensors, such as GPS sensors, are
unsatisfactory, it has the advantage of continuously sending pedestrian location information without
shielding interference. Additionally, while sending the pedestrian location, the smartphone can send the
device ID information to identify the pedestrian. Therefore, we first use the GPS and IMU information of
user smartphones to obtain the user ID and imprecise location. For the raw GPS data, we first use the
coordinate conversion formula published by the Geospatial Information Authority of Japan to convert the
GPS data into the Japanese plane rectangular coordinate system. For the raw IMU data, the rotation
matrixes for rotating about the x-axis, y-axis, and z-axis are expressed as Eqs. (1)—(3), respectively.

1 0 0
R.(0) =10 cosO —sind (1)
|0 sinb  cosO

[ cosy 0 siny
R(yy=| 0 1 0 2)
| —siny 0 cosy

[cosp —singp 0
R.(p) = | sinp cosp O 3)
0 0 1

Thus, when the rotation order is X, y, z, the rotation matrix can be expressed as Eq. (4).

cosycosp  sinBsinycosp — cosOsing  cosOsinycosp + sinfsing
Ry: = R (O)R,(y)R-(p) = | cosysing  sinOsinysing — cosOcosp  cosOsinysing — sinflcosp 4)
—siny sinfcosy cosOcosvy

The component of gravitational acceleration in the Cartesian coordinate system [X, y, z] is given as
follows:

[x ¥y z]=[0 0 g]XRy,=][—gsiny gsinOcosy gcoslcosy] Q)

In this way, we can obtain the residual component of the pedestrian’s acceleration after removing gravity
acceleration. We use the Kalman filter to fuse GPS and IMU data to obtain relatively accurate user device
position. The data fusion process consists of two steps: prediction and correction steps.

Prediction

. . . 1,
Xpjk—1 = Xp—1jk—1 + Vk—1jk—1dt + Eakfldtz (6)
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where Xjx_1, k-1, and Vs, denote the average and standard deviation of the pedestrian position,
pedestrian speed, respectively, estimated from the prediction step for time step k. kg is the updated
Kalman gain; X, and 6 are the average and standard deviation of the pedestrian position, respectively,
generated by the correction step for time step k.

4.2 LiDAR and Smartphone Data Matching

After converting GPS position and LiDAR position data into DM2.0 PF coordinates, we can match the
converted GPS data with LiDAR position data to obtain the position of a specific pedestrian through the
pedestrian device ID contained in the GPS message. As shown in Eq. (12), we define the calculation
method of the probability of the existence of GPS source pedestrians in a certain range by integrating the
2D normal distribution probability density function (PDF) of the existence probability of GPS source
pedestrians in that range [27].

_ X — x2 _Ex _E _E 2
foy) = (2n0:0/ 1= %) le’“"{‘zmipa ( - hot )(y 1Y aﬁy) } (12)

where x and y are the x- and y-coordinates of the object detected by LiDAR, respectively; Ex and Ey denote
the expected value of the x- and y-coordinates of the GPS source, respectively; o, is and o, are the variance of
the x- and y-coordinates, respectively; p is the correlation coefficient of x and y.

As the actual position coordinate variables of the GPS source follow the normal distribution of the
inherent coordinates and variance values of the GPS sensor, we chose multivariate normal distribution for
GPS and LiDAR matching. Furthermore, since the vertical sensing accuracy of the smartphone GPS
sensor is very low (almost unreliable), we use the PDF of the 2D normal distribution instead of that of
the 3D normal distribution. Additionally, our pedestrian tracking system is based on the 2D plane space
of the x-y coordinate system. Therefore, we abandon the z-coordinate (height) and use only the x-
coordinate and y coordinate positions of the horizontal plane. Fig. 4 shows that the probability of
pedestrians in this area can be obtained by integrating the PDF representing 2D normal distribution in a
specific range on the x-y plane. To improve the calculation efficiency, we approximate the integral by
calculating the volume of a cuboid according to the geometric definition of the integral of the PDF of the
2D normal distribution. The bottom surface of which is 1 m x 1 m square centered on point (X, y). The
height of the cuboid is the value of the PDF corresponding to the x and y coordinate values.

As presented in Eq. (13), within the [0~3¢] area from the GPS source, when the number of LIDAR
clusters is 0, the probability of a specific pedestrian’s existence is 0. Meanwhile, when the number of
LiDAR clusters is greater than or equal to 1 in the [0~3¢] area from the GPS source, the probability of
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the existence of a specific pedestrian is the approximate value of the integral of the PDF of the 2D normal
distribution of the cluster’s coordinates divided by the approximate value of the integral of the PDF of the 2D
normal distribution of all the detected clusters.

0, k=0
P, = Sie(x,») > (13)
ST G ) <7

where P;. denotes the probability of the existence of a specific pedestrian k. f; (x, y) is the integral of the PDF
of the 2D normal distribution of the pedestrian’s position coordinates. Additionally, the pedestrian with the
greatest probability can be obtained as the optimal estimation of a specific pedestrian position by sorting the
probability values (see Fig. 5).

7050
; \

Figure 4: Integral method of the probability density function of the 2D normal distribution
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Normal Distribution LiDAR
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Roadside Infrastructure
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Figure 5: GPS position data and LiDAR object data matching

4.3 Pedestrian Route Prediction

When the pedestrian is occluded, although the exact positions and tracks of the pedestrians are
unavailable, we know the exit position of the parking lot (digital map information), user’s parking
position (user attribute information managed by DM2.0 PF), and can obtain the pedestrian’s walking
direction (toward the exit of the parking lot or his parking space), and instantaneous speed through
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history average speed data and real-time GPS and IMU data. We use the constant velocity model to estimate
the position of pedestrians because the walking speed of pedestrians is relatively slow (usually, 1.1-1.5 m/s),
and the acceleration is basically negligible. Furthermore, in addition to pedestrians, there are obstacles, such
as parked vehicles in the parking lot (see Fig. 6). These will also affect the pedestrians’ route; therefore, we
propose an algorithm in this section to predict the pedestrian position.

\
| Dbstinhtion|
e
Obst.acles‘

Parking spot B

\ | | | I » ! Shortest Route
| A 4 — ! Estimated Route
i Parking spot A

Figure 6: Pedestrian trajectory prediction based on pedestrian attribute information

Algorithm 1: Pedestrian trajectory prediction algorithm

Input: Pedestrians’ number N, Pedestrians’ position X at time step k-1
Output: Pedestrians’ trajectory fraj at time step k

0l.n <0

02. while » < N do

03. if pedestrian status = detected do

04. X, = detected position

05. traj.push X,

06. n+—n+1
07. break
08. end if

09. if (x, + v, * dt)! = obstacle do
10. X, =X, + vy, * dt

11. traj.push X,

12. else

13, % =X, + |[Vulldt

14.  traj.push %,

15. end if

16. n—n+1

17. end while
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The direction of movement of each pedestrian (exit direction or parking lot direction) is first obtained
from the GPS data, and the movement speed is calculated from a weighted average of the movement
speed of the GPS data and the walking speed of the pedestrian attribute information. Then, we use
LiDAR point cloud data to obtain the location of obstacles in the parking space and determine if there is
an obstacle on the pedestrian route. If there is no obstacle, the system predicts that the pedestrian will
move at a constant speed toward the destination. Meanwhile, if there is an obstacle, the system predicts
that the pedestrian will move at a constant speed toward the target point of the adjacent route that is
closest to the pedestrian’s original route. Originally, the prediction of the pedestrian’s path should be like
a maze search to determine whether there is a path or not. However, according to the actual situation of a
parking lot, there is no dead-end, and pedestrians would not go to the exit like a maze search. Therefore,
in this section, we do not use recursive or backtracking methods to improve the real-time performance of
the proposed system.

4.4 Pedestrian Position Data Fusion

Using the proposed methods in Subsections 4.1, 4.2, and 4.3, we can obtain user device, LiDAR and
smartphone matching, and predicted pedestrian positions, respectively. However, these position
information sources have their advantages and shortcomings. Although smartphone position and predicted
pedestrian position data could continuously provide pedestrian position, there may be a certain amount of
error between these data and the actual pedestrian position. Meanwhile, LiDAR and smartphone matching
results can accurately reflect pedestrians’ position, but it becomes unavailable when occlusion occurs. As
these data are unreliable, we advocate fusing on these data to improve data reliability to provide accurate
real-time pedestrian position estimation. Therefore, we propose a Kalman filter-based algorithm for
continuous pedestrian tracking to carry out the multiple information sources fusion.

Prediction
Xplk—1 = Xp—1]k—1 +5€Z|tk_1 —56’,?_1‘,(_1 (14)
. 2 . 2 . pt 2
(6k|k71) = (kaukfl) + (xkfl _X§—1|k—1> (15)
Correction
(6u4-1)"
kgk = ud\ 2 R 2 (16)
(61)" + (6rpp—1)
e = jemr + kg (X1 — ) (17)
A \2 . 2
(6ew)” = (1 — kgie) (Gu—1) (18)

where X ,—; and 61 denote the average and standard deviation of the pedestrian position, respectively,
estimated from the prediction step for the time step k. kg is the updated Kalman gain; X and 6 are
the average and standard deviation of the pedestrian position, respectively, generated from the correction
step for the time step k; %4/ and 6%/ are the average and standard deviation of the pedestrian’s device
position, respectively, obtained from GPS and IMU sensor fusion (see Subsection .4.1).

When LiDARs cannot detect the pedestrians (occlusion occurs), the proposed system estimates the
pedestrians’ position by fusing the device position and predicted pedestrian position data. Furthermore, if
occlusion occurs continuously, the estimation will continue iteratively. If LiDARs detect pedestrians
again, the system outputs the matching results of LiDAR and GPS data with the maximum probability as
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the accurate position of the pedestrians and evaluate the reliability of the device position and predicted
pedestrian position data to determine the Kalman gain for future estimation.

5 Experimental Evaluation

We implemented the proposed framework using C++ and conducted real-world experiments to evaluate
our system in the parking space of a municipal service center in Kasugai city, Japan. As shown in Fig. 7, the
experiments were conducted using LiDARs (Velodyne vlp-16, vlp-32), smartphones (Google Pixel 4XL),
edge server (Ubuntu 18.04, ROS Melodic), and cloud server (DM2.0 PF). Two groups of experiments
have been designed to test our system for pedestrian tracking: single and multiple pedestrians. In each
group of experiments, we asked the participants to walk along four paths designed in advance (see
Fig. 8). We test the proposed system using these paths because walking along the paths can walk through
the entire parking space.

Figure 7: Experimental devices and test scene

The output of our system includes a unique device ID used to identify the detected pedestrian, pedestrian
device position, precise pedestrian position detected by the LiDARs, pedestrian identification probability,
and the estimated pedestrian position when occlusion occurs. Fig. 9 shows an example of the output of
the proposed system. The device position of the pedestrian id = “shu” is [x = 29.08, y = —11.80]. There
are three detected LiDAR objects, and the pedestrian position with the maximum probability value is
[x =29.41, y = —13.59]. Furthermore, the attribute information of the pedestrian can be identified in the
DM2.0 platform using the unique device ID.

Figs. 10-13 summarize the experimental results of the routes I-1V, respectively. The abscissa of these
figures is the experimental time, and the ordinate is the accuracy of the pedestrian position data (measured by
the error with the pedestrians’ real position). It can be seen that the participants have been occluded for
several times when walking along the experimental routes, except route 1. Tab. 1 presents the detailed
experimental data. It can be seen that comparing our method with the tracking results of the GPS+IMU
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method, the average error of the pedestrian tracking accuracy is 15.48%, and the variance is 8.32% of the
latter. It shows that the proposed method is more accurate and effective.
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Figure 9: An example of system output

The GPS signal and IMU signal sent by the user equipment can be used to identify the pedestrians and
will not be occluded by obstacles. However, its accuracy is too low to be trusted. LIDAR data have high
accuracy and are close to the real pedestrian position. However, it cannot identify the pedestrians, and it
cannot detect pedestrians when they are occluded. Our method integrates these two data sources and
estimates pedestrians’ trajectory using their attribute information to improve the accuracy of the
pedestrian position estimation. Although Tab. | shows the advantages of our data fusion-based method, it
is recognized that LiDAR data is more accurate than GPS and IMU; it is also unfair to only compare the
accuracy of the two. Therefore, we compare the positioning accuracy of pedestrians immediately before
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they recovered from occluded state to detected state. As presented in Tab. 2, when only using GPS and IMU
sensor fusion, the accuracy error of pedestrian positioning before recovering occlusion is 3.588. Meanwhile,
when using our multi-information sources fusion method, the accuracy error of pedestrian positioning is
2.317, with an increase of about 36.2%. For test route IV with a single pedestrian, the continuous
occlusion time is relatively long, decreasing the accuracy of the predicted position, which is the main
reason for the decrease in the system output accuracy.
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Figure 10: Tracking accuracy evaluation (Test route I)
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Figure 11: Tracking accuracy evaluation (Test route II)

6 Discussion

This section discusses the effectiveness, novelty, and limitations of the proposed tracking framework for
pedestrian protection in parking spaces.

6.1 Effectiveness

Occlusion handling is an essential and difficult task in pedestrian detection and tracking. When there is
no occlusion or partial occlusion, traditional methods based on sensor fusion and computer vision can well
solve the problem of pedestrian detection and tracking. However, traditional methods are generally powerless
when severe occlusion or complete occlusion occurs. Only based on road user device sensors can we obtain
an inaccurate pedestrian position; however, it is inadequate for collision prevention and pedestrian
protection. Therefore, to solve this problem, we proposed a solution for seamless pedestrian tracking. The
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proposed pedestrian tracking framework uses a Kalman filter to fuse the position information of pedestrian
smart devices, LiDAR position information, and pedestrian attribute information. We also conducted a
real-world experiment in parking spaces to evaluate the proposed framework. The experimental results
show that the proposed method is more reliable than the GPS and IMU sensor fusion-based method.
When detecting the pedestrian location, the proposed framework can also detect personal information of
pedestrians, such as the elderly and children, to evoke the vigilance of drivers and automatic driving
systems for decision-making support or providing voice guidance services. This could help the traffic
safety of the parking space. Since the proposed framework tracks and manages real-time pedestrian
position information, it is also a driving force for building a more comprehensive DM2.0 platform.
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Figure 12: Tracking accuracy evaluation (Test route III)
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Figure 13: Tracking accuracy evaluation (Test route IV)



2124 CSSE, 2023, vol.44, no.3

Table 1: Comparison of average tracking accuracy

Test Pedestrian Tracking accuracy
t
route GPS+IMU-based method  The proposed method Comparison
Accumulative  Variance Accumulative  Variance Accumulative  Variance
error error error

1 Single 60.813 7.021 6.361 0.141 10.460% 2.003%
2 Single 21.282 9.799 1.866 0.272  8.766% 2.783%
3 Single 49.810 8.047  2.586 0.166  5.191% 2.067%
4 Single 24.481 4.023 3.312 0.197 13.528% 4.891%
1 Multiple  113.295 18.554 14.935 0.855 13.183% 4.611%
2 Multiple  153.736 11.024  68.201 3.182 44.362% 28.862%
3 Multiple  193.379 10.113  25.908 0.939 13.398% 9.283%
4 Multiple  114.513 20.819  17.096 2.508 14.929% 12.047%
Avg. 91.414 11.175 17.533 1.033 15.477% 8.318%

Table 2: Comparison of tracking accuracy when returning from occlusion
Test route No. of detected Tracking accuracy when returning from occlusion

usi
oeciusions GPS+IMU position data Estimated pedestrian A Accuracy
position data
1 2 3.031 0.502 +83.447%
2 6 2.003 1.360 +32.090%
3 9 4.237 1.575 +62.834%
4 7 3.799 3.812 —0.340%
1 3 3.354 2.490 +25.763%
2 1 2.015 1.408 +30.152%
3 7 4.536 3.362 +25.878%
4 6 5.726 4.023 +29.734%
Avg. 3.588 2.317 +36.195%
6.2 Novelty

The results of the literature survey in Section 2 shows that there is no research on using pedestrian
attribute information for pedestrian tracking. Tab. 3 compares some existing studies with our framework.
Although the referenced studies [4—6,13,14] have proposed to use various information sources to track
targets, they have not tried to use pedestrian attribute information for tracking. As presented in paper
[16], although there is research on pedestrian attributes, its purpose is to obtain pedestrian attributes, not
to use pedestrian attributes. The purposes and means of our study and the referenced study are different.
This is the basis for us to claim the novelty of this paper.
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Table 3: Comparison of the proposed pedestrian tracking method and some existing methods

2125

Method Target Approach Environment Condition Experiment
Dai et al. Vehicles, traffic Laser range finder, Outdoor Occlusion Real-world,
(2020) [4] flow LMB filter simulation
Chavez—Garcia Pedestrians and Sensor fusion Outdoor N/A Simulation

et al. (2016) [5] vehicles (RADAR, LiDAR,

camera)
Zhao et al. Pedestrians, Sensor fusion Outdoor Occlusion Real-world
(2020) [6] vehicles, bicyclists (LiDAR, camera)
Wang et al. Pedestrians LiDAR and SVM  Outdoor N/A Real-world
(2017) [7]
Zhao et al. Pedestrians and Multi-LiDAR and Intersection N/A Real-world
(2019) [8] vehicles BP-ANN
Xu et al. Pedestrians Sensor fusion Indoor N/A Real-world
(2020) [13] (INS, UWB)
Wang et al. Trains, obstacles  Sensor fusion Railway N/A Real-world
(2021) [14] (LiDAR, camera) track
Stadler et al. (2021) Pedestrians Camera, Outdoor/ Occlusion Simulation
[15] Multi-pedestrian ~ Indoor

tracker
Park et al. Pedestrians Sensor fusion Indoor N/A Real-world
(2013) [18] (magnetometer, corridor

accelerometer)

Zhu et al Vehicles Multi-data source  Outdoor N/A Real-world,
(2020) [28] fusion simulation
(GNSS, UWB,

DR, VMM)
Ours Pedestrians Multi-data source  Parking Occlusion Real-world
fusion space
(GPS, IMU,
pedestrian
attribute
information)

6.3 Limitations

Although the proposed pedestrian tracking framework can track pedestrians in parking spaces and deal
with occlusion, the experimental results show that the positioning accuracy of multi-person tracking becomes
worse than a single-person tracking. This is because the recognition of multiple pedestrians becomes
incoherent when occlusion occurs, and the recognition accuracy of relocation is insufficient. The reason is
that the system sometimes recognizes the detected pedestrians as pedestrians in occlusion. Additionally,
our experiment is conducted in a parking lot with only one exit. It is more challenging to conduct the
experiment in a complex environment. The experimental data show that when the continuous occlusion
time is long (> 20s), the output accuracy of our system will decline. The long continuous occlusion time
makes the last detected accurate pedestrian position data too old, resulting in the decline in the pedestrian
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prediction position accuracy, which is the main reason for the decline in the system output accuracy.
Furthermore, a system load test is necessary. In this study, we have verified the situation of a few
pedestrians. However, if there are many pedestrians, whether the system can complete data processing
within the output cycle needs further testing.

7 Conclusion

This paper presents a parking lot pedestrian tracking framework using LiDAR, pedestrian smart device,
and pedestrian attribute information data simultaneously. We also implemented the framework in C++ and
conducted experiments in the real-world to verify its rationality and practicability. The experimental results
show that the proposed method can reduce the error by 67.31% compared with the method using only GPS
and IMU sensor fusion when tracking pedestrians in the parking space. This shows that our system can be
applied to the parking lot environment and occlusion handling. The proposed system can be used to extract
pedestrian attribute information. However, as stated in the previous section, there are limitations to our
research. Solving the limitations is the future direction of this study. For instance, we plan to test the
proposed system in a more complex environment with more pedestrians at the same time (e.g., the
parking lot of a large shopping mall). Moreover, we aim to implement a pedestrian identification
mechanism using machine learning to improve pedestrian re-identification accuracy for occlusion handling.
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