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Estimate the Hoeffding Decomposition of
a Complex Model by Solving RKHS Ridge
Group Sparse Optimization Problem
by Halaleh Kamari, Sylvie Huet and Marie-Luce Taupin

Abstract In this paper, we propose an R package, called RKHSMetaMod, that implements a procedure
for estimating a meta-model of a complex model. The meta-model approximates the Hoeffding
decomposition of the complex model and allows us to perform sensitivity analysis on it. It belongs to
a reproducing kernel Hilbert space that is constructed as a direct sum of Hilbert spaces. The estimator
of the meta-model is the solution of a penalized empirical least-squares minimization with the sum of
the Hilbert norm and the empirical L2-norm. This procedure, called RKHS ridge group sparse, allows
both to select and estimate the terms in the Hoeffding decomposition, and therefore, to select and
estimate the Sobol indices that are non-zero. The RKHSMetaMod package provides an interface from
the R statistical computing environment to the C++ libraries Eigen and GSL. In order to speed up
the execution time and optimize the storage memory, except for a function that is written in R, all
of the functions of this package are written using the efficient C++ libraries through RcppEigen and
RcppGSL packages. These functions are then interfaced in the R environment in order to propose a
user-friendly package.

1 Introduction

Consider a phenomenon described by a model m depending on d input variables X = (X1, ..., Xd).
This model m from Rd to R may be a known model that is calculable in all points of X, i.e. Y = m(X),
or it may be an unknown regression model defined as follows:

Y = m(X) + ε, (1)

where the error ε is assumed to be centered with a finite variance, i.e. E(ε) = 0 and var(ε) < ∞. The
components of X are independent with a known law PX = ∏d

a=1 PXa on X , a subset of Rd. The number
d of components of X may be large. The model m may present high complexity as strong non-linearities
and high order interaction effects, and it is assumed to be square-integrable, i.e. m ∈ L2(X , PX).
Based on the data points {(Xi, Yi)}n

i=1, we estimate a meta-model that approximates the Hoeffding
decomposition of m. This meta-model belongs to a reproducing kernel Hilbert space (RKHS), which
is constructed as a direct sum of the Hilbert spaces leading to an additive decomposition including
variables and interactions between them (Durrande et al., 2013). The estimator of the meta-model is
calculated by minimizing an empirical least-squares criterion penalized by the sum of two penalty
terms: the Hilbert norm and the empirical norm (Huet and Taupin, 2017). This procedure allows us to
select the subsets of variables X1, ..., Xd that contribute to predict Y. The estimated meta-model is used
to perform sensitivity analysis, and therefore, to determine the influence of each variable and groups
of them on the output variable Y.

In the classical framework of the sensitivity analysis, the function m is calculable in all points of X,
and one may use the method of Sobol (1993) to perform the sensitivity analysis on m. Let us briefly
introduce this method:
The independency between the components of X leads to write the function m according to its
Hoeffding decomposition (Sobol, 1993; Van der Vaart, 1998):

m(X) = m0 +
d

∑
a=1

ma(Xa) + ∑
a<a′

ma,a′ (Xa, Xa′ ) + ... + m1,...,d(X). (2)

The terms in this decomposition are defined using the conditional expected values:

m0 = EX(m(X)), ma(Xa) = EX(m(X)|Xa)−m0;

ma,a′ (Xa, Xa′ ) = EX(m(X)|Xa, Xa′ )−ma(Xa)−ma′ (Xa′ )−m0, · · ·

These terms are known as the constant term, main effects, interactions of order two and so on. Let P be
the set of all subsets of {1, ..., d} with dimension 1 to d. For all v ∈ P and X ∈ X , let Xv be the vector
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with components Xa, a ∈ v. For a set A let |A| be its cardinality, and for all v ∈ P , let mv : R|v| → R

be the function associated with Xv in Equation (2). Then Equation (2) can be expressed as follows:

m(X) = m0 + ∑
v∈P

mv(Xv). (3)

This decomposition is unique, all terms mv, v ∈ P are centered, and they are orthogonal with respect
to L2(X , PX). The functions m and mv, v ∈ P in Equation (3) are square-integrable. As any two terms
of decomposition (3) are orthogonal, by squaring (3) and integrating it with respect to the distribution
of X, a decomposition of the variance of m(X) is obtained as follows:

var(m(X)) = ∑
v∈P

var(mv(Xv)). (4)

The Sobol indices associated with the group of variables Xv, v ∈ P are defined by:

Sv = var(mv(Xv))/var(m(X)). (5)

For each v, the Sv expresses the fraction of the variance of m(X) explained by Xv. For all v ∈ P , when
|v| = 1, the Svs are referred to as the first order indices; when |v| = 2, i.e. v = {a, a′} and a ̸= a′, they
are referred to as the second order indices or the interaction indices of order two (between Xa and Xa′ );
and the same holds for |v| > 2.

The total number of the Sobol indices to be calculated is equal to |P| = 2d − 1, which raises
exponentially with the number of the input variables d. When d is large, the evaluation of all the
indices can be computationally demanding and even not reachable. In practice, only the indices of
order not higher than two are calculated. However, only the first and second order indices may not
provide a good information on the model sensitivities. In order to provide better information on
the model sensitivities, Homma and Saltelli (1996) proposed to calculate the first order and the total
indices defined as follows:
Let Pa ⊂ P be the set of all the subsets of {1, ..., d} including a, then STa = ∑v∈Pa

Sv. For all
a ∈ {1, ..., d}, the STa denotes the total effect of Xa. It expresses the fraction of variance of m(X)
explained by Xa alone and all the interactions of it with the other variables. The total indices allow us
to rank the input variables with respect to the amount of their effect on the output variable. However,
they do not provide complete information on the model sensitivities as do all the Sobol indices.

The classical computation of the Sobol indices is based on the Monte Carlo methods (see for
example: Sobol (1993) for the main effect and interaction indices, and Saltelli (2002) for the main effect
and total indices). For models that are expensive to evaluate, the Monte Carlo methods lead to a high
computational burden. Moreover, in the case where d is large, m is complex and the calculation of
the variances (see Equation (4)) is numerically complicated or not possible (as in the case where the
model m is unknown) the methods described above are not applicable. Another approach consists
in approximating m by a simplified model, called a meta-model, which is much faster to evaluate
and to perform sensitivity analysis on it. Beside the approximations of the Sobol indices of m at a
lower computational cost, a meta-model provides a deeper view of the input variables effects on the
model output. Among the meta-modelling methods proposed in the literature, the expansion based
on the polynomial Chaos (Wiener, 1938; Schoutens, 2000) can be used to approximate the Hoeffding
decomposition of m (Sudret, 2008). The principle of the polynomial Chaos is to project m onto a basis
of orthonormal polynomials. The polynomial Chaos expansion of m is written as (Soize and Ghanem,
2004):

m(X) =
∞

∑
j=0

hjϕj(X), (6)

where {hj}∞
j=0 are the coefficients, and {ϕj}∞

j=0 are the multivariate orthonormal polynomials associ-
ated with X which are determined according to the distribution of the components of X. In practice,
expansion (6) shall be truncated for computational purposes, and the model m may be approximated
by ∑vmax

j=0 hjϕj(X), where vmax is determined using a truncation scheme. The Sobol indices are obtained
then by summing up the squares of the suitable coefficients. Blatman and Sudret (2011) proposed a
method for truncating the polynomial Chaos expansion and an algorithm based on the least angle
regression for selecting the terms in the expansion. In this approach, according to the distribution of
the components of X, a unique family of orthonormal polynomials {ϕj}∞

j=0 is determined. However,
this family may not be necessarily the best functional basis to approximate m well.

Gaussian Process (GP) can also be used to construct meta-models as highlighted in Welch et al.
(1992), Oakley and O’Hagan (2004), Kleijnen (2007, 2009), Marrel et al. (2009), Durrande et al. (2012),
and Le Gratiet et al. (2014). The principle is to consider that the prior knowledge about the function
m(X), can be modelled by a GP Z(X) with a mean mZ (X) and a covariance kernel kZ (X, X′). To
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perform sensitivity analysis from a GP model, one may replace the model m(X) with the mean of the
conditional GP and deduce the Sobol indices from it. A review on the meta-modelling based on the
polynomial Chaos and the GP is presented in Le Gratiet et al. (2017).

Durrande et al. (2013) considered a class of the functional approximation methods similar to the
GP and obtained a meta-model that satisfies the properties of the Hoeffding decomposition. They
proposed to approximate m by functions belonging to a RKHSH which is a direct sum of the Hilbert
spaces. Their RKHS H is constructed in a way that the projection of m onto H, denoted f ∗, is an
approximation of the Hoeffding decomposition of m. The function f ∗ is defined as the minimizer over
the functions f ∈ H of the criterion EX(m(X)− f (X))2.

Let ⟨., .⟩H be the scalar product inH, let also k and kv be the reproducing kernels associated with
the RKHSH and the RKHSHv respectively. The properties of the RKHSH insures that any function
f ∈ H, f : X ⊂ Rd → R is written as the following decomposition:

f (X) = ⟨ f , k(X, .)⟩H = f0 + ∑
v∈P

fv(Xv), (7)

where f0 is constant, and fv : R|v| → R is defined by fv(X) = ⟨ f , kv(X, .)⟩H. For more details on the
RKHS construction and the definition of the Hilbert norm see Section "RKHS construction" in the
Appendix (supplementary materials).

For all v ∈ P , the functions fv(Xv) are centered and for all v ̸= v′, the functions fv(Xv) and fv′ (Xv′ )
are orthogonal with respect to L2(X , PX). Therefore, the decomposition of the function f presented
in Equation (7) is its Hoeffding decomposition. As the function f ∗ belongs to the RKHS H, it is
decomposed as its Hoeffding decomposition, f ∗ = f ∗0 + ∑v∈P f ∗v , and each function f ∗v approximates
the function mv in Equation (3). The number of the terms f ∗v that should be estimated in the Hoeffding
decomposition of f ∗ is equal to |P| = 2d − 1, which may be huge since it rises very quickly by
increasing d. In order to deal with this problem, in the regression framework, one may estimate f ∗ by
a sparse meta-model f̂ ∈ H. To this end, the estimation of f ∗ is done on the basis of n observations by
minimizing a least-squares criterion suitably penalized in order to deal with both the non-parametric
nature of the problem and the possibly large number of functions that have to be estimated. In the
classical framework of the sensitivity analysis one may calculate a sparse approximation of f ∗ using
least-squares penalized criterion as it is done in the non-parametric regression framework. In order to
obtain a sparse solution of a minimization problem, the penalty function should enforce the sparsity.
There exists various ways of enforcing sparsity for a minimization (maximization) problem, see for
example Hastie et al. (2015) for a review. Some methods, such as the Sparse Additive Models (SpAM)
procedure (Ravikumar et al., 2009; Liu et al., 2009) are based on a combination of the l1-norm with
the empirical L2-norm: ∥ f ∥n,1 = ∑d

a=1 ∥ fa∥n, where ∥ fa∥2
n = ∑n

i=1 f 2
a (Xai)/n, is the squared empirical

L2-norm of the univariate function fa. The Component Selection and Smoothing Operator (COSSO)
method developed by Lin and Zhang (2006) enforces sparsity using a combination of the l1-norm
with the Hilbert norm: ∥ f ∥H,1 = ∑d

a=1 ∥ fa∥Ha . Instead of focusing on only one penalty term, one may
consider a more general family of estimators, called the doubly penalized estimator, which is obtained
by minimizing a criterion penalized by the sum of two penalty terms. Raskutti et al. (2009, 2012)
proposed a doubly penalized estimator, which is the solution of the minimization of a least-squares
criterion penalized by the sum of a sparsity penalty term and a combination of the l1-norm with the
Hilbert norm:

γ∥ f ∥n,1 + µ∥ f ∥H,1, (8)

where γ, µ ∈ R are the tuning parameters that should be suitably chosen.

Meier et al. (2009) proposed a related family of estimators, based on the penalization with the
empirical L2-norm. Their penalty function is the sum of the sparsity penalty term, ∥ f ∥n,1, and a
smoothness penalty term. Huet and Taupin (2017) considered the same approximation functional
spaces as Durrande et al. (2013), and obtained a doubly penalized estimator of a meta-model which
approximates the Hoeffding decomposition of m. Their estimator is the solution of the least-squares
minimization penalized by the penalty function defined in Equation (8) adapted to the multivariate
setting,

γ∥ f ∥n + µ∥ f ∥H, with ∥ f ∥n = ∑
v∈P
∥ fv∥n, ∥ f ∥H = ∑

v∈P
∥ fv∥Hv . (9)

This procedure, called RKHS ridge group sparse, estimates the groups v that are suitable for predicting
f ∗, and the relationship between f ∗v and Xv for each group. The obtained estimator, called RKHS
meta-model, is used then to estimate the Sobol indices of m. This approach renders it possible to
estimate the Sobol indices for all groups in the support of the RKHS meta-model, including the
interactions of possibly high order, a point known to be difficult in practice.
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In this paper, we introduce an R package, called RKHSMetaMod, that implements the RKHS
ridge group sparse procedure. The functions of this package allows us to:

(1) calculate the reproducing kernels and their associated Gram matrices (see Section Calculation
of the Gram matrices),

(2) implement the RKHS ridge group sparse procedure and a special case of it, called the RKHS
group lasso procedure (when γ = 0 in the penalty function (9)), in order to estimate the terms f ∗v
in the Hoeffding decomposition of the meta-model f ∗ leading to an estimation of the function
m (see Section Optimization algorithms),

(3) choose the tuning parameters µ and γ (see Equation (9)), using a procedure that leads to obtain
the best RKHS meta-model in terms of the prediction quality,

(4) estimate the Sobol indices of the function m (see Section Estimation of the Sobol indices).

The current version of the package supports uniformly distributed input variables on X = [0, 1]d.
However, it could be easily adapted to datasets with input variables from another distribution by
making a small modification to one of its functions (see Remark 3 of Section Calculation of the Gram
matrices).

Let us give a brief overview of the related existing statistical packages to the RKHSMetaMod
package. The R package sensitivity is designed to implement sensitivity analysis methods and
provides the approaches for numerical calculation of the Sobol indices. In particular, Kriging method
can be used to reduce the number of the observations in global sensitivity analysis. The function
sobolGP of the package sensitivity builds a Kriging based meta-model using the function km of the
package DiceKriging (Roustant et al., 2012), and estimates its Sobol indices. This procedure can also
be done using the function km and the function fast99 of the package sensitivity (see Section 4.5. of
Roustant et al. (2012)). In this case, the idea is once again to build a Kriging based meta-model using the
function km and then estimate its Sobol indices using the function fast99. In both cases the true function
is substituted by a Kriging based meta-model and then its Sobol indices are estimated. In the sobolGP
function, the Sobol indices are estimated by the Monte Carlo integration, while the fast99 function
estimates them using the extended-FAST method (Saltelli et al., 1999). To reduce the computational
burden when dealing with large datasets and complex models, in RKHSMetaMod package, we
propose to use the empirical variances to estimate the Sobol indices (see Section Estimation of the
Sobol indices). Besides, the estimation of the Sobol indices in the RKHSMetaMod package is done
based on the RKHS meta-model which is a sparse estimator. It is beneficial since instead of calculating
the Sobol indices of all groups v ∈ P , only the Sobol indices associated with the groups in the support
of the RKHS meta-model are computed (see Section Estimation of the Sobol indices). Moreover, the
functions sobolGP and fast99 provide the estimation of the first order and the total Sobol indices
only, while the procedure in the RKHSMetaMod package makes it possible to estimate the high order
Sobol indices. The R packages DiceKriging and DiceOptim (Deep Inside Computer Experiments
Kriging/Optim) (Roustant et al., 2012) implement the Kriging based meta-models to estimate complex
models in the high dimensional context. They provide different GP (Kriging) models corresponding
to the Gaussian, Matérn, Exponential and Power-Exponential correlation functions. The estimation
of the parameters of the correlation functions in these packages relies on the global optimizer with
gradient genoud algorithm of the package rgenoud (Mebane and Sekhon, 2011). These packages do
not implement any method of the sensitivity analysis themselves. However, some authors (see Section
4.5. of Roustant et al. (2012) for example) perform sensitivity analysis on their estimated meta-models
by employing the functions of the package sensitivity. The R package RobustGaSP (Robust Gaussian
Stochastic Process) (Gu et al., 2019) approximates a complex model by a GP meta-model. This package
implements marginal posterior mode estimation of the GP model parameters. The estimation method
in this package insures the robustness of the parameter estimation in the GP model, and allows one
also to identify input variables that have no effect on the variability of the function under study. The R
package mlegp (maximum likelihood estimates of Gaussian processes) (Dancik and Dorman, 2008)
provides functions to implement both meta-modelling approaches and sensitivity analysis methods. It
obtains maximum likelihood estimates of the GP model for the output of costly computer experiments.
The GP models are built either on the basis of the Gaussian correlation function or on the basis of the
first degree polynomial trend. The sensitivity analysis methods implemented in this package include
Functional Analysis of Variance (FANOVA) decomposition, plot functions to obtain diagnostic plots,
main effects, and second order interactions. The prediction quality of the meta-model depends on
the quality of the estimation of its parameters and more precisely the estimation of parameters in the
correlation functions (Kennedy and O’Hagan, 2000). The maximum likelihood estimation of these
parameters often produce unstable results, and as a consequence, the obtained meta-model may have
an inferior prediction quality (Gu et al., 2018; Gu, 2019). The RKHSMetaMod package is devoted to the
meta-model estimation on the RKHSH. It implements the convex optimization algorithms to calculate
meta-models; provides the functions to compute the prediction error of the obtained meta-models;
performs the sensitivity analysis on the obtained meta-models and more precisely calculate their Sobol
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indices. The convex optimization algorithms used in this package are all written using C++ libraries,
and are adapted to take into account the problem of high dimensionality in this context. This package
is available from the Comprehensive R Archive Network (CRAN) (Kamari, 2019).

The organization of the paper is as follows: In the next Section, we describe the estimation method.
In Section Algorithms, we present in details the algorithms used in the RKHSMetaMod package.
Section RKHSMetaMod through examples includes two parts: In the first part, Section Simulation
study, the performance of the RKHSMetaMod package functions is validated through a simulation
study. In the second part, Section Comparison examples, the comparison in terms of the predictive
accuracy between the RKHS meta-model and the Kriging based meta-models from RobustGaSP (Gu
et al., 2019) and DiceKriging (Roustant et al., 2012) packages is given through two examples.

2 Estimation method

In this Section, we present: the RKHS ridge group sparse and the RKHS group lasso procedures (see
RKHS ridge group sparse and RKHS group lasso procedures), the strategy of choosing the tuning
parameters in the RKHS ridge group sparse algorithm (see Choice of the tuning parameters), and
the calculation of the empirical Sobol indices of the RKHS meta-model (see Estimation of the Sobol
indices).

RKHS ridge group sparse and RKHS group lasso procedures

Let us denote by n the number of observations. The dataset consists of a vector of n observations
Y = (Y1, ..., Yn), and a n× d matrix of features X with components (Xai, i = 1, ..., n, a = 1, ..., d) ∈ Rn×d.
For some tuning parameters γv, µv, v ∈ P , the RKHS ridge group sparse criterion is defined by,

L( f ) =
1
n

n

∑
i=1

(
Yi − f0 − ∑

v∈P
fv(Xvi)

)2
+ ∑

v∈P
γv∥ fv∥n + ∑

v∈P
µv∥ fv∥Hv , (10)

where Xv represents the matrix of variables corresponding to the v-th group, i.e. Xv = (Xvi, i =

1, ..., n, v ∈ P) ∈ Rn×|P|, and where ∥ fv∥n is the empirical L2-norm of fv defined by the sample

{Xvi}n
i=1 as ∥ fv∥n =

√
∑n

i=1 f 2
v (Xvi)/n.

The penalty function in the criterion (10) is the sum of the Hilbert norm and the empirical norm,
which allows us to select few terms in the additive decomposition of f over sets v ∈ P . Moreover, the
Hilbert norm favours the smoothness of the estimated fv, v ∈ P .
Let F = { f : f = f0 + ∑v∈P fv, fv ∈ Hv, ∥ fv∥Hv ≤ rv, rv ∈ R+} be the set of functions. Then the
RKHS meta-model is defined by,

f̂ = arg min
f∈F

L( f ). (11)

According to the Representer Theorem (Kimeldorf and Wahba, 1970), the non-parametric functional
minimization problem described above is equivalent to a parametric minimization problem. Indeed,
the solution of the minimization problem (11) belonging to the RKHSH is written as f = f0 + ∑v∈P fv,
where for some matrix θ = (θvi, i = 1, ..., n, v ∈ P) ∈ Rn×|P| we have for all v ∈ P ,

fv(.) =
n

∑
i=1

θvikv(Xvi, .), and ∥ fv∥2
Hv

=
n

∑
i,i′=1

θviθvi′kv(Xvi, Xvi′ ). (12)

Let ∥.∥ be the Euclidean norm (called also L2-norm) in Rn, and for each v ∈ P , let Kv be the n× n Gram
matrix associated with the kernel kv(., .), i.e. (Kv)i,i′ = kv(Xvi, Xvi′ ). Let also K1/2 be the matrix that
satisfies t(K1/2)K1/2 = K, and let f̂0 and θ̂ be the minimizers of the following penalized least-squares
criterion:

C( f0, θ) = ∥Y− f0 In − ∑
v∈P

Kvθv∥2 +
√

n ∑
v∈P

γv∥Kvθv∥+ n ∑
v∈P

µv∥K1/2
v θv∥.

Then the estimator f̂ defined in Equation (11) satisfies,

f̂ (X) = f̂0 + ∑
v∈P

f̂v(Xv) with f̂v(Xv) =
n

∑
i=1

θ̂vikv(Xvi, Xv).

Remark 1 The constraint ∥ fv∥Hv ≤ rv is crucial for theoretical properties, but the value of rv is generally
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unknown and has no practical usefulness. In this package, it is not taken into account in the parametric
minimization problem.

For each v ∈ P , let γ′v and µ′v be the weights that are chosen suitably. We define γv = γ× γ′v and
µv = µ× µ′v with γ, µ ∈ R+.

Remark 2 This formulation simplifies the choice of the tuning parameters since instead of tuning 2× |P|
parameters γv and µv, v ∈ P , only two parameters γ and µ are tuned. Moreover, the weights γ′v and µ′v, v ∈ P
may be of interest in practice. For example, one can take weights that increase with the cardinal of v in order to
favour the effects with small interaction order between variables.

For the sake of simplicity, in the rest of this paper for all v ∈ P the weights γ′v and µ′v are assumed to
be set as one, and the RKHS ridge group sparse criterion is then expressed as follows:

C( f0, θ) = ∥Y− f0 In − ∑
v∈P

Kvθv∥2 +
√

nγ ∑
v∈P
∥Kvθv∥+ nµ ∑

v∈P
∥K1/2

v θv∥. (13)

If we consider only the second part of the penalty function in the criterion (13) ( i.e. set γ = 0), we
obtain the RKHS group lasso criterion as follows:

Cg( f0, θ) = ∥Y− f0 In − ∑
v∈P

Kvθv∥2 + nµ ∑
v∈P
∥K1/2

v θv∥, (14)

which is a group lasso criterion (Yuan and Lin, 2006) up to a scale transformation.

In the RKHSMetaMod package, the RKHS ridge group sparse algorithm is initialized using the
solutions obtained by solving the RKHS group lasso algorithm. Indeed, the penalty function in the
RKHS group lasso criterion (14) insures the sparsity in the solution. Therefore, for a given value
of µ, by implementing the RKHS group lasso algorithm (see Section RKHS group lasso), a RKHS
meta-model with few terms in its additive decomposition is obtained. The support and the coefficients
of a RKHS meta-model which is obtained by implementing the RKHS group lasso algorithm will be
denoted by Ŝ f̂Group Lasso

and θ̂Group Lasso, respectively. From now on, we denote the tuning parameter in
the RKHS group lasso criterion by:

µg =
√

nµ. (15)

Choice of the tuning parameters

While dealing with an optimization problem of a criterion of the form (13), one of the essential steps
is to choose the appropriate tuning parameters. Cross-validation is generally used for that purpose.
Nevertheless in the context of high-dimensional complex models, the computational time for a cross-
validation procedure may be prohibitively high. Therefore, we propose a procedure based on a single
testing dataset:

• we first choose, a grid of values of the tuning parameters µ and γ;
Let µmax be the smallest value of µg (see Equation (15)), such that the solution to the minimiza-
tion of the RKHS group lasso problem for all v ∈ P is θv = 0. We have,

µmax = max
v

(
2∥K1/2

v (Y−Y)∥
)

/
√

n. (16)

In order to set up the grid of values of µ, one may find µmax and then a grid of values of µ could
be defined by µl = µmax/(

√
n× 2l) for l ∈ {1, ..., lmax}. The grid of values of γ is chosen by the

user.

• next, for the grid of values of µ and γ, we calculate a sequence of estimators. Each estimator
associated with the pair (µ, γ) in the grid of values of µ and γ, denoted by f̂(µ,γ), is the solution
of the RKHS ridge group sparse optimization problem or the RKHS group lasso optimization
problem if γ = 0.

• finally, the obtained estimators f̂(µ,γ) are evaluated using a testing dataset, {(Ytest
i , Xtest

i )}ntest

i=1 .

The prediction error associated with each estimator f̂(µ,γ) is calculated by,

ErrPred(µ, γ) =
ntest

∑
i=1

(Ytest
i − f̂(µ,γ)(Xtest

i ))2/ntest,
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where for S f̂ being the support of the estimator f̂(µ,γ) we have,

f̂(µ,γ)(Xtest) = f̂0 + ∑
v∈S f̂

n

∑
i=1

θ̂vikv(Xvi, Xtest
v ).

The pair (µ̂, γ̂) with the smallest value of the prediction error is chosen, and the estimator f̂(µ̂,γ̂)
is considered as the best estimator of the function m, in terms of the prediction error.

In the RKHSMetaMod package, the algorithm to calculate a sequence of the RKHS meta-models,
the value of µmax, and the prediction error are implemented as RKHSMetMod, mu_max, and PredErr
functions, respectively. These functions are described in Section "Overview of the RKHSMetaMod
functions" (supplementary materials), and illustrated in Example 1, Example 2, and Examples 1, 2, 3,
respectively.

Estimation of the Sobol indices

The variance of the function m is estimated by the variance of the estimator f̂ . As the estimator f̂
belongs to the RKHSH, it admits the Hoeffding decomposition and,

var( f̂ (X)) = ∑
v∈P

var( f̂v(Xv)), where ∀v ∈ P , var( f̂v(Xv)) = EX( f̂ 2
v (Xv)) = ∥ f̂v∥2

2.

In order to reduce the computational cost in practice, one may estimate the variances of f̂v(Xv), v ∈ P
by their empirical variances. Let f̂v. be the empirical mean of f̂v(Xvi), i = 1, ..., n, then:

v̂ar( f̂v(Xv)) =
1

n− 1

n

∑
i=1

( f̂v(Xvi)− f̂v.)
2.

For the groups v that do not belong to the support of f̂ , we have Ŝv = 0 and for the groups v that
belong to the support of f̂ , the estimators of the Sobol indices of m are defined by,

Ŝv = v̂ar( f̂v(Xv))/ ∑
v∈P

v̂ar( f̂v(Xv)).

In the RKHSMetaMod package, the algorithm to calculate the empirical Sobol indices Ŝv, v ∈ P
is implemented as SI_emp function. This function is described in Section "Companion functions"
(supplementary materials) and illustrated in Examples 1, 2, 3.

3 Algorithms

The RKHSMetaMod package implements two optimization algorithms: the RKHS ridge group sparse
(see Algorithm 2) and the RKHS group lasso (see Algorithm 1). These algorithms rely on the Gram
matrices Kv, v ∈ P that have to be positive definite. Therefore, the first and essential step in this
package is to calculate these matrices and insure their positive definiteness. The algorithm of this
step is described in the next Section. The second step is to estimate the RKHS meta-model. In the
RKHSMetaMod package, two different objectives based on different procedures are considered to
calculate this estimator:

1. The RKHS meta-model with the best prediction quality.
The procedure to calculate the RKHS meta-model with the best prediction quality has been
described in Section Choice of the tuning parameters: a sequence of values of the tuning
parameters (µ, γ) is considered, and the RKHS meta-models associated with each pair of the
values of (µ, γ) are calculated. For γ = 0, the RKHS meta-model is obtained by solving
the RKHS group lasso optimization problem, while for γ ̸= 0 the RKHS ridge group sparse
optimization problem is solved to calculate the RKHS meta-model. The obtained estimators are
evaluated by considering a new dataset and the RKHS meta-model with the minimum value of
the prediction error is chosen as the best estimator.

2. The RKHS meta-model with at most qmax groups in its support, i.e. |S f̂ | ≤ qmax.
First, the tuning parameter γ is set as zero. Then, a value of µ for which the number of groups
v ∈ P in the solution of the RKHS group lasso optimization problem is equal to qmax, is
computed. This value of µ will be denoted by µqmax. Finally, the RKHS meta-models containing
at most qmax groups in their support are obtained by implementing the RKHS ridge group
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sparse algorithm for a grid of values of γ ̸= 0 and µqmax. This procedure is described in more
details in Section RKHS meta-model with qmax active groups.

Calculation of the Gram matrices

The available kernels in the RKHSMetaMod package are: Gaussian kernel, Matérn 3/2 kernel,
Brownian kernel, quadratic kernel and linear kernel. The usual presentation of these kernels is given in
Table 1. The choice of kernel, that is done by the user, determines the functional approximation space.

Kernel type Mathematical formula for u ∈ Rn, v ∈ R RKHSMetaMod name
Gaussian ka(u, v) = exp(−∥u− v∥2/2r2) "gaussian"
Matérn 3/2 ka(u, v) = (1 +

√
3|u− v|/r) exp(−

√
3|u− v|/r) "matern"

Brownian ka(u, v) = min(u, v) + 1 "brownian"
Quadratic ka(u, v) = (uTv + 1)2 "quad"
Linear ka(u, v) = uTv + 1 "linear"

Table 1: List of the reproducing kernels used to construct the RKHSH. The range parameters r in the
Gaussian and Matérn 3/2 kernels are assumed to be fixed and set as 1/2 and

√
3/2, respectively. The

value 1 is added to the Brownian kernel to relax the constraint of nullity at the origin (Durrande et al.,
2013).

For a chosen kernel, the algorithm to calculate the Gram matrices Kv, v ∈ P in the RKHSMetaMod
package, is implemented as calc_Kv function. This algorithm is based on three essential points:

(1) Modify the chosen kernel:
In order to satisfy the conditions of constructing the RKHS H described in Section "RKHS
construction" of the Appendix (supplementary materials), these kernels are modified according
to Equation "(2)" (see the Appendix (supplementary materials)). Let us take the example of the
Brownian kernel:
The RKHS associated with the Brownian kernel ka(Xa, X′a) = min(Xa, X′a) + 1 is well known to
beHa = { f : [0, 1]→ R is absolutely continuous, and f (0) = 0,

∫ 1
0 f ′(Xa)

2dXa < ∞}, with the

inner product ⟨ f , h⟩Ha =
∫ 1

0 f ′(Xa)h′(Xa)dXa. Easy calculations lead to obtain the Brownian
kernel as follows,

k0a = min(Xa, X′a) + 1− (3/4)(1 + Xa − X2
a /2)(1 + X′a − X′2a /2).

The RKHS associated with kernel k0a is the set H0a = { f ∈ Ha :
∫ 1

0 f (Xa)dXa = 0}, and we
haveH = 1+ ∑v∈P Hv = { f : [0, 1]d → R : f = f0 + ∑v∈P fv(Xv), with fv ∈ Hv}.

Remark 3 In the current version of the package, we consider the input variables X = (X1, ..., Xd) that
are uniformly distributed on [0, 1]d. In order to consider the input variables that are not distributed
uniformly, it suffices to modify a part of the function calc_Kv related to the calculation of the kernels
k0a, a = 1, ..., d. For example, for X = (X1, ..., Xd) being distributed with law PX = ∏d

a=1 Pa on
X =

⊗d
a=1 Xa ⊂ Rd, the kernel k0a associated with the Brownian kernel is calculated as follows,

k0a = min(Xa, X′a) + 1−
(
∫
Xa
(min(Xa, U) + 1)dPa)(

∫
Xa
(min(X′a, U) + 1)dPa)

(
∫
Xa

∫
Xa
(min(U, V) + 1)dPadPa)

.

The other parts of function calc_Kv remain unchanged.

(2) Calculate the Gram matrices Kv for all v:
First, for all a = 1, ..., d, the Gram matrices Ka associated with kernels k0a are calculated using
Equation "(2)" (see the Appendix (supplementary materials)), (Ka)i,i′ = k0a(Xai, Xai′ ). Then,
for all v ∈ P , the Gram matrices Kv associated with kernel kv = ∏a∈v k0a are computed by
Kv =

⊙
a∈v Ka.

(3) Insure the positive definiteness of the matrices Kv:
The output of function calc_Kv is one of the input arguments of the functions associated with the
RKHS group lasso and the RKHS ridge group sparse algorithms. Throughout these algorithms
we need to calculate the inverse and the square root of the matrices Kv. In order to avoid the
numerical problems and insure the invertibility of the matrices Kv, it is mandatory to have these
matrices positive definite. One way to render the matrices Kv positive definite is to add a nugget
effect to them. That is, to modify matrices Kv by adding a diagonal with a constant term, i.e.
Kv + epsilon× In. The value of epsilon is computed based on the data and through a part of
the algorithm of the function calc_kv. Let us briefly explain this part of the algorithm:
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For each group v ∈ P , let λv,i, i = 1, ..., n be the eigenvalues associated with the matrix Kv. Set
λv,max = maxiλv,i and λv,min = miniλv,i. For some fixed value of tolerance tol, and for each
matrix Kv, if "λv,min < λv,max×tol", then, the eigenvalues of Kv are replaced by λv,i+epsilon,
with epsilon being equal to λv,max×tol. The value of tol is set as 1e−8 by default, but one may
consider a smaller or a greater value for it depending on the kernel chosen and the value of n.

The function calc_Kv is described in Section "Companion functions" (supplementary materials) and
illustrated in Example 2.

Optimization algorithms

The RKHS meta-model is the solution of one of the optimization problems: the minimization of the
RKHS group lasso criterion presented in Equation (14) (if γ = 0), or the minimization of the RKHS
ridge group sparse criterion presented in Equation (13) (if γ ̸= 0). In the following, the algorithms to
solve these optimization problems are presented.

RKHS group lasso

A popular technique for doing group wise variable selection is group lasso. With this procedure,
depending on the value of the tuning parameter µ, an entire group of predictors may drop out of
the model. An efficient algorithm for solving group lasso problem is the classical block coordinate
descent algorithm (Boyd et al., 2011; Bubeck, 2015). Following the idea of Fu (1998), Yuan and Lin
(2006) implemented a block wise descent algorithm for the group lasso penalized least-squares under
the condition that the model matrices in each group are orthonormal. A block coordinate (gradient)
descent algorithm for solving the group lasso penalized logistic regression is then developed by Meier
et al. (2008). This algorithm is implemented in the R package grplasso available from CRAN (Meier,
2020). Yang and Zou (2015) proposed a unified algorithm named group wise majorization descent
for solving the general group lasso learning problems by assuming that the loss function satisfies a
quadratic majorization condition. The implementation of their work is done in the gglasso R package
available from CRAN (Yang et al., 2020).

In order to solve the RKHS group lasso optimization problem, we use the classical block coordinate
descent algorithm. The minimization of criterion Cg( f0, θ) (see Equation (14)) is done along each
group v at a time. At each step of the algorithm, the criterion Cg( f0, θ) is minimized as a function
of the current block’s parameters, while the parameters values for the other blocks are fixed to their
current values. The procedure is repeated until convergence. This procedure leads to Algorithm 1 (see
the Appendix (supplementary materials) for more details on this procedure). In the RKHSMetaMod

Algorithm 1 RKHS group lasso algorithm:

1: Set θ0 = [0]|P|×n
2: repeat
3: Calculate f0 = argmin f0

Cg( f0, θ)

4: for v ∈ P do
5: Calculate Rv = Y− f0 −∑v ̸=w Kwθw

6: if 2∥K1/2
v Rv∥/

√
n ≤ µg then

7: θv ← 0
8: else
9: θv ← argminθv

Cg( f0, θ)
10: end if
11: end for
12: until convergence

package, the Algorithm 1 is implemented as RKHSgrplasso function. This function is described in
Section "Companion functions" (supplementary materials) and illustrated in Example 2.

RKHS ridge group sparse

In order to solve the RKHS ridge group sparse optimization problem, we propose an adapted block
coordinate descent algorithm. This algorithm is provided in two steps:

Step 1 Initialize the input parameters by the solutions of the RKHS group lasso algorithm for each value
of the tuning parameter µ, and implement the RKHS ridge group sparse algorithm through the
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active support of the RKHS group lasso solutions until it achieves convergence. This step is
provided in order to decrease the execution time. In fact, instead of implementing the RKHS
ridge group sparse algorithm over the set of all groups P , it is implemented only over the
groups in the support of the solution of the RKHS group lasso algorithm, Ŝ f̂Group Lasso

.

Step 2 Re-initialize the input parameters with the obtained solutions of Step 1 and implement the
RKHS ridge group sparse algorithm through all groups in P until it achieves convergence. This
second step makes it possible to verify that no group is missing in the output of Step 1.

This procedure leads to Algorithm 2 (see the Appendix (supplementary materials) for more details
on this procedure). In the RKHSMetaMod package the Algorithm 2 is implemented as pen_MetMod

Algorithm 2 RKHS ridge group sparse algorithm:
1: Step 1:
2: Set θ0 = θ̂Group Lasso and P̂ = Ŝ f̂Group Lasso

3: repeat
4: Calculate f0 = argmin f0

C( f0, θ)

5: for v ∈ P̂ do
6: Calculate Rv = Y− f0 −∑v ̸=w Kwθw

7: Solve J∗ = argmint̂v∈Rn{J(t̂v), such that ∥K−1/2
v t̂v∥ ≤ 1}

8: if J∗ ≤ γ then
9: θv ← 0

10: else
11: θv ← argminθv

C( f0, θ)
12: end if
13: end for
14: until convergence
15: Step 2:
16: Implement the same procedure as Step 1 with θ0 = θ̂old, P̂ = P▷ θ̂old is the estimation of θ in Step

1.

function. This function is described in Section "Companion functions" (supplementary materials) and
illustrated in Example 2.

RKHS meta-model with at most qmax groups in its support

By considering some prior information about the data, one may be interested in a RKHS meta-model
f̂ with the number of groups in its support not greater than some "qmax". In order to obtain such an
estimator, we provide the following procedure in the RKHSMetaMod package:

• First, the tuning parameter γ is set as zero and a value of µ for which the solution of the RKHS
group lasso algorithm, Algorithm 1, contains exactly qmax groups in its support is computed.
This value is denoted by µqmax.

• Then, the RKHS ridge group sparse algorithm, Algorithm 2, is implemented by setting the
tuning parameter µ equal to µqmax and a grid of values of the tuning parameter γ > 0.

This procedure leads to Algorithm 3. This algorithm is implemented in the RKHSMetaMod package,
as function RKHSMetMod_qmax (see Section "Main RKHSMetaMod functions" (supplementary materials)
for more details on this function).

Remark 4 As both terms in the penalty function of criterion (13) enforce sparsity to the solution, the estimator
obtained by solving the RKHS ridge group sparse associated with the pair of the tuning parameters (µqmax, γ >
0) may contain a smaller number of groups than the solution of the RKHS group lasso optimization problem (i.e.
the RKHS ridge group sparse with (µqmax, γ = 0)). And therefore, the estimated RKHS meta-model contains
at most "qmax" groups in its support.

4 RKHSMetaMod through examples

Simulation study

Let us consider the g-function of Sobol (Saltelli et al., 2009) in the Gaussian regression framework, i.e.
Y = m(X) + ε. The error term ε is a centered Gaussian random variable with variance σ2, and m is the
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Algorithm 3 Algorithm to estimate RKHS meta-model with at most qmax groups in its
support:

1: Calculate µmax = maxv 2∥K1/2
v (Y−Y)∥/

√
n

2: Set µ1 = µmax and µ2 = µmax/rat ▷ rat is setted by user.
3: repeat
4: Implement RKHS group lasso algorithm, Algorithm 1, with µi = (µ1 + µ2)/2
5: Set q = |Ŝ f̂Group Lasso

|
6: if q > qmax then
7: Set µ1 = µ1 and µ2 = µi
8: else
9: Set µ1 = µi and µ2 = µ2

10: end if
11: until q = qmax or i > Num ▷ Num is setted by user.
12: Implement RKHS ridge group sparse algorithm, Algorithm 2, with (µ = µqmax , γ > 0)

g-function of Sobol defined over [0, 1]d by,

m(X) =
d

∏
a=1

|4Xa − 2|+ ca

1 + ca
, ca > 0. (17)

The Sobol indices of the g-function can be expressed analytically:

∀v ∈ P , Sv =
1
D ∏

a∈v
Da, Da =

1
3(1 + ca)2 , D =

d

∏
a=1

(Da + 1)− 1.

Set c1 = 0.2, c2 = 0.6, c3 = 0.8 and (ca)a>3 = 100. With these values of coefficients ca, the variables
X1, X2 and X3 explain 99.98% of the variance of function m(X) (see Table 4).

In this Section, three examples are presented. In all examples, the value of Dmax is set as three. Ex-
ample 1 illustrates the use of the RKHSMetMod function by considering three different kernels, "matern",
"brownian", and "gaussian" (see Table 1), and three datasets of n ∈ {50, 100, 200} observations and
d = 5 input variables. The larger datasets with n ∈ {1000, 2000, 5000} observations and d = 10
input variables are studied in Examples 2 and 3. In each example, two independent datasets are
generated: (X, Y) to estimate the meta-models, and (XT, YT) to estimate the prediction errors. The
design matrices X and XT are the Latin Hypercube Samples of the input variables that are generated
using maximinLHS function of the package lhs available at CRAN (Carnell, 2021):

library(lhs); X <- maximinLHS(n, d); XT <- maximinLHS(n, d)

The response variables Y and YT are calculated as Y = m(X) + ε and YT = m(XT) + εT , where ε, and
εT are centered Gaussian random variables with σ2 = (0.2)2:

a <- c(0.2, 0.6, 0.8, 100, 100, 100, 100, 100, 100, 100)[1:d]
g=1; for (i in 1:d) g = g*(abs(4*X[,i]-2)+a[i])/(1+a[i])
sigma <- 0.2
epsilon <- rnorm(n, 0, sigma^2); Y <- g + epsilon
gT=1; for (i in 1:d) gT = gT*(abs(4*XT[,i]-2)+a[i])/(1+a[i])
epsilonT <- rnorm(n, 0, sigma^2); YT <- gT + epsilonT

Example 1 RKHS meta-model estimation using RKHSMetMod function:

In this example, three datasets of n points maximinLHS over [0, 1]d with n ∈ {50, 100, 200} and d = 5
are generated, and a grid of five values of tuning parameters µ and γ is considered as follows:

µ(1:5) = µmax/(
√

n× 2(2:6)), γ(1:5) = (0.2, 0.1, 0.01, 0.005, 0).

For each dataset, the experiment is repeated Nr = 50 times. At each repetition, the RKHS meta-models
associated with the pair of tuning parameters (µ, γ) are estimated using the RKHSMetMod function:

Dmax <- 3; kernel <- "matern" # kernel <- "brownian" # kernel <- "gaussian"
gamma <- c(0.2, 0.1, 0.01, 0.005, 0); frc <- 1/(0.5^(2:6))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)

These meta-models are evaluated using a testing dataset. The prediction errors are computed for them
using the PredErr function. The RKHS meta-model with minimum prediction error is chosen to be the
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best estimator for the model. Finally, the Sobol indices are computed for the best RKHS meta-model
using the function SI_emp:

Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)
SI <- SI_emp(res, Err)

The vector mu is the values of the tuning parameter µ that are calculated throughout the function
RKHSMetMod. It could be recovered from the output of the RKHSMetMod function as follows:

mu <- vector()
l <- length(gamma); for(i in 1:length(frc)){mu[i] <- res[[(i-1)*l+1]]$mu}

The performance of this method for estimating a meta-model is evaluated by considering a third
dataset (m(Xthird

i ), Xthird
i ), i = 1, ..., N, with N = 1000. The global prediction error is calculated as

follows:

Let f̂r(.) be the best RKHS meta-model obtained in the repetition r, r = 1, ..., Nr, then

GPE =
1

Nr

Nr

∑
r=1

1
N

N

∑
i=1

( f̂r(Xthird
i )−m(Xthird

i ))2.

The values of GPE obtained for different kernels and values of n are given in Table 2. As expected

n 50 100 200
GPEm 0.13 0.07 0.03
GPEb 0.14 0.10 0.05
GPEg 0.15 0.10 0.07

Table 2: Example 1: The columns of the table correspond to the different datasets with n ∈
{50, 100, 200} and d = 5. Each line of the table, from up to down, gives the value of GPE obtained for
each dataset associated with the "matern", "brownian" and "gaussian" kernels, respectively.

the value of GPE decreases as n increases. The lowest values of GPE are obtained when using the
"matern" kernel.

In order to sum up the behaviour of the procedure for estimating the Sobol indices, we consider
the mean square error (MSE) criterion obtained by ∑v(∑

Nr
r=1(Ŝv,r − Sv)2/Nr), where for each group v,

Sv denotes the true values of the Sobol indices, and Ŝv,r is the empirical Sobol indices of the best RKHS
meta-model in repetition r. The obtained values of MSE for different kernels and values of n are given
in Table 3. As expected, the values of MSE are smaller for larger values of n. The smallest values are

n 50 100 200
MSEm 75.12 46.72 28.22
MSEb 110.71 84.99 41.06
MSEg 78.22 94.67 67.02

Table 3: Example 1: The columns of the table correspond to the different datasets with n ∈
{50, 100, 200} and d = 5. Each line of the table, from up to down, gives the value of MSE ob-
tained for each dataset associated with the "matern", "brownian" and "gaussian" kernels, respectively.

obtained when using the "matern" kernel.

The means of the empirical Sobol indices of the best RKHS meta-models through all repetitions
for n = 200 and "matern" kernel are displayed in Table 4. It appears that the estimated Sobol indices

v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum
Sv 43.30 24.30 19.20 5.63 4.45 2.50 0.57 99.98
Ŝv,. 46.10 26.33 20.62 2.99 2.22 1.13 0.0 99.39

Table 4: Example 1: The first line of the table gives the true values of the Sobol indices ×100. The
second line gives the mean of the estimated empirical Sobol indices (Ŝv,. = ∑Nr

r=1 Ŝv,r/Nr) ×100 greater
than 10−2 calculated over fifty simulations for n = 200 and "matern" kernel. The sum of the Sobol
indices is displayed in the last column.

are close to the true ones, nevertheless, they are overestimated for the main effects, i.e. groups
v ∈ {{1}, {2}, {3}}, and underestimated for the interactions of order two and three, i.e. groups
v ∈ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Note that the strategy of choosing the tuning parameters is based
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on the minimization of the prediction error of the estimated meta-model, which may not minimize the
error of estimating the Sobol indices.

Taking into account the results obtained for this Example 1, the calculations in the rest of the
examples is done using only the "matern" kernel.

Example 2 A time-efficient strategy to obtain the "optimal" tuning parameters when dealing with large
datasets:

A dataset of n points maximinLHS over [0, 1]d with n = 1000 and d = 10 is generated. First, we use
functions calc_Kv and mu_max to compute the eigenvalues and eigenvectors of the positive definite
matrices Kv, and the value of µmax, respectively:

kernel <- "matern"; Dmax <- 3
Kv <- calc_Kv(X, kernel, Dmax, TRUE, TRUE)
mumax <- mu_max(Y, Kv$kv)

Then, we consider the two following steps:

1. Set γ = 0 and, µ(1:9) = µmax/(
√

n× 2(2:10)). Calculate the RKHS meta-models associated with
the values of µg = µ×

√
n by using the function RKHSgrplasso. Gather the obtained RKHS

meta-models in a list, res_g (while this job could be done using the function RKHSMetMod by
setting γ = 0, in this example, we use the function RKHSgrplasso in order to avoid the re-
calculation of Kv’s at the next step). Thereafter, for each estimator in res_g, the prediction error
is calculated by considering a new dataset and using the function PredErr. The value of µ with
the smallest error of prediction in this step is denoted by µi. Let us implement this step:
For a grid of values of µg, a sequence of the RKHS meta-models are calculated and gathered in
the res_g list:

mu_g <- c(mumax*0.5^(2:10))
res_g <- list(); resg <- list()
for(i in 1:length(mu_g)){
resg[[i]] <- RKHSgrplasso(Y, Kv, mu_g[i], 1000, FALSE)
res_g[[i]] <- list("mu_g"=mu_g, "gamma"=0, "MetaModel"=resg[[i]])

}

Output res_g contains nine RKHS meta-models and they are evaluated using a testing dataset:

gamma <- c(0); Err_g <- PredErr(X, XT, YT, mu_g, gamma, res_g, kernel, Dmax)

The prediction errors of the RKHS meta-models obtained in this step are displayed in Table 5.
It appears that the minimum prediction error corresponds to the solution of the RKHS group

µg 1.304 0.652 0.326 0.163 0.081 0.041 0.020 0.010 0.005
γ = 0 0.197 0.156 0.145 0.097 0.063 0.055 0.056 0.063 0.073

Table 5: Example 2: Prediction errors associated with the RKHS meta-models computed in step 1.

lasso algorithm with µg = 0.041, so µi = 0.041/
√

n.

2. Choose a smaller grid of values of µ, (µ(i−1), µi, µ(i+1)), and set a grid of values of γ > 0.
Calculate the RKHS meta-models associated with each pair of the tuning parameters (µ, γ) by
the function pen_MetMod. Calculate the prediction errors for the new sequence of the RKHS
meta-models using the function PredErr. Compute the empirical Sobol indices for the best
estimator. Let us go back to the implementation of the example and apply this step 2:
The grid of the values of µ in this step is (0.081, 0.041, 0.020)/

√
n. The RKHS meta-models

associated with this grid of the values of µ are gathered in a new list resgnew. We set γ(1:4) =

(0.2, 0.1, 0.01, 0.005), and we calculate the RKHS meta-models for this new grid of the values of
(µ, γ) using pen_MetMod function:

gamma <- c(0.2, 0.1, 0.01, 0.005); mu <- c(mu_g[5], mu_g[6], mu_g[7])/sqrt(n)
resgnew <- list()
resgnew[[1]] <- resg[[5]]; resgnew[[2]] <- resg[[6]]; resgnew[[3]] <- resg[[7]]
res <- pen_MetMod(Y, Kv, gamma, mu, resgnew, 0, 0)

The output res is a list of twelve RKHS meta-models. These meta-models are evaluated using
a new dataset, and their prediction errors are displayed in Table 6. The minimum prediction
error is associated with the pair (0.020/

√
n, 0.01), and the best RKHS meta-model is then

f̂(0.020/
√

n,0.01).
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µ 0.081/
√

n 0.041/
√

n 0.020/
√

n
γ = 0.2 0.153 0.131 0.119
γ = 0.1 0.098 0.079 0.072
γ = 0.01 0.065 0.054 0.053
γ = 0.005 0.064 0.054 0.054

Table 6: Example 2: Obtained prediction errors in step 2.

The performance of this procedure for estimating the Sobol indices is evaluated using the
relative error (RE) defined as follows:
For each v, let Sv be the true value of the Sobol indices displayed in Table 4 and Ŝv be the
estimated empirical Sobol indices. Then

RE = ∑
v
|Ŝv − Sv|/Sv. (18)

In Table 7 the estimated empirical Sobol indices, their sum, and the value of RE are displayed.

v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum RE
Ŝv 42.91 25.50 20.81 4.40 3.84 2.13 0.00 99.60 1.64

Table 7: Example 2: The estimated empirical Sobol indices ×100 greater than 10−2. The last two
columns show ∑v Ŝv and RE, respectively.

The obtained RE for each group v is smaller than 1.64%, therefore, the estimated Sobol indices in this
example are very close to the true values of the Sobol indices displayed in the first row of Table 4.

Example 3 Dealing with larger datasets:

Two datasets of n points maximinLHS over [0, 1]d with n ∈ {2000, 5000} and d = 10 are generated. In
order to obtain one RKHS meta-model associated with one pair of the tuning parameters (µ, γ), the
number of coefficients to be estimated is equal to n×vMax= n× 175. Table 8 gives the execution
time for different functions used throughout the Examples 1-3. In all examples we used a cluster
of computers with: 2 Intel Xeon E5-2690 processors (2.90GHz) and 96Gb Ram (6x16Gb of memory
1600MHz). As we can see, the execution time increases fast as n increases. In Figure 1 the plot

(n, d) calc_Kv mu_max RKHSgrplasso pen_MetMod |S f̂ | sum

(100,5) 0.09s 0.01s 1s 2s 18 ∼ 3s
2s 3s 19 ∼ 5s

(500,10) 33s 9s 247s 333s 39 ∼ 10min
599s 816s 64 ∼ 24min

(1000,10) 197s 53s 959s 1336s 24 ∼ 42min
2757s 4345s 69 ∼ 2h

(2000,10) 1498s 420s 3984s 4664s 12 ∼ 2h:56min
12951s 22385s 30 ∼ 10h:20min

(5000,10) 34282s 6684s 38957s 49987s 11 ∼ 36h:05min
99221s 111376s 15 ∼ 69h:52min

Table 8: Example 3: The kernel used is "matern". The execution time for the functions RKHSgrplasso
and pen_MetMod is displayed in each row for two pairs of values of the tuning parameters (µ1 =
µmax/(

√
n× 27), γ = 0.01) on up, and (µ2 = µmax/(

√
n× 28), γ = 0.01) on below. In the column |S f̂ |,

the number of groups in the support of each estimated RKHS meta-model is displayed.

of the logarithm of the time (in seconds) versus the logarithm of n is displayed for the functions
calc_Kv, mu_max, RKHSgrplasso and pen_MetMod. It appears that, the algorithms of these functions
are of polynomial time O(nα) with α ⋍ 3 for the functions calc_Kv and mu_max, and α ⋍ 2 for the
functions RKHSgrplasso and pen_MetMod.

Taking into account the results obtained for the prediction error and the values of (µ̂, γ̂) in Example
2, in this example, only two values of the tuning parameter µ(1:12) = µmax/(

√
n× 2(7:8)), and one

value of the tuning parameter γ = 0.01 are considered. The RKHS meta-models associated with the
pair of values (µi, γ), i = 1, 2 are estimated using the RKHSMetMod function:
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Figure 1: Example 3: Timing plot for d = 10, n ∈ {100, 300, 500, 1000, 2000, 5000}, and different
functions of the RKHSMetaMod package. The logarithm of the execution time (in seconds) for the
functions RKHSgrplasso and pen_MetMod is displayed for two pairs of values of the tuning parameters
(µ1 = µmax/(

√
n× 27), γ = 0.01) in solid lines, and (µ2 = µmax/(

√
n× 28), γ = 0.01) in dashed lines.

kernel <- "matern"; Dmax <- 3
gamma <- c(0.01); frc <- 1/(0.5^(7:8))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)

The prediction error and the empirical Sobol indices are then calculated for the obtained meta-models
using the functions PredErr and SI_emp:

mu <- vector(); mu[1] <- res[[1]]$mu; mu[2] <- res[[2]]$mu
Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)
SI <- SI_emp(res, NULL)

Table 9 gives the estimated empirical Sobol indices as well as their sum, the values of RE (see Equation
(18)), and the prediction errors associated with the obtained estimators. For n = 5000 we obtained the

n v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum RE Err

2000 Ŝv;(µ1,γ) 45.54 24.78 21.01 3.96 3.03 1.65 0.00 99.97 2.12 0.052
Ŝv;(µ2,γ) 45.38 25.07 19.69 4.36 3.66 1.79 0.00 99.95 1.79 0.049

5000 Ŝv;(µ1,γ) 44.77 25.39 20.05 4.49 3.38 1.90 0.00 99.98 1.81 0.049
Ŝv;(µ2,γ) 43.78 24.99 19.56 5.43 3.90 2.32 0.00 99.98 1.29 0.047

Table 9: Example 3: The estimated empirical Sobol indices×100 greater than 10−2 associated with each
estimated RKHS meta-model is printed. The last three columns show ∑v Ŝv, RE, and the prediction
error (Err), respectively. We have µ1 = µmax/(

√
n× 27), µ2 = µmax/(

√
n× 28) and γ = 0.01.

smaller values of RE and prediction error (Err). So as expected, the estimation of the Sobol indices as
well as the prediction quality are better for larger values of n.

In Figure 2 the result of the estimation quality and the Sobol indices for the dataset with n equal
to 5000, d equal to 10, and (µ2, γ) are displayed. The line y = x in red crosses the cloud of points
as long as the values of the g-function are smaller than three. When the values of the g-function are
greater than three, the estimator f̂ tends to underestimate the g-function. Concerning the Sobol indices
obtained by the estimator f̂ , as illustrated in the right-hand plot, with the exception of groups {1},
{2}, {3}, {1, 2}, {1, 3}, and {2, 3} for which we obtained significant values of the sobol indices, for all
other groups the estimated sobol indices are very small and almost zero.
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Figure 2: Example 3: On the left, the RKHS meta-model versus the g-function is plotted. On the right,
the empirical Sobol indices in the y-axis and vMax= 175 groups in the x-axis are displayed.

Comparison examples

This section includes two examples. In the first example we reproduce an example from paper Gu
et al. (2019) and compare the prediction quality of the RKHS meta-model with the GP (Kriging)
based meta-models from the RobusGaSP (Gu et al., 2019) and DiceKriging (Roustant et al., 2012)
packages. The objective is to evaluate the quality of the RKHS meta-model and to compare it with
methods recently proposed for approximating complex models. In the first example we consider
one-dimensional model and focus on the comparison between the true model and the estimated
meta-model. In the second example we reproduce an example from paper Roustant et al. (2012) which
allows us to compare the prediction quality of the RKHS meta-model with the Kriging based meta-
model from DiceKriging package, as well as the estimation quality of the Sobol indices in our package
with the well-known package sensitivity. For the sake of comparison between the three methods, the
meta-models are calculated using the same experimental design and outputs, and the same kernel
function available in three packages is used. However, in packages RobustGaSP and DiceKriging
the range parameter r (see Table 1) in the kernel function is estimated by marginal posterior modes
with the robust parameterization and by MLE with upper and lower bounds, respectively, while it is
assumed to be fixed and set as

√
3/2 in the RKHSMetaMod package.

Example 4 "The modified sine wave function":

We consider the 1-dimensional modified sine wave function defined by m(X) = 3sin(5πX) +
cos(7πX) over [0, 1]. The same experimental design as described in Gu et al. (2019) is considered: the
design matrix X is a sequence of 12 equally spaced points on [0, 1], and the response variable Y is
calculated as Y = m(X):

X <- as.matrix(seq(0,1,1/11)); Y <- sinewave(X)

where sinewave function is defined in Gu et al. (2019). We build the GP based meta-models by the
RobustGaSP and the DiceKriging packages using the constant mean function and kernel Matérn 3/2:

library(RobustGaSP)
res.rgasp <- rgasp(design=X, response=Y, kernel_type="matern_3_2")
library(DiceKriging)
res.km <- km(design=X, response=Y, covtype="matern3_2")

As d = 1, we have Dmax = 1. We consider the grid of values of µ(1:9) = µmax/(
√

n× 2(2:10)) and
γ(1:5) = (0.2, 0.1, 0.01, 0.005, 0). The RKHS meta-models associated with the pair of values (µi, γj),
i = 1, · · · , 9, j = 1, · · · , 5 are estimated using the RKHSMetMod function:

kernel <- "matern"; Dmax <- 1
gamma <- c(0.2, 0.1, 0.01, 0.005,0); frc <- 1/(0.5^(2:10))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)
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Given a testing dataset (XT, YT), the prediction errors associated with the obtained RKHS meta-
models are calculated using the PredErr function, and the best RKHS meta-model is chosen to be the
estimator of the model m(X):

XT <- as.matrix(seq(0,1,1/11)); YT <- sinewave(XT)
Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)

To compare these three estimators in terms of the prediction quality, we perform prediction on 100 test
points, equally spaced in [0, 1]:

predict_X <- as.matrix(seq(0,1,1/99))
#prediction with the GP based meta-models:
rgasp.predict <- predict(res.rgasp, predict_X)
km.predict <- predict(res.km, predict_X, type='UK')
#prediction with the best RKHS meta-model:
res.predict <- prediction(X, predict_X, kernel, Dmax, res, Err)

The prediction results are plotted in Figure 3. The black circles that correspond to the prediction
from the RKHSMetMod package are closer to the real output than the green and the blue circles
corresponding to the predictive means from the RobustGaSP and DiceKriging packages. The meta-

Figure 3: Example 4: Prediction of the modified sine wave function with 100 test points, equally
spaced in [0, 1]. The x-axis is the real output and the y-axis is the prediction. The black circles are the
prediction from RKHSMetMod, the green circles are the predictive mean from RobustGaSP, and the
blue circles are the predictive mean from DiceKriging.

model results are plotted in Figure 4. The prediction from the RKHSMetaMod package plotted as
the black curve is much more accurate as an estimate of the true function (plotted in red) than the
predictive mean from the RobustGaSP and DiceKriging packages plotted as the blue and green
curves, respectively. As already noted by Gu et al. (2019), for that sine wave example, the meta-model
from the DiceKriging package "degenerates to the fitted mean with spikes at the design points".

Example 5 "A standard SA 8-dimensional example":

We consider the 8-dimensional g-function of Sobol implemented in the package sensitivity: the func-
tion m(X) as defined in Equation (17) with coefficients c1 = 0, c2 = 1, c3 = 4.5, c4 = 9, (ca)a=5,6,7,8 =
99. With these values of coefficients ca, the variables X1, X2, X3 and X4 explain 99.96% of the variance
of function m(X) (see Table 10).

We consider the same experimental design as described in Roustant et al. (2012): the design
matrices X and XT are 80-point optimal Latin Hypercube Samples of the input variables generated
by the optimumLHS function of package lhs, and the response variables Y and YT are calculated as
Y = m(X), and YT = m(XT) using sobol.fun function of the package sensitivity:

n <- 80; d <- 8
library(lhs); X <- optimumLHS(n, d); XT <- optimumLHS(n, d)
library(sensitivity); Y <- sobol.fun(X); YT <- sobol.fun(XT)
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Figure 4: Example 4: The red curve is the graph of the modified sine wave function with 100 test
points, equally spaced in [0, 1]. The black curve is the prediction produced by the RKHSMetaMod
package. The blue curve is the predictive mean by the DiceKriging package, and the green curve is
the predictive mean produced by the RobustGaSP package.

Let us first consider the RKHS meta-model method. We set Dmax= 3, and we consider the grid of
values of µ(1:9) = µmax/(

√
n× 2(2:10)), and γ(1:5) = (0.2, 0.1, 0.01, 0.005, 0). The RKHS meta-models

associated with the pair of values (µi, γj), i = 1, · · · , 9, j = 1, · · · , 5 are estimated using the RKHSMetMod
function:

kernel <- "matern"; Dmax <- 3
gamma <- c(0.2, 0.1, 0.01, 0.005,0); frc <- 1/(0.5^(2:10))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)

Given the testing dataset (XT, YT), the prediction errors associated with the obtained RKHS meta-
models are calculated using PredErr function, and the best RKHS meta-model is chosen to be the
estimator of the model m(X). Finally, the Sobol indices are computed for the best RKHS meta-model
using the function SI_emp:

Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)
SI <- SI_emp(res, Err)

Secondly, let us build the GP based meta-model. We use the km function of the package DiceKriging
with the constant mean function and kernel Matérn 3/2:

library(DiceKriging)
res.km <- km(design = X, response = Y, covtype = "matern3_2")

The Sobol indices associated with the estimated GP based meta-model are calculated using fast99
function of the package sensitivity:

SI.km <- fast99(model = kriging.mean, factors = d, n = 1000,
q = "qunif", q.arg = list(min = 0, max = 1), m = res.km)

where kriging.mean function is defined in Roustant et al. (2012).

The result of the estimation with the best RKHS meta-model and the Kriging based meta-model is
drawn in Figure 5. The black circles that correspond to the best RKHS meta-model are closer to the
real output than the blue circles corresponding to the GP based meta-model from the DiceKriging
package. Another way to evaluate the prediction quality of the estimated meta-models is to consider
the mean square error of the fitted meta-model computed by ∑80

i=1(m(Xi)− f̂ (Xi))
2/80. We obtained

3.96% and 0.07% for the Kriging based meta-model and the RKHS meta-model, respectively, which
confirms the good behavior of the RKHS meta-model.

The estimated Sobol indices associated with the RKHS meta-model and the Kriging based meta-
model are given in Table 10. As shown, with RKHS meta-model, we obtained non-zero values for the
interactions of order two. Concerning the main effects, excepting the first one, the estimated Sobol
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Figure 5: Example 5: The x-axis is the real output and the y-axis is the fitted meta-model. The
black circles are the meta-model from RKHSMetMod and the blue circles are the meta-model from
DiceKriging.

v {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {1, 2, 3} {1, 2, 4} sum
Sv 71.62 17.90 2.37 0.72 5.97 0.79 0.24 0.20 0.06 0.07 0.02 99.96
Ŝv 75.78 17.42 1.71 0.47 4.00 0.05 0.07 0.28 0.09 0.00 0.00 99.87
Ŝkmv 71.18 15.16 1.42 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.20

Table 10: Example 5: The true values of the Sobol indices ×100 greater than 10−2 are given in the first
raw. The estimated Sobol indices associated with the RKHS meta-model (Ŝv) and the Kriging based
meta-model (Ŝkmv ) are given in second and third rows, respectively.

indices with the RKHS meta-model are closer to the true ones. However, the interactions of order
three are ignored by both meta-models. For a general comparison of the estimation quality of the
Sobol indices, one may consider the criterion RE defined in Equation (18), which is equal to 7.95 for
the Kriging based meta-model, and 5.59 for the RKHS meta-model. Comparing the values of RE, we
can point out that the Sobol indices are better estimated with the RKHS meta-model in that model.

5 Summary and discussion

In this paper, we proposed an R package, called RKHSMetaMod, that estimates a meta-model of a
complex model m. This meta-model belongs to a reproducing kernel Hilbert space constructed as
a direct sum of Hilbert spaces (Durrande et al., 2013). The estimation of the meta-model is carried
out via a penalized least-squares minimization allowing both to select and estimate the terms in the
Hoeffding decomposition, and therefore, to select the Sobol indices that are non-zero and estimate
them (Huet and Taupin, 2017). This procedure makes it possible to estimate the Sobol indices of high
order, a point known to be difficult in practice. Using the convex optimization tools, RKHSMetaMod
package implements two optimization algorithms: the minimization of the RKHS ridge group sparse
criterion (13) and the RKHS group lasso criterion (14). Both of these algorithms rely on the Gram
matrices Kv, v ∈ P and their positive definiteness. Currently, the package considers only uniformly
distributed input variables. If one is interested by another distribution of the input variables, it suffices
to modify the calculation of the kernels k0a, a = 1, ..., d in the function calc_Kv of this package (see
Remark 3). The available kernels in the RKHSMetaMod package are: Gaussian kernel (with the
fixed range parameter r = 1/2), Matérn kernel (with the fixed range parameter r =

√
3/2), Brownian

kernel, quadratic kernel and linear kernel (see Table 1). With regard to the problem being under
study, one may consider other kernels or kernels with different values of the range parameter r and
add them easily to the list of the kernels in the calc_Kv function. For the large values of n and d the
calculation and storage of eigenvalues and eigenvectors of all the Gram matrices Kv, v ∈ P require
a lot of time and a very large amount of memory. In order to optimize the execution time and also
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the storage memory, except for a function that is written in R, all of the functions of RKHSMetaMod
package are written using the efficient C++ libraries through RcppEigen and RcppGSL packages.
These functions are then interfaced with the R environment in order to contribute a user friendly
package.

Bibliography

G. Blatman and B. Sudret. Adaptive sparse polynomial chaos expansion based on least angle regression.
Journal of computational Physics, 230:2345–2367, 2011. [p102]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn., 3(1):1–122,
Jan. 2011. ISSN 1935-8237. doi: 10.1561/2200000016. URL https://doi.org/10.1561/2200000016.
[p109]

S. Bubeck. Convex Optimization: Algorithms and Complexity. Found. Trends Mach. Learn., 8(3-4):
231–357, Nov. 2015. ISSN 1935-8237. doi: 10.1561/2200000050. URL https://doi.org/10.1561/
2200000050. [p109]

R. Carnell. lhs: Latin Hypercube Samples, 2021. URL https://CRAN.R-project.org/package=lhs. R
package version 1.1.3. [p111]

G. M. Dancik and K. S. Dorman. mlegp: statistical analysis for computer models of biological systems
using R. Bioinformatics, 24(17):1966, 2008. [p104]

N. Durrande, D. Ginsbourger, and O. Roustant. Additive Covariance kernels for high-dimensional
Gaussian Process modeling. Annales de la faculté des sciences de Toulouse Mathématiques, 21(3):481–499,
4 2012. URL http://eudml.org/doc/251000. [p102]

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro. ANOVA kernels and RKHS of zero mean
functions for model-based sensitivity analysis. Journal of Multivariate Analysis, 115:57 – 67, 2013. ISSN
0047-259X. doi: https://doi.org/10.1016/j.jmva.2012.08.016. URL http://www.sciencedirect.com/
science/article/pii/S0047259X1200214X. [p101, 103, 108, 119]

W. J. Fu. Penalized Regressions: The Bridge versus the Lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 1998. ISSN 10618600. URL http://www.jstor.org/stable/1390712. [p109]

M. Gu. Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable
Selection. Bayesian Analysis, 14(3):857 – 885, 2019. doi: 10.1214/18-BA1133. URL https://doi.org/
10.1214/18-BA1133. [p104]

M. Gu, X. Wang, and J. O. Berger. Robust Gaussian stochastic process emulation. The Annals of Statistics,
46(6A):3038 – 3066, 2018. doi: 10.1214/17-AOS1648. URL https://doi.org/10.1214/17-AOS1648.
[p104]

M. Gu, J. Palomo, and O. Berger, James. RobustGaSP: Robust Gaussian Stochastic Process Emulation
in R. The R Journal, 11(1):112, 2019. ISSN 2073-4859. doi: 10.32614/rj-2019-011. URL http:
//dx.doi.org/10.32614/rj-2019-011. [p104, 105, 116, 117]

T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The Lasso and Generaliza-
tions. Chapman & Hall/CRC, 2015. ISBN 1498712169, 9781498712163. [p103]

T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonlinear mod-
els. Reliability Engineering & System Safety, 52(1):1 – 17, 1996. ISSN 0951-8320. doi: https://doi.
org/10.1016/0951-8320(96)00002-6. URL http://www.sciencedirect.com/science/article/pii/
0951832096000026. [p102]

S. Huet and M.-L. Taupin. Metamodel construction for sensitivity analysis. ESAIM: Procs, 60:27–69,
2017. doi: 10.1051/proc/201760027. URL https://doi.org/10.1051/proc/201760027. [p101, 103,
119]

H. Kamari. RKHSMetaMod: Ridge Group Sparse Optimization Problem for Estimation of a Meta Model
Based on Reproducing Kernel Hilbert Spaces, 2019. URL https://CRAN.R-project.org/package=
RKHSMetaMod. R package version 1.1. [p105]

M. C. Kennedy and A. O’Hagan. Bayesian Calibration of Computer Models. Journal of the Royal
Statistical Society, Series B, Methodological, 63:425–464, 2000. [p104]

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000050
https://doi.org/10.1561/2200000050
https://CRAN.R-project.org/package=lhs
http://eudml.org/doc/251000
http://www.sciencedirect.com/science/article/pii/S0047259X1200214X
http://www.sciencedirect.com/science/article/pii/S0047259X1200214X
http://www.jstor.org/stable/1390712
https://doi.org/10.1214/18-BA1133
https://doi.org/10.1214/18-BA1133
https://doi.org/10.1214/17-AOS1648
http://dx.doi.org/10.32614/rj-2019-011
http://dx.doi.org/10.32614/rj-2019-011
http://www.sciencedirect.com/science/article/pii/0951832096000026
http://www.sciencedirect.com/science/article/pii/0951832096000026
https://doi.org/10.1051/proc/201760027
https://CRAN.R-project.org/package=RKHSMetaMod
https://CRAN.R-project.org/package=RKHSMetaMod


CONTRIBUTED RESEARCH ARTICLE 121

G. S. Kimeldorf and G. Wahba. A Correspondence Between Bayesian Estimation on Stochastic
Processes and Smoothing by Splines. Ann. Math. Statist., 41(2):495–502, 04 1970. doi: 10.1214/aoms/
1177697089. URL http://dx.doi.org/10.1214/aoms/1177697089. [p105]

J. P. C. Kleijnen. Design and Analysis of Simulation Experiments. Springer Publishing Company, Incorpo-
rated, 1st edition, 2007. ISBN 0387718125, 9780387718125. [p102]

J. P. C. Kleijnen. Kriging metamodeling in simulation: A review. European Journal of Operational
Research, 192(3):707 – 716, 2009. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2007.10.013.
URL http://www.sciencedirect.com/science/article/pii/S0377221707010090. [p102]

L. Le Gratiet, C. Cannamela, and B. Iooss. A Bayesian Approach for Global Sensitivity Analysis of
(Multifidelity) Computer Codes. SIAM/ASA Journal on Uncertainty Quantification, 2(1):336–363, 2014.
doi: 10.1137/130926869. URL https://doi.org/10.1137/130926869. [p102]

L. Le Gratiet, S. Marelli, and B. Sudret. Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions
and Gaussian Processes, pages 1289–1325. Springer International Publishing, Cham, 2017. ISBN
978-3-319-12385-1. doi: 10.1007/978-3-319-12385-1_38. URL https://doi.org/10.1007/978-3-
319-12385-1_38. [p103]

Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression.
Ann. Statist., 34(5):2272–2297, 10 2006. doi: 10.1214/009053606000000722. URL https://doi.org/
10.1214/009053606000000722. [p103]

H. Liu, L. Wasserman, and J. D. Lafferty. Nonparametric regression and classification with
joint sparsity constraints. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, ed-
itors, Advances in Neural Information Processing Systems 21, pages 969–976. Curran Asso-
ciates, Inc., 2009. URL http://papers.nips.cc/paper/3616-nonparametric-regression-and-
classification-with-joint-sparsity-constraints.pdf. [p103]

A. Marrel, B. Iooss, B. Laurent, and O. Roustant. Calculations of Sobol indices for the Gaussian
process metamodel. Reliability Engineering & System Safety, 94(3):742 – 751, 2009. ISSN 0951-8320.
doi: https://doi.org/10.1016/j.ress.2008.07.008. URL http://www.sciencedirect.com/science/
article/pii/S0951832008001981. [p102]

W. Mebane and J. Sekhon. Genetic Optimization Using Derivatives: The rgenoud Package for R.
Journal of Statistical Software, Articles, 42(11):1–26, 2011. ISSN 1548-7660. doi: 10.18637/jss.v042.i11.
URL https://www.jstatsoft.org/v042/i11. [p104]

L. Meier. grplasso: Fitting User-Specified Models with Group Lasso Penalty, 2020. URL https://CRAN.R-
project.org/package=grplasso. R package version 0.4-7. [p109]

L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal
Statistical Society. Series B, 70(1):53–71, 2008. doi: 10.1111/j.1467-9868.2007.00627.x. [p109]

L. Meier, S. van de Geer, and P. Bühlmann. High-dimensional additive modeling. Ann. Statist., 37(6B):
3779–3821, 12 2009. doi: 10.1214/09-AOS692. URL https://doi.org/10.1214/09-AOS692. [p103]

J. E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of complex models: a Bayesian
approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(3):751–769, 2004.
doi: 10.1111/j.1467-9868.2004.05304.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-9868.2004.05304.x. [p102]

G. Raskutti, M. J. Wainwright, and B. Yu. Lower bounds on minimax rates for nonparametric regression
with additive sparsity and smoothness. In Advances in Neural Information Processing Systems, 2009.
[p103]

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal Rates for Sparse Additive Models over
Kernel Classes via Convex Programming. J. Mach. Learn. Res., 13(1):389–427, Feb. 2012. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=2503308.2188398. [p103]

P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 71(5):1009–1030, 2009. doi: 10.1111/j.1467-
9868.2009.00718.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.
2009.00718.x. [p103]

O. Roustant, D. Ginsbourger, and Y. Deville. DiceKriging, DiceOptim: Two R Packages for the
Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization. Journal
of Statistical Software, Articles, 51(1):1–55, 2012. ISSN 1548-7660. doi: 10.18637/jss.v051.i01. URL
https://www.jstatsoft.org/v051/i01. [p104, 105, 116, 117, 118]

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

http://dx.doi.org/10.1214/aoms/1177697089
http://www.sciencedirect.com/science/article/pii/S0377221707010090
https://doi.org/10.1137/130926869
https://doi.org/10.1007/978-3-319-12385-1_38
https://doi.org/10.1007/978-3-319-12385-1_38
https://doi.org/10.1214/009053606000000722
https://doi.org/10.1214/009053606000000722
http://papers.nips.cc/paper/3616-nonparametric-regression-and-classification-with-joint-sparsity-constraints.pdf
http://papers.nips.cc/paper/3616-nonparametric-regression-and-classification-with-joint-sparsity-constraints.pdf
http://www.sciencedirect.com/science/article/pii/S0951832008001981
http://www.sciencedirect.com/science/article/pii/S0951832008001981
https://www.jstatsoft.org/v042/i11
https://CRAN.R-project.org/package=grplasso
https://CRAN.R-project.org/package=grplasso
https://doi.org/10.1214/09-AOS692
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.05304.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.05304.x
http://dl.acm.org/citation.cfm?id=2503308.2188398
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2009.00718.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2009.00718.x
https://www.jstatsoft.org/v051/i01


CONTRIBUTED RESEARCH ARTICLE 122

A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics Com-
munications, 145(2):280 – 297, 2002. ISSN 0010-4655. doi: https://doi.org/10.1016/S0010-4655(02)
00280-1. URL http://www.sciencedirect.com/science/article/pii/S0010465502002801. [p102]

A. Saltelli, S. Tarantola, and K. P.-S. Chan. A Quantitative Model-Independent Method for Global
Sensitivity Analysis of Model Output. Technometrics, 41(1):39–56, 1999. doi: 10.1080/00401706.
1999.10485594. URL https://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485594.
[p104]

A. Saltelli, K. Chan, and E. Scott. Sensitivity Analysis. Wiley, 2009. ISBN 9780470743829. URL
https://books.google.fr/books?id=gOcePwAACAAJ. [p110]

W. Schoutens. Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics. Springer New
York, 2000. ISBN 9780387950150. URL https://books.google.fr/books?id=V2BS_Dmp0XoC. [p102]

I. M. Sobol. Sensitivity Estimates for Nonlinear Mathematical Models. In Sensitivity Estimates for
Nonlinear Mathematical Models, 1993. [p101, 102]

C. Soize and R. Ghanem. Physical Systems with Random Uncertainties: Chaos Representations with
Arbitrary Probability Measure. SIAM Journal on Scientific Computing, 26(2):395–410, 2004. doi:
10.1137/S1064827503424505. URL https://doi.org/10.1137/S1064827503424505. [p102]

B. Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering &
System Safety, 93(7):964 – 979, 2008. ISSN 0951-8320. doi: https://doi.org/10.1016/j.ress.2007.04.
002. URL http://www.sciencedirect.com/science/article/pii/S0951832007001329. Bayesian
Networks in Dependability. [p102]

A. W. Van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 1998. doi: 10.1017/CBO9780511802256. [p101]

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris. Screening, Predicting, and
Computer Experiments. Technometrics, 34(1):15–25, 1992. ISSN 00401706. URL http://www.jstor.
org/stable/1269548. [p102]

N. Wiener. The Homogeneous Chaos. American Journal of Mathematics, 60(4):897–936, 1938. ISSN
00029327, 10806377. URL http://www.jstor.org/stable/2371268. [p102]

Y. Yang and H. Zou. A Fast Unified Algorithm for Solving Group-lasso Penalize Learning Problems.
Statistics and Computing, 25(6):1129–1141, Nov. 2015. ISSN 0960-3174. doi: 10.1007/s11222-014-9498-
5. URL http://dx.doi.org/10.1007/s11222-014-9498-5. [p109]

Y. Yang, H. Zou, and S. Bhatnagar. gglasso: Group Lasso Penalized Learning Using a Unified BMD
Algorithm, 2020. URL https://CRAN.R-project.org/package=gglasso. R package version 1.5.
[p109]

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006. doi: 10.1111/j.1467-
9868.2005.00532.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.
2005.00532.x. [p106, 109]

Halaleh Kamari
UMR 8071 Laboratoire de Mathématiques et Modélisation d’Évry (LaMME)
Bâtiment IBGBI de l’Université d’Evry Val d’Essonne, 23 Bd de France, 91037 Evry CEDEX
France
halala.kamari@gmail.com

Sylvie Huet
UR 1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement (MaIAGE)
Bâtiment 210 de INRAE, Domaine de Vilvert, 78352 JOUY-EN-JOSAS Cedex
France
shuet.inra@gmail.com

Marie-Luce Taupin
UMR 8071 Laboratoire de Mathématiques et Modélisation d’Évry (LaMME)
Bâtiment IBGBI de l’Université d’Evry Val d’Essonne, 23 Bd de France, 91037 Evry CEDEX
France
marie-luce.taupin@univ-evry.fr

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

http://www.sciencedirect.com/science/article/pii/S0010465502002801
https://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485594
https://books.google.fr/books?id=gOcePwAACAAJ
https://books.google.fr/books?id=V2BS_Dmp0XoC
https://doi.org/10.1137/S1064827503424505
http://www.sciencedirect.com/science/article/pii/S0951832007001329
http://www.jstor.org/stable/1269548
http://www.jstor.org/stable/1269548
http://www.jstor.org/stable/2371268
http://dx.doi.org/10.1007/s11222-014-9498-5
https://CRAN.R-project.org/package=gglasso
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00532.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00532.x
mailto:halala.kamari@gmail.com
mailto:shuet.inra@gmail.com
mailto:marie-luce.taupin@univ-evry.fr

	RKHSMetaMod: An R Package to Estimate the Hoeffding Decomposition of a Complex Model by Solving RKHS Ridge Group Sparse Optimization Problem
	Introduction
	Estimation method
	RKHS ridge group sparse and RKHS group lasso procedures
	Choice of the tuning parameters
	Estimation of the Sobol indices

	Algorithms
	Calculation of the Gram matrices
	Optimization algorithms

	RKHSMetaMod through examples
	Simulation study
	Comparison examples

	Summary and discussion


