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Abstract
Recent studies show that district heating infrastructures
should play an important role in future sustainable energy
systems. Tools for dynamic optimization are required to
increase the efficiency of existing systems and design new
ones. This paper presents a novel framework to represent,
simplify, simulate and optimize district heating systems.
The framework is implemented in Python and is based on
Optimica Compiler Toolkit as well as Modelon’s Thermal
Power Library. The high-level description of optimiza-
tion problems using Optimica allows flexible optimization
formulations including constraints on physically relevant
variables such as supply temperature, flow rate and pres-
sures. The benefit of new algorithms for symbolic elimi-
nation in Optimica Compiler Toolkit is also investigated.
The framework is applied on a test case, which is based on
a planned city district located in Graz, Austria. The results
demonstrate the generality of the representation as well as
the accuracy of the simplification for dynamic optimiza-
tion of temperature supply and pressure control. Key-
words: district heating, dynamic optimization, symbolic
elimination

1 Introduction
A major challenge for future energy systems is the design
of systems that integrate large shares of fluctuating
renewable inputs while improving the overall system
efficiency. There are a number of options for increasing
energy system flexibility, including the combination
of different energy domains, increasing supply and
demand flexibility or the integration of energy storage
technologies. Previous research has shown that district
heating infrastructure has the potential to play a key
role in sustainable energy systems (Lund et al., 2014;
Schweiger et al., 2017b). The new generation of district
heating systems (called 4th generation district heating)
plays an integral part of smart energy systems. Among
others these systems will be characterized by intermittent
operations and highly fluctuating supply temperatures.
As reported by (Allegrini et al., 2015), there is much to
be done to explore the full benefit of innovative district
energy systems. They argue that a shift to fully dynamic

models and sophisticated control design would be sup-
portive. Limitations of standard methods rely often on
simplified models, static relationships and single-domain
approaches. Therefore standard approaches are restricted
and thus unsuitable for investigating many issues. The
presented framework is based on the previous work of
some authors (Velut et al., 2014; Runvik et al., 2015;
Schweiger et al., 2017a).

The main contributions of this paper are (i) a demon-
stration of the capabilities of Modelon’s Thermal Power
Library that in version 1.14 will have out-of-the box mod-
els for dynamic thermo-hydraulic optimization of dis-
trict heating systems, (ii) a demonstration of a frame-
work for creating and manipulating district heating net-
works in Python as well as translating networks into exe-
cutable Code for simulation and optimization and (iii) an
investigation of the impact of the new algorithm for sym-
bolic elimination available in JModelica.org and Optimica
Compiler Toolkit (OCT).

2 Tools and languages
Three environments were used within the framework:
(i)The unified network representation and the aggregation
algorithms are implemented in Python; (ii) Dymola is used
to simulate the complex models and (iii) JModelica.org
and OCT were used to solve the dynamic optimization
problem.

2.1 OCT and JModelica.org overview

2.1.1 JModelica.org

JModelica.org (Åkesson et al., 2010) is an open-source
platform developed for simulation, optimization and anal-
ysis of complex dynamical systems. It utilizes the open
Modelica and FMI (Functional Mock-up Interface) stan-
dards and has a Python-based user interface. It is devel-
oped in collaboration between Modelon and several aca-
demic institutions, such as the Department of Automatic
Control and the group of Numerical Analysis at the Centre
for Mathematical Sciences at Lund University.

Of special interest in this project is the dynamic op-
timization capabilities of this tool. An extension of the
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Modelica language called Optimica (Åkesson, 2008) is
used for this purpose. The model dynamics of the opti-
mization models are described using Modelica. To add
the extra information necessary to describe the optimiza-
tion formulation Optimica is used. This means that con-
straints, objective function and optimization time horizon
all can be collected in one easily understandable model.
More details of how optimization problems are solved in
the JModelica.org toolchain are presented in the following
sections.

2.1.2 Optimica Compiler Toolkit
Optimica Compiler Toolkit (OCT) is based on JMod-
elica.org technology, but has several additional features
(Modelon, 2016). One of these is the support for en-
crypted libraries, which is of special interest in relation to
this project. This makes it possible to combine the usage
of commercial libraries, here Modelon’s Thermal Power
Library, with the optimization framework. This lowers
the difficulty for users to solve their own optimization
problems, when predefined components and media mod-
els from the library can be used.

3 District Heating Network Models
A district heating network model for short-term produc-
tion planning must capture the following: (i) transport de-
lays depending on mass flows, (ii) pressure losses and (iii)
heat losses.

3.1 General model properties
The presented framework is based on the physics-based
modeling language Modelica and a high-level, large-scale
dynamic optimization method available in OCT.

High-fidelity models of district heating networks often
have high computation cost and some model properties
like events or non-differentiability make them even un-
usable in dynamic optimization. Hence, there is a need
to design simpler models, in particular regarding size and
differentiability, that can be used for online optimization.
There is also a need to design accurate models that can
be used for dynamic simulation to validate the optimal in-
puts computed based on the simpler model. Models of
both types will be available in Modelon’s Thermal Power
Library 1.14.

Pipes are the central components in district heating sys-
tems. The pipe model for simulation is implemented based
on a plug-flow approach as the solution of the following
one dimensional energy balance:

∂T
∂ t

+ v(t)
∂T
∂x

+
1

Sρcp
q(T (x)) = 0

where v is the fluid velocity, S the cross-section area, ρ the
fluid density, cp the specific heat capacity of the fluid and
q the heat loss to the surroundings of the pipe. The Model-
ica built-in operator spatialDistribution provides
a robust method to approximate the solution of such par-
tial differential equations when there is no heat loss, i.e.

q = 0 (Modelica Association, 2014). The operator keeps
track of the spatial distribution via suitable sampling, in-
terpolation and shifting of the stored distribution and it
also supports flow reversal. Assuming positive flow and a
heat loss q that depends linearly on Tboundary−T (x), the
difference between the surrounding temperature and the
fluid temperature, the temperature at the pipe outlet is

T (x = L, t) = Tboundary +(T (x = 0, t−τ)−Tboundary)e
− τ

Tp

where L is the pipe length, τ the time-varying trans-
port delay and Tp a temperature decay constant. From
the previous equation, it can be seen that the pipe
model with heat loss can be implemented using two
spatialDistribution operators, one to keep track
of the temperature distribution inside the pipe and there-
fore T (x = 0, t− τ), and one to calculate the time-varying
delay τ that is needed to compute the impact of the heat
loss given by e−

τ
Tp .

The spatialDistribution operator can however
not be used in the optimization framework because of in-
sufficient differentiability of the involved equations. The
pipe model for optimization (see Figure 1) contains a com-
bination of a fixed time delay and a discretized dynamic
volume. The goal is to compute the main characteristics of
the pipe without having to use a model with a large num-
ber of segments which would increase model complexity.
The fixed delay is dependent on the range of the mass flow
for each pipe and corresponds to the minimal time delay.
The dynamic volume must capture the flow-dependence
of the varying transport delay. The number of segments
within the dynamic volume depends on the geometry of
the pipe.

Figure 1. Pipe model for optimization consisting (from left to
right) of a dynamic volume model (fluidTransport), a model that
captures the fixed delay (fluidDelay), a model that calculates the
heat losses (fluidHeatLoss) and a model that calculates the pres-
sure drop (friction).

3.2 Case study
The case study represents a district heating network in a
planned city district in Graz/Austria that consists of one
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production unit, 16 consumers and a total length of about
4200 m, see Figure 2. We assume a perfect load prediction
over the entire optimization horizon. Work has also been
done on non-perfect load prediction (Rantzer, 2015), but
was omitted here to focus on other parts of the framework.

Figure 2. The scheme of the district heating system. The pro-
duction unit is seen on the right side; the black/blue circles rep-
resent the 16 consumers.

Optimica files that extend the optimization models are
used to describe the optimization problems. The dynamic
optimization problem used for all optimization cases has
the general form

min.
∫ t f

t0
(αTprod +βd pprod + γQ̇2

prod +δ ḋ p2
prod)dt,

s.t. model dynamics,

mProd(t)≤ mU
Prod ∀t ∈ [t0, t f ],

T L
Customer ≤ TCustomer(t) ∀t ∈ [t0, t f ],

d pL
Customer ≤ d pCustomer(t) ∀t ∈ [t0, t f ],

where Tprod is the supply temperature, d pprod the differ-
ential pressure at the production unit, Qprod the load and
α,β ,γ as well as δ are weights. The load derivative Q̇prod

and the pressure derivative ḋ pprod are the degrees of free-
dom in the optimization formulation. These are squared in
the cost function to penalize fast control signal changes.
mU Prod is the upper limit of the mass flow at the pro-
duction unit and it was set to 65 kg/sec; it is represent-
ing the pump limitations. T L

Customer is the lower limit of
the supply temperature for all customers and it was set to
60 deg.C. The lower limit of the differential pressure for
all customers (d pL

Customer) was set to 0.5 bar. Minimum

supply water temperatures and pressure differences for all
customers were introduced based on real network limits to
satisfy the customers’ demand. The minimization of sup-
ply water temperature and pressure difference for the pro-
duction unit mimics the situation in a real plant where low
temperatures and differential pressures are desirable in or-
der to reduce heating and pumping costs. The weights are
chosen such that a low temperature is given a higher pri-
ority than pressure minimization, as this is the relatively
larger cost in reality. The optimization constraints are in-
equality constraints defined using the min and max vari-
able attributes.

4 Framework
4.1 Overview
A schematic view of the framework is presented in Figure
3 and each step is explained below.

• Step 1: The network is created using a unified net-
work representation that includes data of the net-
work, demand and boundary conditions.

• Step 2: The unified network representation is
translated into executable Modelica code, including
graphics annotations (can be read by any Modelcia
authoring tool). A dynamic simulation with fixed
nominal control signals is performed, to get a nom-
inal operation conditions where the aggregation will
be done (Loewen, 2001).

• Step 3: The original network is aggregated to a size
suitable for optimization. The aggregation depth is
flexible and certain consumers can be excluded from
the aggregation.

• Step 4: The aggregated network is simulated to get
initial trajectories for the dynamic optimization.

• Step 5: The dynamic optimization problem is solved.

• Step 6: The optimal trajectories are applied to the
original network.

Figure 3. Schematic view of the framework showing the dif-
ferent steps for network creation, simulation and optimization.
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4.2 Modeling

4.2.1 District heating network representation

The core of the framework is a unified network represen-
tation implemented in Python. In general, the representa-
tion is applicable for all kinds of network-based energy
systems including district heating systems, gas systems
and power systems. Typically such systems consist of
edges and nodes. Edges could be transmission or distri-
bution lines, gas pipes or pipes within a district heating
system. Nodes could represent consumers and produc-
ers in any energy domain, storage or hybrid technologies.
Such a unified network representation is required for two
reasons. Firstly, an automatically generated simulation or
optimization network model based on a unified network
representation reduces the effort for modeling as well as
the liability for errors. Secondly, several steps require de-
tailed information of the network topology and other steps
change the topology of the network. The unified network
representation consists of three central modules: network
representation, aggregation of the network and translation
into executable simulation/optimization code. The first
two modules are independent of the actual simulation and
optimization language. The library is implemented in the
Python module networkX (Hagberg et al., 2008) that is
suitable for the creation and manipulation of complex net-
works. The network representation is in this paper com-
bined with models from Modelon’s Thermal Power Li-
brary suitable for dynamic simulation and optimization of
district heating systems.

4.2.2 Aggregation method

Dynamic thermo-hydraulic optimization of large-scale
district heating systems is very complex and numerically
challenging. Several concepts approach the problem
by simplifying (some) models (Olsthoorn et al., 2016;
Orehounig et al., 2015), others by simplifying the network
topology using aggregation methods (Larsen et al., 2004;
Grosswindhager et al., 2012). Two methods have been
developed in Denmark and Germany (Larsen et al.,
2004); they are called “the Danish” and “the German”
method. The idea behind the aggregation is (i) to change
the tree structure of a network into a line structure and
(ii) to remove short branches. The German method can
handle network topologies with loops as well; this was
the reason why we implemented the German method in
our framework. Both methods were originally defined
for steady state operation. The methods have different
starting points: The German method conserves volume,
mass flow and temperatures in all nodes. Thus, heat
losses from the original and the aggregated networks are
not exactly the same. The Danish method conserves heat
losses. Thus, the node temperatures of the original and the
aggregated networks are not exactly the same. Previous
works on aggregation methods show that networks can
be aggregated up to a very high level even in dynamic
operations without losing significant accuracy (Loewen,

2001; Larsen et al., 2004).

4.2.3 Generation of Modelica models for simulation
and optimization

The network representations are translated into Modelica
models using Python functions. Based on the informa-
tion in the network, corresponding Modelica code is gen-
erated, complete with annotations to enable visual inspec-
tion of the resulting model. In Figure 4, a generated net-
work for the Graz network is visualized in the diagram
view in Dymola. This method allows for the creation of
complete models for simulation or optimization with com-
ponents, connect statements and parameter values defined
by the network model. Apart from the actual network, the
generated Modelica models intended for optimization also
contain input and output connectors, to handle the control
signals and delay modeling in the optimization setup.

The components of the Modelica models which are
used for optimization in this project come from Modelon’s
Thermal Power Library 1.14.

Both the complete district heating network described in
Section 3.2 and aggregated versions of this are translated
into Modelica models. The complete models are used for
simulation, while the aggregated models are used for opti-
mization and for creating initial trajectories for optimiza-
tion. Different aggregation levels are evaluated in opti-
mization, as explained in Section 5.1.

4.3 Optimization
The OCT toolchain that is used to solve the dynamic
optimization problems starts by transferring the gener-
ated Modelica and Optimica code to CasADi Interface
(Lennernäs, 2013), which has a flattened and symbolic
representation of the model and optimization problem
based on CasADi (Andersson, 2013). This representa-
tion is then propagated to the dynamic optimization al-
gorithm implemented in JModelica.org (Magnusson and
Åkesson, 2015). This algorithm implements direct col-
location (Biegler, 2010) to transcribe the problem into a
nonlinear program (NLP), which is then solved by IPOPT
(Wächter and Biegler, 2006). CasADi is used to compute
first- and second-order sparse derivatives using algorith-
mic differentiation (Griewank and Walther, 2008).

The dynamic optimization framework has recently been
extended to treat delay differential-algebraic equations
where the delay is fixed a priori, which is needed for the
pipe models discussed in Section 3.1. Methods based on
direct, local collocation are well-suited for handling such
models (Betts et al., 2016).

4.3.1 Symbolic elimination

Before the model is transferred to CasADi Interface,
the OCT compiler performs alias elimination, variability
propagation and index reduction. The flattened, fully im-
plicit differential-algebraic equation (DAE) is then trans-
ferred to CasADi Interface and later exposed to the direct
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Figure 4. Modelica model of Graz network generated in Python from network description. The customers are represented by the
orange red house icons, the pipe models are red and blue and the production unit is the gray model located furthest to the left.

collocation.
This approach leads to very large and sparse NLPs be-

cause of the multitude of algebraic variables in the net-
work model. There has been recent work carried out
(Magnusson and Åkesson, 2016) to address this prob-
lem in general by applying a block-lower triangular (BLT)
transformation of the DAE to identify algebraic variables
that only depend affinely on the corresponding block vari-
ables. This allows symbolic elimination of such variables
by forward substitution. Further variables can be elimi-
nated by applying tearing (Meijer, 2011; Baharev et al.,
2016) to handle nonlinear dependencies. The majority of
algebraic variables are thus eliminated prior to discretiza-
tion by direct collocation, drastically reducing the size of
the NLP. However, although the number of variables and
equations are reduced, the resulting NLP Jacobian and
Hessian tend to become more dense as a result, potentially
crippling the performance of the sparse numerical linear
algebra. A novel heuristic, similar to local minimum fill-
in (Duff et al., 1986), is used to identify algebraic variables
that should not be eliminated in order to preserve the spar-
sity of the NLP, typically leading to faster solution times.

In Modelica tools it is common to “eliminate” all al-
gebraic variables by embedding Newton iterations in the
right-hand side of an explicit ordinary differential equa-
tion, which is the foundation of FMI. In the spirit of simul-
taneous discretization, this approach is not used in OCT
to avoid the long evaluation times that may result from
solving implicit equations in each iteration and also the
increased problem density resulting from elimination.

As demonstrated in (Magnusson and Åkesson, 2016),
and as we will also see is the case in this work, the sym-
bolic elimination not only reduces the solution time, but
also improves convergence robustness, that is, probabil-
ity of successfully solving an optimization problem in a
timely manner.

5 Results
The production planning formulation described in Section
3.2 was solved for different optimization and model se-

tups. The goal is to understand the impact of the aggre-
gation level on the production plans and of the symbolic
elimination on the convergence and robustness of the op-
timization problem.

5.1 Optimization setups
The optimization problem was solved for three different
aggregation levels resulting in two, five and seven cus-
tomers. Very little difference in the optimal trajectories
could be observed (data not shown). This indicates that
aggregating the network to just two customers is sufficient
to describe the current network with good accuracy.

The convergence of the optimization algorithm was also
analyzed in detail for each aggregation level, to investi-
gate the scalability of the current approach. All optimiza-
tion cases were run on a laptop with 8 GB RAM and four
2.6 GHz CPUs, with convergence results and optimiza-
tion model statistics displayed in Tables 1 and 2. The re-
sults show that the main benefit of the elimination occurs
for larger network models, when both the time per itera-
tion and the number of iterations is significantly reduced,
resulting in a much better overall performance. The to-
tal time for running the entire script is reduced by more
than a factor 2 and the optimization convergence is also
significantly more robust, as indicated by the number of
iterations and by manual inspection of the output from
IPOPT. For fewer customers, the comparison between the
two methods give less clear results. The overall time for
running the script is approximately the same, as is the ro-
bustness of the convergence. The reason for the similar
performance is that the time gained by eliminating vari-
ables is lost from the extra time needed to perform the
elimination.

5.2 Optimal trajectories
The optimized trajectories are studied for the aggregated
system with five customers. The network aggregation is
displayed in Figure 5, and the trajectories are displayed in
Figure 6. It is clear from the temperature plot that the heat
loss and transport delay are correctly captured in the op-
timization model: the customer at the network periphery
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Table 1. Optimization model statistics.

Nbr of customers 2 5 7
Nbr of states 12 22 30
Nbr of algebraics 136 298 413
Nbr of algebraics a.e 17 45 66
Nbr of variables in NLP 61354 130412 150159
Nbr of variables a.e 18395 39079 45712

Table 2. Optimization convergence results.

Nbr of customers 2 5 7
Without symbolic elimination
Nbr of iterations 29 42 88
IPOPT CPU time [s] 13 163 1103
NLP function eval time [s] 24 60 161
IPOPT total time [s] 103 422 1516
Script total time [s] 120 448 1548
With symbolic elimination
Nbr of customers 2 5 7
Nbr of iterations 31 43 44
IPOPT CPU time [s] 7 31 60
NLP function eval time [s] 25 68 71
IPOPT total time [s] 75 240 314
Script total time [s] 121 431 685

received a slightly colder water and with some delay. It
is also visible that the optimization minimizes pump cost,
i.e. discharge pressure at the producer, while respecting
the differential pressure constraint across the customers’
valve: the customer O, furthest away from the producer
has its dp constraint active most of the time. During high
load, the distribution pump of the producer is at its max-
imum capacity and the mass rate saturates. As a conse-
quence the supply temperature is increased to fulfill the
heat demand of all customers. The temperature increase is
done in advance to compensate for the mass flow depen-
dent delays in the network.

Another interesting phenomenon can be seen when cus-
tomer O, far away from the producer is operating at max-
imum valve opening, at about t=2.5h and 9.5h. Figure 7
displays this phenomenon around the first load peak. It
shows that the increase in the supply temperature at the
producer propagates with the flow in the network and re-
sults in valve closing at the customers close to the pro-
ducer, in the figure illustrated with customer I1, which is
closest to the producer. This shifts the mass flow rate from
the close customers to customer O that gets its higher load
fullfilled. The increase in the producer’s supply tempera-
ture propagates quicker than the speed of the hot water.

5.3 Verification in simulation
The previous section demonstrates that the optimization
method is able to generate optimal trajectories for temper-
ature and pressure that fulfill the operational constraints
from the customers and the distribution network. The net-

Figure 5. Complete and aggregated network models.

work model used for optimization differs however from
the original one as it has been simplified by the aggre-
gation method described in Section 4.2.2. The idea is
now to validate the optimization results and the aggrega-
tion method by applying the optimal trajectories on the
complex model with 16 customers. As the pressure pro-
file would not be applied in reality, the supply pressure at
the production unit is instead manipulated by a controller
that maintains a minimum pressure difference over all cus-
tomers. Only the supply temperature trajectory is applied
to the complex network model. The results are shown in
Figure 8. The supply temperature at the customer furthest
away from the plant is very similar when the optimization
and simulation results are compared. The mass flowrate
computed by the differential controller is also very sim-
ilar to the optimized trajectory. Some differences in the
differential pressure can be seen as the optimization does
not always operate at the minimum value but sometimes
at a higher level to minimize the overall cost. The results
indicate in general that the aggregation to two customers
is good enough for this 16 customers network model.

6 Discussion
This paper presents new features of Modelon’s Thermal
Power Library 1.14 in the field of dynamic optimization
of district heating systems as well as the impact of the
new algorithm for symbolic elimination available in Op-
timica Compiler Toolkit. The new features together with
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Figure 6. Optimal trajectories for an aggregated network model
with five customers.

a unified representation of network-based energy systems
make it possible to analyze, simulate and optimize small
and larger district heating or cooling systems. It is also
possible to include physical constraints based on opera-
tional limitations into the optimization formulation.
Based on the results it can be concluded that the aggre-
gation method achieves accurate results at an aggregation
depth of about 90 %. Furthermore it can be concluded
that the main benefit of the elimination occurs for larger
models where the computation time could be reduced by
more than a factor 2. Enabling the elimination yields an
overall computation time for seven remaining customers
of about 11 minutes and a solution time of about 5 min-
utes. In the context of model predictive control the solu-
tion time is sufficiently low for a real-time application and
it could be further reduced by initializing the optimization
with the results of the latest iteration. In an offline opti-
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Figure 7. Heat to customer O based on mass flow change for
remaining customers.

mizatino context, the overall computation time could also
be reduced by using the optimization results for lower ag-
gregation levels as initial guesses for the optimization of
more complex networks. The next stage of our research
will include scale-up studies and the integration of the unit
commitment problem in the overall framework.

7 Acknowledgements
Fredrik Magnusson acknowledges support from the
LCCC Linnaeus Center and eLLIIT Excellence Cen-
ter at Lund University. Gerald Schweiger acknowl-
edges the Austrian Federal Ministry of Science, Research
and Economics for funding the project “FlexEnergySys
(848346)". Modelon AB acknowledges support from PiiA
– Processindustriell IT och Automation.

References
Johan Åkesson. Optimica—an extension of Modelica support-

ing dynamic optimization. In Proceedings of the 6th Interna-

Session 4D: Control Systems I

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

137



0 2 4 6 8 10 12

Time [hours]

58

59

60

61

62

63

64

65

66

T
e
m

p
e
ra

tu
re

 [
d
e
g
 C

]

Limiting Customer Optimization
Limiting Customer Simulation

Supply temperature for limiting customer

0 2 4 6 8 10 12

Time [hours]

50

55

60

65

70

M
a
ss

 f
lo

w
 [

kg
/s

]

Producer Optimization
Producer Simulation

Total mass flow through the production unit

0 2 4 6 8 10 12

Time [hours]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

D
if
fe

re
n
ti

a
l 
p
re

ss
u
re

 [
b
a
r]

Limiting Customer Optimization
Limiting Customer Simulation

Differential pressure for limiting customer

Figure 8. Comparison between optmization results for two cus-
tomers and simulation results for the complete network with op-
timal inputs.

tional Modelica Conference, pages 57–66, 2008.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problems.
Computers & Chemical Engineering, 34:1737–1749, 2010.

Jonas Allegrini, Kristina Orehounig, Georgios Mavromatidis,
Florian Ruesch, Viktor Dorer, and Ralph Evins. A review of
modelling approaches and tools for the simulation of district-
scale energy systems. Renewable and Sustainable Energy Re-
views, 52:1391–1404, 2015. URL http://dx.doi.org/
10.1016/j.rser.2015.07.123.

Joel Andersson. A General-Purpose Software Framework for
Dynamic Optimization. Ph.D. thesis, Arenberg Doctoral
School, KU Leuven, Belgium, 2013.

Ali Baharev, Hermann Schichl, and Arnold Neumaier. De-
composition methods for solving sparse nonlinear systems
of equations. Submitted for publication. Available on-
line: http://reliablecomputing.eu/baharev_
tearing_survey.pdf, 2016.

John T. Betts, Stephen L. Campbell, and Karmethia C. Thomp-
son. Solving optimal control problems with control delays
using direct transcription. Applied Numerical Mathematics,
108:185–203, 2016.

Lorenz T. Biegler. Nonlinear Programming: Concepts, Al-
gorithms, and Applications to Chemical Processes. MOS-
SIAM, Philadelphia, PA, 2010.

Iain S. Duff, Albert. Erisman, and John K. Reid. Direct Meth-
ods for Sparse Matrices. Clarendon Press, Oxford, United
Kingdom, 1986.

Andreas Griewank and Andrea Walther. Evaluating Deriva-
tives: Principles and Techniques of Algorithmic Differenti-
ation. SIAM, Philadelphia, PA, 2nd edition, 2008.

Stefan Grosswindhager, Andreas Voigt, Martin Kozek, and
A Varying-coefficient Models. Predictive Control of District
Heating Network using Fuzzy DMC. In International Con-
ference on Modelling, Identification and Control, 2012.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Ex-
ploring network structure, dynamics, and function using Net-
workX. Proceedings of the 7th Python in Science Conference
(SciPy 2008), (SciPy):11–15, 2008.

Helge V Larsen, Benny Bøhm, and Michael Wigbels. A com-
parison of aggregated models for simulation and operational
optimisation of district heating networks. Energy Conversion
and Management, 45:1119–1139, 2004.

Björn Lennernäs. A CasADi based toolchain for JModelica.org.
M.Sc. thesis, Department of Automatic Control, Lund Uni-
versity, Sweden, 2013.

Achim Loewen. Entwicklung eines Verfahrens zur Aggregation
komplexer Fernwärmenetze. Ph.D. thesis, Fraunhofer UM-
SICHT, Germany, 2001.

Henrik Lund, Sven Werner, Robin Wiltshire, Svend Svend-
sen, Jan Eric Thorsen, Frede Hvelplund, and Brian Vad
Mathiesen. 4th Generation District Heating (4GDH):
Integrating smart thermal grids into future sustain-
able energy systems. Energy, 68:1–11, 2014. URL
http://www.sciencedirect.com/science/
article/pii/S0360544214002369.

Fredrik Magnusson and Johan Åkesson. Dynamic optimization
in JModelica.org. Processes, 3(2):471–496, 2015.

Fredrik Magnusson and Johan Åkesson. Symbolic elimination
in dynamic optimization based on block-triangular ordering.
Optimization Methods and Software, 2016. Accepted for pub-
lication.

Patrik Meijer. Tearing differential algebraic equations. M.Sc.
thesis, Centre for Mathematical Sciences, Lund University,
Sweden, 2011.

Modelica Association. Modelica R© - A Unified Object-
Oriented Language for Systems Modeling Language
Specification Version 3.3 Revision 1. 2014. URL
https://www.modelica.org/documents/
ModelicaSpec33Revision1.pdf.

Modelon. OPTIMICA Compiler Toolkit, 2016.
URL http://www.modelon.com/products/
optimica-compiler-toolkit/.

Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit

138 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132131



Dave Olsthoorn, Fariborz Haghighat, and Parham A Mirzaei. In-
tegration of storage and renewable energy into district heating
systems : A review of modelling and optimization. Solar En-
ergy, 136:49–64, 2016. URL http://dx.doi.org/10.
1016/j.solener.2016.06.054.

Kristina Orehounig, Ralph Evins, and Viktor Dorer. Integra-
tion of decentralized energy systems in neighbourhoods us-
ing the energy hub approach. Applied Energy, 154:277–
289, 2015. URL http://dx.doi.org/10.1016/j.
apenergy.2015.04.114.

Jonatan Rantzer. Robust production planning for district heating
networks. M.Sc. thesis, Centre for Mathematical Sciences,
Lund University, Sweden, 2015.

Håkan Runvik, Per-Ola Larsson, Stéphane Velut, Jonas Fun-
quist, Markus Bohlin, Andreas Nilsson, and Sara Modarrez
Razavi. Production Planning for Distributed District Heating
Networks with JModelica.org. In 11th International Model-
ica Conference, pages 217–223, 2015.

Gerald Schweiger, Per-Ola Larsson, Fredrik Magnusson,
Patrick Lauenburg, and Stéphane Velut. District heating and
cooling systems – framework for modelica-based simulation
and dynamic optimization. Energy, 2017a. ISSN 0360-5442.
doi:https://doi.org/10.1016/j.energy.2017.05.115. URL
http://www.sciencedirect.com/science/
article/pii/S0360544217308691.

Gerald Schweiger, Jonatan Rantzer, Karin Ericsson, and Patrick
Lauenburg. The potential of power-to-heat in swedish
district heating systems. Energy, 2017b. ISSN 0360-5442.
doi:http://dx.doi.org/10.1016/j.energy.2017.02.075. URL
http://www.sciencedirect.com/science/
article/pii/S0360544217302499.

Stéphane Velut, Per-Ola Larsson, Johan Windahl, Linn Saarinen,
and Katarina Boman. Short-term production planning for dis-
trict heating networks with JModelica.org. In Proceedings of
the 10th International Modelica Conference, pages 959–968,
2014.

Andreas Wächter and Lorenz T. Biegler. On the implementation
of a primal-dual interior point filter line search algorithm for
large-scale nonlinear programming. Mathematical Program-
ming, 106:25–57, 2006.

Session 4D: Control Systems I

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

139


