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Abstract 
This paper presents the result of the work performed to 
develop a virtual test-bed for development and testing of 
Model Predictive Controllers within the district cooling 
networks field. These controllers are used for its 
application in improving the cooling energy efficiency 
in the network’s building. The article explains the use of 
the different tools to develop and simulate the models 
with an emphasis on the advantages and challenges of 
co-simulation and model exchange using the Functional 
Mockup Interface. 
Keywords: District Cooling, Modelling, FMI, Modelica, 
Model predictive control 

1 Introduction 
INDIGO1 is a Horizon 2020 EU-funded project 

carried out by six partners from across Europe that aims 
to realise more efficient and economic planning, control 
and management of existing District Cooling (DC) 
networks. This will be achieved through two specific 
objectives. The first one is to widen the use of DC 
systems and motivate the competitiveness of European 
DC market by the development open-source tools for 
planning and modelling DC systems (del Hoyo Arce et 
al., 2018). The second objective is to reduce primary 
energy consumption via improved DC system 
management strategies aimed at system efficiency 
maximisation and cost minimisation. 

In this paper we present the results of the work 
performed to improve the energy consumption of the 
DC systems across several tasks of the project. This 
includes modelling and simulation of various buildings 
and the development and implementation of Model 
Predictive Controls (MPC) to reduce energy use in 
buildings.  

Modelling and simulation within this paper is 
presented for the Building models. The geometry, 
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materials, weather, air infiltration and internal gains of 
the models are developed in EnergyPlus and the model 
of the energy systems, focusing on the air distribution 
system while air handling units are built in Modelica. 

The aim of the modelling was two-fold. To provide 
an accurate and validated test-bed for testing the 
behaviour of the MPC and, at the same time, generate 
the synthetic data used for the initial development of 
said controllers. 

Model integration across different platforms is 
performed via Functional Mock-up Interfaces and this 
article presents the full workflow on the implementation 
from initial building model development to the 
generation of results from the MPC. 

2 Building Models – EnergyPlus 
In the INDIGO project, all the geometrical models of 

the buildings are created considering the external 
dimensions. This approach influences the way in which 
the linear transmittances of the thermal bridges are 
calculated. To create the model, the following 
information has been collected: 
• Geometry of the building; 
• Geometry and position of the shading objects (e.g. 

other buildings or trees) located around the 
modelled buildings; 

• Distribution of the mechanical ventilation and the 
relative control; 

• Position and properties of opaque and transparent 
elements (walls, roofs, windows, floors, internal 
partitions); 

• Electrical consumption for the different buildings 
and for the main equipment that is installed in them, 
to estimate the internal gains. 

For the development of the models related to the 
buildings, DesignBuilder v4.7.0.027 and EnergyPlus2 
V8.6 were used (Figure 1). It manages input files in .idf 

2 https://energyplus.net/ 
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format, which can be edited in the IDF Editor (free 
available online) or in a text editor. The IDF file 
contains both the input data that the building model 
acquires from the HVAC system model, which is 
developed in Modelica, and the output data that the 
building model transfers to the HVAC system model. 
The weather data are included in an .epw file 
(EnergyPlus weather file).  The information included in 
the .idf file and that one included in the .epw file are 
combined in a file that is readable by Modelica, 
specifically in a .fmu file. The FMU is exported through 
a Python script (Nouidui, Wetter and Zuo, 2014).  

 
Figure 1. Aztarain model (DesignBuilder) 

In the building model, there are thermal zones in 
which the internal air conditions are considered 
uniform. The thermal zones were created based on the 
air conditioning system and of its control logics, to allow 
an accurate modelling of the HVAC systems, as it is 
needed by the INDIGO project. As general rule, the 
zones whose thermal conditions are controlled by the 
same system (AHU) and based on the same sensors are 
modelled as part of the same thermal zone. 

2.1 Thermal Zones and internal gains 
For each building, the zones were created considering 

the following criteria t:  
• Distinction between conditioned, not conditioned 

and specially conditioned zones (e.g. zones with 
special conditioning requirements); 

• If two parts of the same building are served by 
different AHUs the two parts will be modelled 
separately; 

• The creation of the zones considers the location of 
the terminal units, to define if the conditions of some 
rooms are controlled by a post-heating or by a post-
cooling coil. 

• The creation of the zones also considers the location 
of the temperature sensors within the air distribution 
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scheme, to model as close as possible to the reality 
the control logic and the temperature of the sensors 
on which the control logic is based. 
o Rooms whose internal conditions are 

measured by a specific sensor (inside the 
room or in the return duct) are modelled 
separately. 

o The location of the sensor is important 
because it defines the conditions that will be 
used by the control system and therefore 
affects the goal of the project. 

• Internal gains have been modelled based on working 
schedules and a survey which was used to determine 
occupancy levels and equipment inside the zones. 
The occupation of the different zones was modelled 
considering the number of seats or beds represented 
in the architectural drawings.  

2.2 Weather data 
The weather data regarding dry air temperature (°C) 

and relative humidity (%) are taken on site while all the 
other data (solar radiation, wind velocity, wind 
direction, pressure) are taken from the weather station 
“C039 - Deusto” of the Basque agency of meteorology 
(“Agencia vasca de meteorología”)3 . The weather 
station is in the Bilbao city, 2,5 km away from the demo 
site presented in this paper. 

The global radiance on a horizontal surface expressed 
in [W/m2] is information included in the weather file. A 
method provided by Reindl, D.T. et. al (1990) was used 
to estimate the diffuse radiation and the direct radiation 
from the global one. The method was validated for 5 
localities in America and in Europe having very 
different climates (latitudes from 28.4°N to 59.56°N) 
(Reindl, Beckman and Duffie, 1990). 

The sun position is evaluated based on the 
geographical position of the building. 

2.3 Preparation for interfacing with 
Modelica 

To establish the communication between EnergyPlus 
and Modelica the use of the EnergyPlus object 
“ExternalInterface” is necessary. This object activates 
the external interface of EnergyPlus.  

Currently, the only valid entries are PtolemyServer, 
FunctionalMockupUnitImport, and 
FunctionalMockupUnitExport. 

2.3.1 Receiving data from Modelica 
For the INDIGO project, the option 

“FunctionalMockupUnitExport” was selected because 
the EnergyPlus file is exported as a FMU for co-
simulation. The data that Modelica communicates to 
EnergyPlus are: 
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• Sensible load [Qs] (W) due to the air supplied by 

the mechanical ventilation (for every zone of the 
building) 

• Latent load [Ql] (W) due to the air supplied by the 
mechanical ventilation (for every zone of the 
building) 

EnergyPlus considers those loads in the same way as 
the internal thermal gains.  

The use of heat flows instead of typical state variables 
(temperature, air mass flow rate, relative humidity etc.) 
in the data exchange from Modelica to the building 
FMU is motivated by modelling simplifications as 
exchanging state variables would significantly increase 
the computational effort without providing advantages 
over the proposed procedure. 

2.3.2 Sending Data to Modelica 
The data that EnergyPlus communicates to Modelica 

are: 
• Temperature [T] 

o Site Outdoor Air Dry-Bulb Temperature (°C) 
o Zone Mean Air Temperature (°C) (for every 

zone of the building) 
• Relative humidity [RH] 

o Site Outdoor Air Relative Humidity (%) 
o Zone Mean Air Relative Humidity (%) (for 

every zone of the building) 
• Humidity ratio [X] 

o Site Outdoor Air Humidity Ratio 
(kgWater/kgDryAir) 

o Zone Mean Air Humidity Ratio 
(kgWater/kgDryAir) (for every zone of the 
building) 

To calculate the heat flows between the HVAC 
system and the building, Modelica requires knowledge 
of the temperature and humidity conditions of the zones. 
Therefore, these are the variables selected to be 
exchanged from the FMU to Modelica. 

3 HVAC Models – Modelica 
On the demo site for the INDIGO project, six types 

of air handling units were identified. However, for 
reasons of space in this paper, this work focuses on one 
type which is the most common and the one described 
in the case study, for further information please refer to 
(Sterling et al., 2017).  

Modelica models for HVAC systems use components 
based on the Modelica.Fluid library to replicate the 
schematic of the units. In INDIGO, all AHU will have 
fresh (port_F) and supply (port_S) port connections. For 
those units with return air, return (port_R) and exhaust 
(port_E) port connection are added. 

All units will output the heat flow of each active 
component (e.g. heating coils and cooling coils). 

Nominal design conditions have been imposed for the 
cooling coil models since no information about the input 
conditions on the water side of the cooling coils is being 
gathered by the BMS. Such conditions correspond with 
constant input water temperature and constant 
maximum mass flow rate achieved when valve is 100% 
open.  

3.1 AHU Model 
For this research work, a full-sized air handling unit 

type is demonstrated. It is composed of: 
• Heat recovery (HR): two heat exchangers 

interconnected via a water circuit; 
• Cooling Coil (CC); 
• Heating Coil (HC); 
• Fans; 
• Humidifier (H); 
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Figure 2. Schematic of the AHU under study 

Table 1. AHU Model Components and Variables. 
Type: M: Measurement, I: Input  

Component Variable Type # 
Fan Supply air mass flow rate M 1 
Fan Return air mass flow rate M 2 
Heating Coil Valve position I 3 
Cooling Coil Air output T M 4 
Cooling Coil Valve position I 5 
Cooling Coil Air input T M 6 
Cooling Coil Air input RH M 7 
Cooling Coil Air output RH M 8 
Cooling Coil Water mass flow rate M 9 
Cooling Coil Water input T M 10 
HR Supply  Air input T M 11 
HR Supply  Air input RH M 12 
HR Exhaust  air input T M 13 
HR Exhaust  Air input RH M 14 
HR Exhaust  water mass flow rate M 15 
Humidifier Air output T M 16 
Humidifier Air output RH M 17 
Humidifier Valve position I 18 
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HR Exhaust  Air output T M 19 
HR Exhaust Air output RH M 20 
HR water Pump pressure M 21 
Heating Coil Air output T M 22 
Heating Coil Air output RH M 23 
Heating Coil Water input T M 24 
Cooling Coil Water output T M 25 
Fan Supply Pump pressure M 26 
Fan Return Pump pressure M 27 

3.2 AHU Controllers 
The AHU has an associated control system (named 

AHU_controller) emulating the behaviour of the real 
system as closely as possible with the available data 
(e.g. O&M manuals from the demo site). 

The AHU_controller operates in a mode-switching 
hybrid system, i.e., it is a system that can operate in 
multiple modes, and can switch between these modes 
either through continuous- or discrete-valued signals. 
The AHU can operate in 2 nominal modes for 
temperature control: (1) when the controlled 
temperature is above its set-point plus dead-band 
(T_ASP) and (2) when the controlled temperature is 
below its set-point minus dead-band (T_BSP):  

In the case of T_ASP, the AHU_controller shall: 
• Modulate the opening signal valve of the Heating 

Coil towards the fully closed position. 
• Modulate the opening signal valve of the Cooling 

Coil towards the fully opened position. 
In the case of T_BSP, the AHU_controller shall: 

• Modulate the opening signal valve of the Cooling 
Coil towards the fully closed position.  

• Modulate the opening signal valve of the Heating 
Coil towards the fully opened position  

All modulations are performed via PID control. 
In this controller humidity control operates 

independently from the heating/cooling operation. For 
humidity control, the AHU can also operate in two 
nominal modes: (1) when the controlled relative 
humidity is above its set-point plus dead-band 
(RH_ASP) and (2) when the controlled relative 
humidity is below its set-point minus dead-band 
(RH_BSP).  

In the case of RH_ASP, the AHU_controller shall: 
• Modulate the opening signal valve of the Cooling 

Coil towards the fully opened position. 
• Modulate the opening signal valve of the Humidifier 

towards the fully closed position. 
In the case of RH_BSP, the AHU_controller shall: 

• Modulate the opening signal valve of the Cooling 
Coil towards the fully closed position. 
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• Modulate the opening signal valve of the Humidifier 
Coil towards the fully opened position 

All modulations are performed via PID control. 
In this controller, heat recovery control operates 

independently from the heating/cooling operation. Heat 
recovery operates in on/off mode as follows: 
• If (Cooling Coil valve > 0 and dH > 0) or (Heating 

Coil valve > 0 and dH < 0) then 1.0 else 0.0. 
According to maintenance personnel from the demo 

site, fans operate at fixed mass flow rate 100%. Hence, 
in this controller, fan output is always true. 

4 Whole Building Model 
4.1 FMU Interfacing 

EnergyPlus is a well-established, whole building 
energy simulation tool that considers a broad range of 
different characteristics of the buildings. It is an optimal 
tool to simulate the long-term (days, months and years) 
energy performance of the buildings. However, the 
implementation of the HVAC systems within 
EnergyPlus does not account for dynamics of diverse 
elements of such systems (heat exchangers, ducts, 
boilers, etc.) making this tool poorly accurate for short-
term (minutes and hours) simulations. To overcome this 
issue, we decided to integrate an EnergyPlus model of 
the buildings (geometry, materials, weather, internal 
gains) with HVAC models developed in Modelica via 
the Functional Mock-up Interface4. Figure 3 shows the 
data exchange, at each time-step, between HVAC model 
in Modelica and each zone in the EnergyPlus building 
model. 

Modelica
AHU and air 
distribution 

model

EnergyPlus
Zone Model

Supply Air Sensible Load
Supply Air Latent Load

Zone Temperature
Zone Relative Humidity
Zone Absolute Humidity
Weather Conditions

 
Figure 3. Modelica/EnergyPlus data exchange 
diagram. 

4.2 INDIGO demo site model 
To demonstrate the approach INDIGO has taken 

towards developing the models, part of a building that is 
supplied by a single air handling unit has been selected. 
This zone is called “Aislamiento” since it is the section 
where isolation rooms for immunodepressed patients 
are hospitalised. Hence, the Aislamiento zones are 
conditioned by a specific AHU because in those rooms 
the requested conditions are different. This AHU, which 
structure is identical to the one in Figure 2, supplied two 
zones that are kept at a pressure positive state. Figure 4 
shows the main blocks of the model with corresponding 
variable exchange as built in Modelica. 
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Figure 5. AHU Modelica Schematic 

In Figure 4, T stands for Temperature, RH for relative 
humidity, x for absolute humidity, Qs for sensible heat, 
Ql for latent heat, PHC for post-heating coil and SP for 
setpoint. As mentioned, the model takes as inputs 
weather data and set-points and exchanges with the 
EnergyPlus FMU sensible and latent loads calculated 
also using the FMU Zone’s information for indoor air 
conditions. 

To use this model in the MPC developments, the 
whole building (AHU in Modelica and physical model 
in EnergyPlus-FMU) model was packaged in a FMU as 
shown in Figure 6. 

From the whole building FMU (Figure 6), the model 
only needs as inputs weather data and outputs all the 
necessary variables to produce data for developing and 
training the MPC controllers. This includes not only the 
environmental conditions of the air in different point of 
the energy path but also the energy consumption of 
relevant elements such as coils. 

 
Figure 6. Whole Building FMU Schematic 

4.3 Model simulation 
Results from simulating the model for 1-year are 

presented in Figure 5. The purpose of performing the 
simulation was to validate the suitability of the model 
for use in MPC, to validate the values provided in the 
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Figure 4. Results from 1-year simulation  
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results were coherent, to check correct the integration of 
the different simulation tools via FMU and to check the 
proper implementation of the low-level controls. The 
model behaves as expected albeit some spikes appear 
that show in the middle of the year simulation which are 
caused by the mode-changing (e.g. state machine) 
implementation of the control system. However, such 
spikes do not affect the overall behaviour and result 
from the model. 

5 Interfacing for MPC and results 
This section provides details on the development of 

the Model Predictive Controller for the Air Handling 
Unit based on the FMU described in the previous 
section. 

5.1 Interfacing scheme 
Figure 7 shows the general interfacing scheme 

between the whole building models and the MPC 
development framework. 

 
Figure 7 MPC development platform 

The main purpose of the whole building models is to 
generate synthetic data to train the MPC algorithm on 
one side and on the other side to be used as a test-bed to 
check that the developed MPC performs as expected. 
The MPC algorithm development is explained in the 
following sections. 

5.2 Design of the MPC 
The developed MPC aims at minimising the energy 

consumption at building level while maintaining 
thermal comfort. The MPC is based on iterative, finite-
horizon, optimisation of the objective function based on 
the dynamic model of the plant. The optimization is 
defined over the interval [k,k+H],  where k is the current 
time and H is the prediction (optimisation) horizon. 
Typically, only the first (discrete time) step of the 
solution is implemented, then the plant state is sampled 
again, and a new optimization is repeated in a receding 
horizon fashion (see Figure 8).  

 
Figure 8. General diagram of a MPC. 
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 The optimization (control) variables are the supply 
temperature, 𝒙𝒙𝒕𝒕, and the supply relative humidity (RH), 
𝒙𝒙𝒓𝒓𝒓𝒓, setpoints for the AHU. The function 
(𝒕𝒕𝒓𝒓,𝒓𝒓𝒉𝒉𝒓𝒓,𝒑𝒑𝒄𝒄,𝒑𝒑𝒉𝒉) = 𝑓𝑓(𝒙𝒙𝒕𝒕,𝒙𝒙𝒓𝒓𝒓𝒓,𝚯𝚯) is the building model 
that predicts the room temperature, room RH and the 
cooling and heating power as function of the control 
variables and the external inputs (predicted weather 
conditions and past room state). The problem computes 
the optimal setpoints for a prediction horizon of 24 
hours. The objective function has two terms: 1) energy 
consumption and 2) deviation from desired comfort 
level. The regularization weight λ is a positive constant 
that balances the trade-off between energy consumption 
and desired thermal comfort. The constraints impose 
lower and upper bounds for the supply AHU set-points 
and for the room temperature and RH. Smoothness 
constraints are also included to avoid abrupt changes in 
the setpoints in time.  

We tested two types of reduced models for the MPC: 
1) First principle based models and 2) long short-term 
memory recurrent neural network (LSTM-NN). The 
first-principle based model uses a simplified physical 
model for the AHU coupled with a linear auto-
regressive model for the room envelope. The 
coefficients of the auto-regressive model can be updated 
every week, or every season based on observed data. 
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The LSTM-NN is a purely data-driven model that 
represents the whole system as an input-output function. 
The LSTM-NN is trained from simulated data (model 
from sections 3 and 4) using different weather profiles 
and setpoint strategies to avoid overfitting and achieve 
a good approximation of the system dynamics. 

5.3 Results from the MPC 
We tested the developed MPC in a simulation model 

of the building demo zone in the test site. The model 
consists of a room with an AHU. The MPC was tested 
using both the reduced physical models and NN models 
in the optimization for a period of 28 days in summer 
(June-July) with the constraints described in Table 2. 

Table 2. Constraints imposed in the MPC problem. 
Ideal room 

temp. (𝑡𝑡𝑖𝑖) 
21.5 °C Ideal room 

RH (𝑟𝑟ℎ𝑖𝑖) 
50% 

Max. room 
temp. (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) 24 °C Max. room 

RH (𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑚𝑚) 55% 

Min. room 
temp. (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) 20 °C Min. room RH 

(𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑚𝑚) 45% 

Max. supply 
temp. (𝑥𝑥𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚) 27 °C Max. supply 

RH (𝑥𝑥𝑟𝑟ℎ,𝑚𝑚𝑚𝑚𝑚𝑚) 65% 

Min. supply 
temp. (𝑥𝑥𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚) 21 °C Min. supply 

RH (𝑥𝑥𝑟𝑟ℎ,𝑚𝑚𝑚𝑚𝑚𝑚) 45% 

The results are summarized in Table 3 also showing 
the results obtained using a standard PID controller for 
the room. The MPC is evaluated using two scenarios: a 
low comfort configuration with λ=1 and a higher 
comfort configuration with λ=100. The MPC coupled 
with the NN model and with λ=1 yield savings of 
approximately 62% in the cooling energy and 26% in 
the heating energy compared to the PID controller. 
However, it should be noted that the NN-based MPC 
achieves an average room temperature close to the ideal 
temperature but the room RH is far from the ideal. On 
the other hand, the results with λ=100 achieve room 
temperatures and RH close to the ideal ones at the 
expense of having a slightly larger energy consumption 
than the PID controller. In addition, it should be noted 
that the NN-based MPC are able to follow better the 
thermal comfort constraints than the Physical MPC. OIt 
is worth noticing that the RH has a big impact in the 
overall energy consumption of the building, thus, better 
strategies for RH control should be investigated, e.g. 
wider range for RH. 

6 Conclusions 
This paper presented the developments of a detailed 
building energy model aimed at improving cooling 
control for further coupling with District Cooling.  

6.1 Modelica use 
In INDIGO, some advantages in the use of Modelica 

for modelling the energy systems where demonstrated: 

Table 3. MPC results for 28 days between June and 
July using reduced Physical models (Ph-MPC) and NN 
models (NN-MPC). 
 Ph-MPC NN-MPC  

PID λ
= 1 

λ
= 100 

λ
= 1 

λ
= 100 

Cooling energy 
(kWh) 14,227 4,648 15,244 5,286 15,063 

Heating energy 
(kWh) 9,234 7,726 13,051 6,759 11,942 

MAD temp. (ºC) 0.16 2.27 2.01 1.13 1.16 
Mean temp. (ºC) 21.47 23.77 23.51 22.54 22.6 
STD temp. (ºC) 0.2 1.11 0.96 0.95 0.89 
Min temp. (ºC) 19.49 21.4 21.45 20.02 20.25 
Max temp. (ºC) 23.28 26.74 26.08 27.06 26.31 
MAD RH (%) 3.47 4.66 5.15 8.19 2.41 
Mean RH (%) 52.31 53.98 45.09 57.23 48.57 
STD RH (%) 3.7 4.49 2.81 6.92 2.82 
Min RH (%) 20.96 0.05 4.69 39.37 0.06 
Max RH (%) 93.98 96.86 60.36 99.26 96.45 
• The hybrid modelling approach the Modelica 

enables in a single tool simplifies the modeler 
work, reduces error and provides an easier to use 
and understand approach to system’s modelling. 
In Modelica, mechanical, electrical, and 
thermodynamic modelling can be integrated in 
the same model, including control algorithms; 

• The object-oriented approach enables model 
reusability on the one side and on the other side, 
allows for modelling the physical systems 
following the physical structure as opposed to a 
signal structure used in other languages. This 
provides the clear advantage that models are 
easier to understand; 

• The extension capabilities of Modelica via the 
Functional Mock-up Interface allowed to 
integrate models from different tools using an 
independent and standardized API into the MPC 
development environment, thus providing an 
integral solution for data analysis, simulation and 
optimization in one single environment. 

6.2 Functional Mock-up Interface use 
Given the variety of development tools used in 

INDIGO, to avoid the imposition of a single tool, which 
would have limited developments and to allow a 
seamless integration of the different developments, the 
use of Functional Mock-up units was agreed since all 
development tools were found to be compatible with the 
FMI standard. Embarking in such approach provided 
several benefits but also some challenges for INDIGO 
development which are described in the following 
sections.  
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6.2.1 Benefits 

Amongst the benefit of using the FMI standard we 
found: 
• FMI is a standardised approach. For developers this 

means there is less effort in the integration between 
tools. They only need to agree on the variables to be 
exchanged as opposed to have to develop the 
integration interface itself. 

• The FMI is tool-independent which translates in a 
seamless model exchange across different tools 

• Models can be re-used for different purposes. This 
is a combined advantage between the use of 
Modelica and the use of FMI. All public variables 
can be made accessible by the FMU which means 
that there is no need to change the model in case a 
new variable needs to be exported. This results in 
less effort and better quality of the developments 
produced with FMI and Modelica based models. 

6.2.2 Challenges 
In INDIGO, the use of the FMI standard also exposed 

some challenges: 
• Ensuring the efficiency and robustness of the 

models is fundamental for the FMUs generated in 
terms of usability, performance and error-handling 
when running simulations and generating data; 

• While the standard for data exchange is certainly 
excellent, the integration over two platforms 
presents another challenge in the standardisation of 
the data to be exchanged. 

• Different simulation tools might provide different 
results mainly due to the use of different solvers. 
This is something that needs to be acknowledged 
since it is, for the time being and for a typical 
modeller, not trivial; 

• The parametrization of the models is not necessarily 
evident when doing model exchange, thus it 
requires modeller’s attention; 

• Documentation of the FMU needs to be provided 
separately from the model. If the modeller is used to 
Modelica where the documentation is contained 
within the model, this might be overlooked when 
exchanging the models 

6.3 MPC implementation 
MPC is a powerful control strategy that anticipates to 

future events and takes control actions accordingly. 
However, in order to achieve real-time control, the 
optimization problem has to be solved faster than the 
sampling time of the system. Thus, the reduced models 
used within the MPC are of great importance. On one 
hand, the model needs to be sufficiently simple and fast 
to be used in the optimization loop, and on the other 
hand, the model needs to be accurate enough to avoid 

erroneous control strategies due to approximation errors 
by the reduced models. 

In INDIGO, we have explored the use of NN as 
reduced models for MPC with satisfactory results. The 
advantages of NN, especially recurrent NN such as the 
LSTM-NN, are twofold: firstly, fast computation time 
to allow its use within the MPC, and secondly, high 
accuracy in the modelling to capture both slow and rapid 
dynamics of the system. However, in order to capture 
the correct dynamic behaviour of the system, the NN has 
to be trained with data that explore a large portion of the 
data space and model dynamics, which is not often the 
case with data collected from a real site. Therefore, 
simulation platforms, such as the one developed in 
INIDIGO, are a great tool to generate training data for 
NN models within a MPC. 
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