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Abstract
Most advanced mathematical methods for the analysis of
numerical model cannot cope with functional outputs of
dynamic Modelica models. Principal component analy-
sis is a well established method for dimension reduction,
and can be used to tackle this issue. It relies however on
a linear hypothesis that limits its applicability. We illus-
trate on a case study how the non linear method of auto-
associative model overcomes this shortcoming and pro-
vides physically interpretable data representations.
Keywords: dimension reduction, functional data anal-
ysis, FMI, OtFMI, principal component analysis, auto-
associative model, sensitivity analysis.

1 Introduction
The advent of the functional mock-up interface (FMI) and
the emergence of associated tools considerably facilitated
the analysis of Modelica models with advanced mathe-
matical methods. Sensitivity analysis, model emulation,
Bayesian inference and the like can now be performed
routinely using scripting language such as Python (Girard
and Yalamas; Girard et al., 2018) except for a substantial
hurdle: many Modelica models are dynamic, and func-
tional outputs are difficult to handle. Dimension reduction
is a means to sidestep this difficulty. Principal component
analysis (PCA) is by far the most prominent method for
dimension reduction. This almost one century old statis-
tical learning method (Hotelling, 1933) has been applied
in virtually all fields where data are available. It is easy
to implement and to understand, and relatively robust. It
relies however on the hypothesis that the variables at hand
can be aggregated into linear combinations, which unfor-
tunately is not true for many dynamic model outputs. We
illustrate this issue on a simple case study, and show how
an alternative approach of more general applicability, the
auto-associative model (AAM), allows to overcome it. Fi-
nally, we show how low dimension representations pro-
duced by AAM can be leveraged to get insights about the
modelled physical phenomena.

2 Why reducing the dimension of dy-
namic model?

A computer experiment is the analysis of the output of
a model obtained by varying its inputs according to a
design of experiment. Modelica models are more often

than not dynamic, namely their outputs are functions of
time. Discretised time functions are high dimensional vec-
tors which considerably obstructs the analysis. First, it is
subjected to the “curse of dimensionality” (Houle, 2015),
namely a variety of undesirable consequences of increas-
ing the dimension. For instance, the volume of a cube in-
creases exponentially with its dimension, and sample size
required to densely fill it become quickly prohibitive. Dis-
tances in large dimension spaces loose their discriminating
power, especially when the component variables are cor-
related, which is specially true for discretised time func-
tions. Indeed, it is not straightforward to compare curves
as it is with numbers. In statistical analysis, modelling the
joint distribution of a set of more than 4 dependent vari-
ables, for instance using kernel estimation, is generally in-
tractable.

Actually, the great majority of mathematical methods
involved in computer experiments apply to models with
scalar outputs. For instance, sensitivity analysis (Saltelli
et al., 2008) aims at measuring the relative influence of
the inputs on an output. Applying sensitivity analysis to
each of them individually yields sensitivity indices that
are functions of time: the output values at each chosen
time step can be considered as distinct output variables.
This approach to sensitivity analysis, sometimes deemed
“sequential” (Girard, 2014, chapter 7) has its merits but is
difficult to interpret.

Model emulation (also known as meta-modelling or
surrogate modelling) is another technique that cannot cope
with high dimensional outputs. It consists in substituting
a CPU inexpensive mathematical approximation for a nu-
merical model in order to achieve large sample size re-
quired for instance by some optimisation techniques, or
for Bayesian parameter estimation, or to enable instanta-
neous interaction with the model. Kriging is an example of
method for emulating numerical models (Roustant et al.,
2012).

A common expedient to enable analysing functional
outputs is to project them on a function basis (Campbell
et al., 2006). When there is no obvious candidate, prin-
cipal component analysis allows to automatically build an
adapted basis.

3 Linear dimension reduction with
principal component analysis

The geometric approach to PCA provides the most intu-
itive understanding of the method. The discretisation in d
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Figure 1. The first 6 trajectories of the training set when only
the coefficient of restitution varies.

steps of N realisations of a functional model output can be
seen as a point cloud of N points in Rd . PCA then finds
the axes along which data spread the most. These axes,
called principal directions, have the property to minimise
the distances between the points of the point cloud and
their projection on the axes (Jolliffe and Cadima, 2016).

Each principal direction defines a linear combination of
the initial d variables called principal components. The
projection of the data points along the principal directions
are called scores.

The principal directions of the data set are sequentially
built, so as to be mutually orthogonal. The set of the prin-
cipal directions form a new basis in the space Rd . The
k first principal directions, k ∈ {1, . . . ,d}, form a basis of
the linear subspace of dimension k that best contains the
scatter plot. Thus, PCA finds the linear subspace of given
dimension (or hypercube, because the span of the data is
usually limited) that best contains the point cloud.

3.1 PCA of the bouncing ball model
We applied PCA to a set of 128 trajectories of the famous
bouncing ball model adapted by Tiller (2015)1: a ball is
dropped from a given height and bounce back touching the
ground with a fraction of the velocity it acquired during
the fall determined by a fixed coefficient of restitution.

The trajectories were simulated with coefficient of resti-
tution sampled between 0.7 and 0.9. following a Sobol’
sequence (Sobol’, 1979) so as to avoid redundancies. We
used an FMU generated with OpenModelica, and the
OtFMI Python module2 (Girard, 2017) to carry out the
simulations. Figure 1 displays the first 6 trajectories of
this training set. All trajectories coincide before the first
bounce at 0.45 s and increasingly deviate from one another
at each subsequent bounce.

We simulated the next 896 (= 1024− 128) trajectories
of the Sobol’ sequence to serve as a test sample for eval-
uating the performance of PCA. They were discretised
at 300 evenly spaced time steps. Because the model has a

1The adapted bouncing ball model is available at http://book.
xogeny.com/behavior/discrete/bouncing/.

2https://github.com/openturns/otfmi.

single input, the intrinsic dimension of the set of trajecto-
ries, namely the smallest number of parameters required
to fully parametrise it, is 1. The test trajectories were
projected onto the first principal direction and compared
to their original counterpart. The top panel of Figure 2
compares the worst reconstructed trajectory to the origi-
nal. Here “worst” understands as resulting in the biggest
root mean squared error (RMSE) between reconstruction
and original. It must be noted however that the first 28 test
trajectories sorted by decreasing RMSE are very similar
to one another, as well as to those sorted by decreasing
absolute error or relative error. Beyond that rank, the ab-
solute error ranking diverges substantially from the two
others. One principal component is clearly insufficient to
capture the diversity of the trajectories: the reconstructed
trajectory does not even touch the ground after the sec-
ond bounce. Indeed, the middle and bottom panel show
that the absolute and relative reconstruction errors with a
single principal component are outsize. As expected, the
error is null before the first bounces. It then displays a
complex oscillatory pattern, ensuing from both the physi-
cal phenomenon and the sampling scheme. Interestingly,
the absolute error globally increase as time goes by, de-
spite the lessening of average height.

3.2 Time delays, a major stumbling block for
PCA

What happens here is that the the point cloud of trajecto-
ries has a linear dimension much greater than 1. It is a one
dimensional manifold extending in multiple directions in
R300. As such, it cannot be “enclosed” in a line. Fig-
ure 3 illustrates the result of increasing the number of re-
tained principal components (left panel). The decrease in
all three error measures (absolute, relative and RMSE) is
rather slow. For instance, a reduction to dimension 4 still
results in a substantial number of relative errors greater
than 50 %.

PCA attempts to catch the main temporal dynamics of
functional outputs by linear combinations of the discre-
tised values. Time shifts are non linear relationships in-
volving time and an input variable. Fukunaga and Olsen
(1971) illustrated this issue by considering a model whose
output is a bump of fixed shape (they use a Gaussian bell
curve) centred at variable time instants. In that case the
principal directions spans the same vector space as the
collection of bumps centred at each time step. Hence, the
exact linear dimension grows with refinement of the time
resolution of the discretisation. Non linear dimension re-
duction techniques are required to handle such situations.

4 Auto-associative models for non lin-
ear dimension reduction

The auto-associative model (AAM) proposed by Girard
and Iovleff (2008)3 approximates point clouds by implic-

3Stéphane Girard, not Sylvain.
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Figure 2. Reconstruction performance of PCA with a single principal component when only the coefficient of restitution varies.
Top: comparison between original and reconstructed trajectories producing the worst RMSE. Middle: absolute reconstruction
errors. Bottom: relative reconstruction errors. Intervals where the height was below 0.1 m were discarded. Lines are set to 0.1
opacity; darker tint indicate superposition of a large number of lines.

itly defined manifolds, instead of cubes like PCA does.
It handles non linearity and can generally achieve reduc-
tion to dimension equal or close to the intrinsic dimension
while preserving the fidelity of the reconstruction.

The algorithm for building AAM has 4 steps that are
repeated until reconstruction is good enough:

1. Direction computation – A direction is computed by
maximising an index, namely a function of the coor-
dinates of the projection of the data points onto that
direction. We used the index suggested by Girard and
Iovleff (2008) that best preserves nearest neighbours.

2. Projection – The point cloud is projected onto the
computed direction. The resulting coordinates will
be called scores, by analogy with PCA terminology.

3. Regression function estimation – The regression
function linking scores to the data points is esti-
mated, here by spline regression.

4. Update – The point cloud from the current iteration
is replaced by the residuals, namely the difference
between data points and the output of the regression
function estimated in step 3.

The algorithm terminates when the residuals are small
enough. The final dimension is equal to the number of
iterations.

PCA is a special case of auto-associative models where
the regression functions are postulated to be linear. Its in-
dex is the variance of the projection of the point cloud.
Its maximisation is equivalent to minimising the mean
squared error between projections and data points. In that
respect, it is a global index, contrary to the index we used
for AAM based on nearest neighbour preservation, a local
property.

4.1 AAM of the bouncing ball model
We fitted an AAM of dimension 1 on the same training set
of 128 trajectories as before. We used a basis of 28 splines
for the regression estimation. The number of splines was
tuned manually, but this could be automatised for instance
using cross validation.

Figure 4 illustrates the very good performance of the
method. The worst reconstruction on the same test set as
before is almost a perfect match, except for a tiny time de-
lay and a blunting of the cusp at the last bounces. More
than 90 % of the reconstructions have relative error be-
low 10 % throughout the simulation, and more than 99 %
of them have a maximal absolute error below 0.037 m.

Figure 3 shows that AAM performs better than PCA
even if we keep a large number of principal components.
In particular, the maximum absolute error of AAM is sig-
nificantly smaller to that of PCA with 10 components.

Even better results were obtained in another similar ex-
periment where the initial height, instead of the coefficient
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Figure 3. Distributions of time maximum absolute error, rel-
ative error and RMSE between test trajectories and reconstruc-
tions with increasing number of principal components (left), and
reconstructions by a one dimensional AAM (right) when only
the coefficient of restitution varies. Blue lines indicate the me-
dians. Boxes span the interval between first, Q1, and third, Q3,
quartiles. Whiskers reach the last data point above (resp. below)
Q1− 1.5× (Q3−Q1) (resp. Q3 + 1.5× (Q3−Q1)). Dots are
points outside the reach of the whiskers.

of restitution, varied (results not shown). In a third ex-
periment, we simulated 512 training trajectories with both
the coefficient of restitution and initial height varying, re-
spectively between 0.7 to 0.9 and between 0.9 m to 1.1 m.
Figure 5 shows the first 6 trajectories of this training set,
whose size was augmented to 4096− 512 = 3584 trajec-
tories. The effect of the two input variables combine: the
higher the starting height, the higher the velocity at the
first bounce. This is exemplified by the 5th trajectory (vi-
olet line) resulting from both high coefficient of restitution
(0.875) and initial height (1.075 m): its second bounce
is substantially away from the group of other trajectories
(compare Figure 1). From visual inspection of the trajec-
tories in Figure 1 and 5, we infer that the intrinsic dimen-
sion of the 2 input model is most likely equal to 2 because
the two inputs have different effects on the output.

Figure 6 compares the performance of PCA with in-
creasing number of principal components with that of
AAM of dimension 1 and 2. Errors in reconstruction
by PCA are globally much higher than in the single in-
put experiment. Their distributions are leptokurtic (more
“peaked”) and positively skewed: there are a lot of impor-
tant errors far away from the median and spanning a large
interval. AAM performs not as good as in the single input
experiment but is still much better PCA with 2 compo-
nents, and roughly equivalent to PCA with 5 components.

4.2 Sensitivity analysis in AAM projection
space

The gain in performance between the dimension 1 and 2
AAM, visible in Figure 6 (right panel), supports our guess
that the intrinsic dimension of the model is 2. We con-
firmed that fact by analysing the sensitivity of the AAM
scores to the coefficient of restitution and initial height.
We computed first order and total Sobol’ indices with the
Monte Carlo algorithm proposed by Sobol’ (2001) along
with the “Jansen 1999” and “Saltelli 2010” estimators ad-
vocated by Saltelli et al. (2010).

The first AAM score is almost exclusively depen-
dent on the coefficient of restitution (first order in-
dex: 94.2 %), with negligible interaction (second order
joint index: 0.7 %). The second AAM score is dominated
by the initial height (first order index: 78.5 %), with sub-
stantial contribution of the coefficient of restitution (first
order index: 9.2 %), and interaction between the two (sec-
ond order joint index: 12.2 %).

In order to interpret the physical meaning of these re-
sults, we reconstructed trajectories corresponding to loca-
tions evenly distributed along lines in the AAM projection
plan. These “cross-sections” of the AAM plan space are
shown in Figure 7. They illustrate what it means to have,
say, “an average AAM first score and an high AAM sec-
ond score”. The first score mostly controls the bouncing
instants. As a matter of fact, the middle plot of Figure 7
is pretty similar to Figure 1 showing the effect of the co-
efficient of restitution alone, which is coherent with the
result of the sensitivity analysis stated above. The sec-
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Figure 4. Reconstruction performance of a dimension 1 AAM when only the coefficient of restitution varies. Same graphical
convention as in figure 2.
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Figure 5. The first 6 trajectories of the training set with both the
coefficient of restitution and initial height varying.

ond score affects the height of the peaks while keeping
bouncing instants constant. It is similar to the effect of
varying initial height alone (not shown), except that the
latter alters bouncing instants. AAM actually automati-
cally decomposed the influence of the input into a “time
delay and damping” component, and a “height only” com-
ponent. This level of legibility cannot be achieved with
PCA whenever the linearity hypothesis does not hold.

It should be noted that the procedure detailed above is
fully automatic. We treated the model as a black box, and
did not took advantage of any insight about its physical or
mathematical properties. This is particularly alluring as it
forebodes routine usage by non specialists, and possible
inclusion into graphical Modelica tools.

5 Conclusion and perspectives
Recent enrichments of the Modelica technological ecosys-
tem enable straightforward implementation of advanced
computer experiments with Modelica models. There re-
main however a major hurdle to overcome, namely adapt-
ing the panoply of mature mathematical methods to dy-
namic models with functional outputs. We showed on an
example that linear dimension reduction with PCA may
fall short of this objective, even for rather simple mod-
els. The recently developed non linear approach of AAM
seems a very promising candidate to supplement, or even
replace it altogether. It achieved very satisfying results on
the presented case study and other more realistic ones not
shown here. It is only little more complicated from the
theoretical viewpoint, and almost as easy to use as PCA.
“Degrees of freedom” in the algorithm are kept at a mini-
mum, thus avoiding the need for elusive tuning skills.

Our implementation of the regression estimation is
rather elementary. Hence, there is room for further per-
formance enhancement. On the theoretical side, the ques-
tion of how to define relevant metrics in the space of AAM
scores is of great interest for sensitivity analysis or super-
vised importance sampling.
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Figure 6. Distributions of time maximum absolute error, rel-
ative error and RMSE between test trajectories and reconstruc-
tions with increasing number of principal components (left), and
reconstructions by a 1 and 2 dimensional AAM (right) with both
the coefficient of restitution and initial height varying. Same
graphical convention as in Figure 3.
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Figure 7. One dimensional cross-sections of the AAM projec-
tion space. Top: grey dots locate train and test trajectories in
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jectories corresponding to the circle (resp. triangles) of same tint
in the top plot.
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