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Abstract
The paper introduces a matrix co-simulation model of lin-
ear time invariant differential equations using general lin-
ear methods. This model is used to develop a calculation
of relative consistency measure based on worst case de-
fect calculation. It is shown how a robust stability mea-
surement based on spectral radius can be used to measure
robustness to slave parameter changes. Both consistency
and stability measurements are calculated based on the lin-
ear model, and can be calculated prior to the co-simulation
run. Finally, multi-objective optimization has been pro-
posed to utilize introduced measurements for tuning the
co-simulation master.
Keywords: co-simulation, master, robust stability, relative
consistency, multi-objective optimization

1 Introduction
Co-simulation is a multi-method simulation of a coupled
system, also known as simulator coupling (Kübler and
Schiehlen, 2000). A co-simulation run can be quite diffi-
cult to set up in practice since models of the system are
usually black boxes. When no previous information is
available about co-simulation slaves, the procedure for the
choice of a co-simulation master usually boils down to re-
peated trial and error. This is usually due to the fact that
the system is more than the sum of its parts. The reason
to co-simulate multiple simulators is to get the notion of
the coupled system behavior. However, without any in-
formation about the behavior it is difficult to setup a co-
simulation master.

In this paper co-simulation slaves are not completely
black boxes. It is presumed that Jacobian matrices of
slaves are available. (Åkesson et al., 2012). FMI 2.0 stan-
dard (FMI 2.0) defines an optional interface to Jacobian
matrices of a slave. A linearized model is used to make the
prediction of quality for a coupled system co-simulation.
A goal of this paper is to introduce quality measures inde-
pendent of internal states of the slaves.

Local error control is analyzed and shown to be a fea-
sible method for bounding the global co-simulation er-
ror (Arnold et al., 2014). However, methods for local er-
ror estimation are usually expensive, e.g. Richardson ex-
trapolation requires three times more co-simulation steps
executed. There are predictor/corrector methods (Busch,

2012; Schweizer and Lu, 2015) which allow for run-time
local error estimation as a side-effect. Defect control (En-
right, 2000) presents an alternative to local error control.
The defect control has been used to control the error of
differential algebraic equations which makes it an ideal
candidate for the use in co-simulation environments. This
paper expand the idea of defect control by introducing a
worst case defect calculation in order to enable a relative
consistency estimate prior to the co-simulation run.

Stability is an important measure of system quality
which does not depend on the initial states1. Zero-
stability (Kübler and Schiehlen, 2000) is an important re-
quirement for a co-simulation. However, a co-simulation
cannot be more or less zero-stable, it can only be zero-
stable or not. This leads to a search for a relative sta-
bility measure. In co-simulation there has been experi-
mental work on determining stability regions for differ-
ent co-simulation solvers (Busch, 2012; Schweizer et al.,
2015). The authors have compared co-simulation masters
based on the size of a plotted stability region. This paper
tries to propose the use of stability radius estimate (Hin-
richsen and Pritchard, 2005) in order to formalize this ap-
proach. Intuitively, robust stability is a particularly im-
portant property of a co-simulation. In practice, rapid
prototyping is one of the main reasons for the use of co-
simulation. During rapid prototyping, parameters or some
parts of a single slave are expected to change. Robustness
to such changes would mean that a user of a co-simulation
does not have to adapt the master.

With quality measures defined the optimization be-
comes a feasible method for the choice of a co-simulation
master. The optimization in co-simulation has been intro-
duced as a means to improve the parameters of the simu-
lated system in order to get a better signal response (Gedda
et al., 2012). This paper introduces a problem of improve-
ment of a co-simulation master as a multi-objective opti-
mization problem (Kalyanmoy, 2001).

The next section introduces a co-simulation model
used in this paper and underlying assumptions about co-
simulation slaves. A presented matrix model of a co-
simulation step enables the calculation of quality mea-
sures introduced in the following sections. The third sec-
tion shows the example of modeling a two-mass oscillator.
This example is used for the verification of quality mea-

1for linear systems
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sures and demonstration of multi-objective optimization.
The next section introduces a relative consistency and a
robust stability measure. Both measures are minimized
with the help of multi-objective optimization described in
the fifth section. The section with conclusions and de-
scription of future work concludes the paper.

2 Co-simulation Model
2.1 Co-simulation Slave
A co-simulation slave according to the FMI 2.0 standard
is a tuple:

Gi = (Vi,Ui,Yi,Di,vi,seti,geti,doStepi) (1)

where Vi is a set of internal states of Gi, Ui is a set of
input variables, Yi is a set of output variables, Di ⊂Ui×Yi
is a set of output-input dependencies, vi is an initial state
of the FMU, seti is a function which sets the value to an
input variable, geti is a function which returns the value of
an output variable, and

doStepi : (Vi,R+)→Vi (2)

is a function which implements a simulation step, i.e. it
integrates the internal state2. Let v be the internal state,
and t the local time of the slave. The function:

v′ = doStepi(v,h) (3)

will change the internal state to v′, and advance the local
time of the slave to t +h.

In this paper it is assumed that the ith co-simulation
slave solves the following system of equations:

ẋi(t) = Aixi(t)+Biui(t) (4a)
yi(t) = Cixi(t)+Diui(t) (4b)

where xi :R+→R|Xi| is the state signal3, ui : R+ → R|Ui|

is the input signal, and yi : R+→R|Yi| is the output signal.
A nonlinear differential equation:

ẋi(t) = fi(xi(t),ui(t))

yi(t) = gi(xi(t),ui(t))
(5)

can be transformed to (4) by linearization:

Ai =
∂ fi

∂xi
, Bi =

∂ fi

∂ui
, Ci =

∂gi

∂xi
, Di =

∂gi

∂ui
(6)

During co-simulation each slave performs the integra-
tion of its states (4a) in a doStepi function (2):

xi[k] = xi(tk) = xi(tk−1 +h)

= xi(tk−1)+

tk∫
tk−1

Aixi(τ)+Biui(τ)dτ

= xi(tk−1)+

tk∫
tk−1

Aixi(τ)+Biui[k]dτ

(7)

2 The slave accepts any step size h, i.e. does not do a step rejection
in case of an event.

3 Xi is a set of internal state variables of the continuous system.

where h is the communication step size. This paper limits
the analysis to zero-order hold as seen in the above equa-
tion, i.e. the value of input signal is assumed to be constant
throughout a slave integration:

ũ(τ) = u[k] , tk−1 < τ 6 tk (8)

In this paper it is assumed that a linear model (4a) is inte-
grated by a linear method:

v′i = Gvv
i vi +Gvu

i ui

x′i = Gxv
i v′i

(9)

where vi : R|Vi|.
Integration of a linear system (4a) with any general

linear methods can be formulated in the above manner.
The derivation of matrices (9) can be done analogous to
the derivation of the absolute stability matrix (Jackiewicz,
2009).

The function geti should return the output values con-
sistent to (4b):

y′i = Cixi +Diui (10)

This formulation is consistent with the mathematical
model of co-simulation in the FMI standard (FMI 2.0,
Section 4.1.2), although the definition of the kth signal
sample is a bit different, both for input signals (8) and the
output signal:

ỹ(tk) = y[k] (11)

In this paper the kth signal sample refers to a last signal
value sampled in the iteration of a co-simulation master.
This is described in more detail in next sections.

2.2 Co-simulation Network
A network of co-simulation slaves is a tuple:

N = (G,L) (12)

where G = {G1,G2, . . .Gn} is a set of n co-simulation
slaves, U = U1 ∪U2 ∪ ·· · ∪Un is a set of input variables
of all co-simulation slaves, and Y = Y1 ∪ Y2 ∪ ·· · ∪ Yn
is a set of output variables of all co-simulation slaves,
L ∈R|U |×|Y | is a matrix representing output-input connec-
tions.

Let u(t), y(t), x(t) denote the column stacked values of
all co-simulation slaves, respectively:

u(t) =


u1(t)

u2(t)
...

un(t)

 , y(t) =


y1(t)

y2(t)
...

yn(t)

 , x(t) =


x1(t)

x2(t)
...

xn(t)

 (13)

Output-input connections are denoted as matrix L:

u(t) = Ly(t) (14)
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Let system matrices of the co-simulation slaves (4) form a
block diagonal matrix:

A = blockDiag(A1,A2, . . . ,An)

B = blockDiag(B1,B2, . . . ,Bn)

C = blockDiag(C1,C2, . . . ,Cn)

D = blockDiag(D1,D2, . . . ,Dn)

(15)

The coupled system can be described by the following
equations:

ẋ(t) =
(

A+BL(I−DL)−1 C
)

x(t) (16a)

y(t) = (I−DL)−1 Cx(t) (16b)

An implicit assumption is that there are no algebraic loops
in the system, i.e. det (I−DL) 6= 0. This system is de-
scribed to give a reference for the exact solution of the
co-simulation.

2.3 Co-simulation Master
A co-simulation master is an algorithm that executes a co-
simulation of the network (12). The master presented in
this paper (Algorithm 1) executes a non-iterative sequen-
tial co-simulation. It is determined by the communica-
tion step size h, extrapolation elements and the calling se-
quence of co-simulation slaves.

A calling sequence of co-simulation slaves determines
the execution order of co-simulation slaves. Let the func-
tion σ : I → I define the calling sequence where I =
{1,2, . . . ,n} is the set of slave indices. The calling se-
quence is defined by the following expression:

i = σ(r) (17)

which states that the co-simulation slave Gi is executed rth

in the calling sequence.
The extrapolation is used to determine the values of

continuous signal between4 and beyond known communi-
cation points. This paper assumes the zero-order hold ap-
proximation of inputs during integration of co-simulation
slave (8). The extrapolation elements of the co-simulation
slave Gi are determined by the following equations:

w′i = Fww
i wi +Fwy

i y
u′i = Fuw

i w′i
(18)

The extrapolation element can have access to all the out-
puts of all the slaves in the co-simulation network5. This
allows for modeling of more advanced extrapolation tech-
niques (Benedikt et al., 2013; Stettinger et al., 2014).

The assignment of time to a discrete signal value is
done at the end of a co-simulation iteration. Let ũ(t) and

4 The term extrapolation is used loosely, it refers both to interpola-
tion and extrapolation.

5 Extrapolation matrices should be chosen with care to be consistent
with the connection matrix L from (14).

ỹ(t) denote the signals reconstructed from discrete sam-
ples provided by the co-simulation run.

In this paper the following equality holds:

ũ(kh) = u[k], ỹ(kh) = y[k] (19)

This definition is important for consistency measurements
introduced in the next sections.

Let the stacked values of the co-simulation system vec-
tors be denoted as:

z =
[
xT vT yT wT uT

]T (20)

This vector allows to model the co-simulation with
a known model of linear time invariant co-simulation
slaves (4), linear method of integration (9), and linear
extrapolation methods (18). It allows to reformulate the
equations of a co-simulation of black boxes (Algorithm 1)
to a sequential multi-method integration of known mod-
els (Algorithm 2).

The integration of each co-simulation slave can be re-
formulated to:

z′ = Giz (21)

where equation (9) should be satisfied:

x′i =

{
Gxv

i Gvv
i vi +Gxv

i Gvu
i ui, j = i

x j, j 6= i

v′j =

{
Gvv

i vi +Gvu
i ui, j = i

v j, j 6= i

y′j = y j, w′j = w j, u′j = u j

(22)

The output update of a co-simulation slave can be refor-
mulated to:

z′ = Hiz (23)

where (10) should be satisfied:

y′j =

{
Cixi +Diui , j = i
y j , j 6= i

x′j = x j, y′j = y j, w′j = w j, u′j = u j

(24)

The extrapolation elements can be reformulated to:

z′ = Fiz (25)

where (18) should be satisfied:

x′j = x j, v′j = v j, , y′j = y j

w′j =

{
Fww

i wi +Fwy
i y, j = i

w j, j 6= i

u′j =

{
Fuw

i Fww
i wi +Fuw

i Fwy
i y, j = i

u j, j 6= i

(26)

Such kind of reformulation allows for calculation of Al-
gorithm 2 with the use of matrix operations. An iteration
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Algorithm 1 Sequential co-simulation

Require: N, σ , h, t0, tend
k := 0 . Initialization phase
z := Rvv0
while ‖∆z‖> ε do

for r := 1 to n do
i = σ(r)
wi := Fww

i wi +Fwy
i y . Extrapolation

ui := Fww
i wi

for ui ∈Ui do
vi := seti(vi,ui,ui[ui])

for yi ∈ Yi do . Read outputs
y[yi] := get j(s j,y j)

z[0] = z
while t0 + kh < tend do . Computation phase

for r := 1 to n do
i = σ(r)
wi := Fww

i wi +Fwy
i y . Extrapolation

ui := Fww
i w

for ui ∈Ui do
vi := seti(vi,ui,ui[ui])

si = doStepi(si,h) . Update internal state
for yi ∈ Yi do . Read outputs

y[yi] := get j(s j,y j)

k := k+1
z[k] := z . Signal assignment

of the computation phase of the algorithm can be reformu-
lated as:

z[k] = ΦΦΦz[k−1] (27)

The computation matrix ΦΦΦ can be calculated by tracing
the steps of calculation phase of the algorithm:

ΦΦΦ =
n

∏
r=1

ΦΦΦσ(r) = ΦΦΦσ(n)ΦΦΦσ(n−1) . . .ΦΦΦσ(1) (28)

where ΦΦΦi represents the update of the overall co-
simulation slave done by the co-simulation slave Gi:

ΦΦΦi = HiGiFi (29)

In this paper the initialization is done with the help of
a fixed-point iteration. Initialization matrix ΦΦΦ0 is used to
model an iteration of the initialization algorithm:

ΦΦΦ0 = ΦΦΦ|Gi=I, i∈I (30)

The initialization matrix is equal to computation ma-
trix (27) with excluded solver updates6 (function doStepi),
i.e. integration matrices Gi = I equal to identity matrix.
An iteration of the initialization phase of the algorithm can
be reformulated as:

z′ = ΦΦΦ0z (31)
6 A closer look at Algorithm 1 shows that the initialization and the

computation phase are almost identical. The function call of doStepi,
i.e. the integration is missing in the initialization phase.

Algorithm 2 Sequential multi-method integration

Require: N, σ , h, t0, tend
k := 0 . Initialization phase
z := Rvv0
while ‖∆z‖> ε do

for r := 1 to n do
i = σ(r)
z := Fiz . Extrapolation
z := Hiz . Read outputs

z[0] = z
while t0 + kh < tend do . Computation phase

for r := 1 to n do
i = σ(r)
z := Fiz . Extrapolation
z := Giz . Update internal state
z := Hiz . Read outputs

k := k+1
z[k] := z . Signal assignment

The initialization phase is started with a value assignment:

z = Rvv0 (32)

where:
v = v0

xi = Gxv
i vi

(33)

need to be assigned to respective positions in the co-
simulation value vector z. The initialization phase of the
algorithm can be modeled with:

z[0] = ΦΦΦ
∞
0 Rvv0 (34)

where:
ΦΦΦ

∞
0 = lim

m→∞
ΦΦΦ

m
0 (35)

The conditions for the initialization phase to converge to
the above limit are stated in the next sections.

3 Test System
3.1 Two-mass Oscillator
The example system is a two mass oscillator (Figure 1)
The system consists of two co-simulation slaves, G1 and
G2. Input variables of slaves G1 and G2 are:

U1 = {G1.x,G1.y}, U2 = {G2.F} (36)

respectively. Output variables of slaves G1 and G2 are:

Y1 = {G1.F}, Y2 = {G2.x,G2.y} (37)

respectively. The connection matrix is equal to:

L =


G1.F G2.x G2.v

G1.x 0 1 0
G1.v 0 0 1
G2.F 1 0 0

 (38)
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c1

d1

m1

G1 .F = G2 .F

G1 .x = G2 .x

G1.v = G2 .v

ck

dk

m2

c2

d2

G1 G2

Figure 1. The example system used in the experiments through-
out this paper is a two mass oscillator with force-displacement
coupling. Slave G1 provides force as an output, while slave G2
provides the displacement and velocity of mass m2.

Slave G1 solves the following equations:

A1 =

[
0 1

− c1+ck
m1

− d1+dk
m1

]
B1 =

[
0 0
ck
m1

dk
m1

]
C1 =

[
ck dk

]
D1 =

[
−ck −dk

] (39)

Slave G2 solves the following equations:

A2 =

[
0 1
− c2

m2
− d2

m1

]
B2 =

[
0
1

m2

]
C2 =

[
1 0
0 1

]
D2 =

[
0
0

] (40)

Unless stated otherwise, the following system parameters
are used in experiments throughout this paper:

m1 = 10, c1 = 1, d1 = 1, ck = 1, dk = 2
m2 = 10, c2 = 1, d2 = 2

(41)

The co-simulation slaves use CVODE (Hindmarsh
et al., 2005) solvers with a tight tolerance bound in order to
provide a solution as close as possible to the exact one. For
the purpose of analysis the integration of a co-simulation
slave is assumed to be analytic (Hartman, 2002):

vi[k] = eAihv[k−1]+(eAih− I)A−1
i Biui[k]

xi[k] = vi[k]
(42)

The integration matrices are defined as follows:

Gvv
i = eAih, Gvu

i = (eAih− I)A−1
i , Gxv

i = I (43)

where i ∈ {1,2}.

3.2 Extrapolation
A zero-order hold (ZOH) element takes the last value and
assigns it to the input:

Fww
i,ZOH = 0, Fwy

i,ZOH = I, Fuw
i,ZOH = I (44)

where i ∈ {1,2} and forms Fi,ZOH according to (26).
Nearly energy preserving coupling element (NEPCE)

is an extrapolation element which tries to control the cou-
pling error (Benedikt et al., 2013). Its implementation

Figure 2. The plot shows output responses of four different co-
simulation masters applied to the two-mass oscillator example
system with co-simulation step size of h = 1.

consists of an implementation of an integral controller.
The implementation in this paper is modeled as:

Fww
i,NEPCE = ααα i

Fwy
i,NEPCE = I−ααα i

Fuw
1,NEPCE = I

(45)

where i ∈ {1,2} and forms Fi,NEPCE according to (26). It is
interesting to note that a ZOH extrapolation element be-
longs to a subset of NEPCE extrapolation elements since:

Fi,ZOH = Fi,NEPCE |ααα i=0 (46)

In later sections it is shown that tuning of NEPCE param-
eters can make a co-simulation more robust to parameter
changes of the simulated system.

3.3 Sequential Co-simulation

Table 1. Co-simulation Masters

Master σ F1 F2

Seidel12 σ12 F1,ZOH F2,ZOH

Seidel21 σ21 F1,ZOH F2,ZOH

Control12 σ12 F1,NEPCE F2,ZOH

Control21 σ21 F1,ZOH F2,NEPCE

A calling sequence (17) for a sequential co-simulation
of two slaves can be either:

σ12(r) =

{
1, r = 1
2, r = 2

(47)
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or:

σ21(r) =

{
2, r = 1
1, r = 2

(48)

In the experiments presented in this paper, four co-
simulation masters specified in Table 1 are used. Control
master is named after the use of an error controller, namely
Fi,NEPCE . It is interesting to note that Seidel master is a
subset of Control master:

Seidel =Control|ααα=0 (49)

This fact stems directly from (46).
The signal response for each of them applied to (41) is

presented in Figure 2. Through this paper the analysis of
results has been done with the help of NumPy (Oliphant,
2015) and Matplotlib (Hunter, 2007). The slaves and a
reference configuration is available at repository Bench-
markFMUs (Glumac, 2017).

4 Relative Quality Measurements of
Co-simulation

The goal of this section is to introduce measurements for
the quality of co-simulation which do not require multi-
ple co-simulation runs. The information from the previous
sections should form the basis for such measurements.

4.1 Requirements for Initialization Phase
This paper uses fixed-point iteration (34) as an initializa-
tion algorithm for the co-simulation (Algorithm 1). In or-
der for this algorithm to converge to an initial state, matrix
ΦΦΦ0 should be stable and have only eigenvalues with value
1 on the unit circle. Matrix ΦΦΦ0 is stable if its spectral ra-
dius is:

ρ(ΦΦΦ0)6 1 (50)

and its eigenvalues on the unit circle are semi-
simple (Elaydi, 1996). The stability alone is not enough
for the initialization to terminate. The above stability con-
straint (50) still allows for bounded oscillations of the
fixed-point iteration. In order to prevent them the follow-
ing constraint should be satisfied:

|λ |= 1⇒ λ = 1 (51)

i.e. the only eigenvalues on the unit circle should only
have the value of 1. By using Jordan decomposition it can
be seen that a sequence of matrices ΦΦΦ

k has eigenvalues
moving on the unit circle whenever eigenvalues are differ-
ent from e j0 = 1, i.e. they have bounded oscillations.

The consistent initialization is defined in (Andersson,
2016), i.e. equations (14) and (16b) should be satisfied
after the initialization phase:

y[0] = Lu[0] (52a)

y[0] = (I−DL)−1 Cx[0] (52b)

Conditions (50), (51) and (52) are introduced as a prereq-
uisite for relative consistency measurement presented in
the next subsection.

4.2 Relative Consistency
A local error control is a valid procedure to bound the
global co-simulation error (Arnold et al., 2014). However,
a local error depends on the initial state of the system and
needs to be evaluated during co-simulation. Similar holds
for the defect (Enright, 2000) which is used as the basis
for the method proposed in this section. The goal of the
method is to calculate the measure for consistency of the
co-simulation with knowing only the structure of the sys-
tem.

A connection defect is defined as:

δ [k] = ‖y[k]−Lu[k]‖ (53)

This definition of consistency is valid for a non-iterative
co-simulation and can be measured during co-simulation
with little or no extra cost. This measurement is useful as
an indication whether or not to repeat a co-simulation run.
However, an estimate for a single step of the co-simulation
would be useful prior to the co-simulation run. The ex-
pression for the exact value of all the co-simulation values
in the kth step can be calculated following (34):

z[k] = ΦΦΦ
k
ΦΦΦ

∞
0 Rvv0 (54)

The defect in the same step can be calculated:

δ [k] =
∥∥∥(Sy−LSu)ΦΦΦ

k
ΦΦΦ

∞
0 v0

∥∥∥ (55)

where Sy and Su are selection matrices defined by the fol-
lowing equation:

y = Syz
u = Suz

(56)

The defect (55) still depends on the initial solver state v0.
In order to obtain a worst case estimate for defect in kth

step, a matrix norm induced (Lancaster and Tismenetsky,
1985) by vector norm should be employed:

‖M‖= sup
v0 6=0

‖Mv0‖
‖v0‖

(57)

From the above definition it immediately follows that a
defect (55) is bounded by:

‖Mv0‖6 ‖M‖‖v0‖ (58)

This guarantees that minimizing the following relative
consistency measure:

δ (ΦΦΦ) =
∥∥∥(Sy−LSu)ΦΦΦ

k
ΦΦΦ

∞
0

∥∥∥ (59)

will bound the defect with respect to internal solver state.
The norm used for all of the experiments in this paper is
1-norm ‖ . ‖1.
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Figure 3. The figure compares the relative consistency measure-
ment (first subplot from the top) and global errors of position,
velocity and force outputs (second, third, and forth subplot from
the top, respectively).

Figure 3 presents the analysis whether relative consis-
tency provides a good indication of the global error. It
can be seen that global error of each particular signal in
the test examples follows the relative consistency measure.
The experiment conducted gives confidence in using (59)
as a minimization objective in order to improve the co-
simulation master.

4.3 Robust Stability
The unstructured stability radius of a matrix (Hinrichsen
and Son, 1989) is defined as the size of perturbations
needed to bring the system to the verge of instability:

r(ΦΦΦ) = inf{‖∆∆∆‖ : ρ(ΦΦΦ+∆∆∆)< 1} (60)

where ρ(ΦΦΦ) is the spectral radius of a matrix defined as:

ρ(ΦΦΦ) = max
ΦΦΦννν=λννν

|λ | (61)

A stability radius calculates an important value for co-
simulation. If a co-simulation master is set-up with some
known linear time-invariant slaves, it is expected that this
master is robust with respect to the changes of slave pa-
rameters. With a bigger stability radius the master is ex-
pected to work more reliably if a co-simulation slave is

Figure 4. The figure shows the spectral radius of a two-mass
oscillator co-simulation with respect to change of coupling stiff-
ness ck (upper plot) and coupling damping dk (lower plot). The
plots are used to indicate the size of stability region in terms of
system parameters.

switched. In practice, this allows for a better prototyp-
ing of a complex system without a need to tune the co-
simulation master.

In this paper a simplification of calculation has been
considered. For the unstructured stability radius (60), the
following relation holds (Hinrichsen and Son, 1989):

r(ΦΦΦ)6 1−ρ(ΦΦΦ) (62)

The equality holds only for normal matrices. This is the
reason of the assumption that the spectral radius can be
considered a good robust stability measure7.

In order to check whether a spectral radius (61) is a
good pointer of a stability radius, the robustness of sys-
tem (41) to change of stiffness ck and damping dk coeffi-
cients is analyzed. By inspecting the results visible in Fig-
ure 4, it can be seen that Control masters have larger sta-
bility intervals compared to Seidel masters, both with re-
spect to stiffness:

ρ(Seidel12)< 1, ck ∈ [10−5,0.89]

ρ(Seidel21)< 1, ck ∈ [10−5,0.89]

ρ(Control12)< 1, ck ∈ [10−5,3.59]

ρ(Control21)< 1, ck ∈ [10−5,3.59]

(63)

and damping:

ρ(Seidel12)< 1, dk ∈ [10−5,2.26]

ρ(Seidel21)< 1, dk ∈ [10−5,2.26]

ρ(Control12)< 1, dk ∈ [10−5,105]

ρ(Control21)< 1, dk ∈ [10−5,105]

(64)

7 This was done for simplicity of the exposition. In the work on
stability radii there is a calculation of structured stability radius which
will be a topic for future work.
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Figure 5. Comparison of the spectral radii (upper plot) and rel-
ative consistencies (lower plot) for different co-simulation mas-
ters with respect to the change of the communication step-size.

5 Optimal Choice of a Co-simulation
Master

There can be multiple objectives defined for a co-
simulation master. Two were defined in the previous
section, the spectral radius (61) and the relative consis-
tency (59):

J1(ΦΦΦ) = ρ(ΦΦΦ)

J2(ΦΦΦ) = δ (ΦΦΦ)
(65)

In order to make an optimal choice of a co-simulation
master with respect to the above objectives, multi-
objective optimization (Kalyanmoy, 2001) should be em-
ployed. Multi-objective optimization is a technique for
finding a non-dominated subset of solutions, i.e. the
Pareto frontier P:

P = {ΦΦΦ ∈S : ¬(∃ΦΦΦother. ΦΦΦ�ΦΦΦother)} (66)

The above definition states that solutions in the Pareto
frontier P are not dominated by any other solution in
the search space S . A solution is dominated by another
one ΦΦΦ � ΦΦΦother if it is worse or equal with respect to all
objectives, and strictly worse with respect to at least one
objective:

ΦΦΦ�ΦΦΦother

m
J1(ΦΦΦ)< J1(ΦΦΦother)∧ J2(ΦΦΦ)6 J2(ΦΦΦother)

∨
J1(ΦΦΦ)6 J1(ΦΦΦother)∧ J2(ΦΦΦ)< J2(ΦΦΦother)

(67)

A multi-objective optimization is useful when objec-
tives are conflicting 8, which seems to be the case in the

8 Otherwise, a minimization of one objective would minimize the
other. In this case a single-objective minimization could be more effi-
cient.

studied problem (Figure 5). The figure presents the com-
parison of two optimization objectives on the search space
defined by four co-simulation masters and the communi-
cation step-size h. The plots allow a choice of a step-size
and a master with the estimation of trade-off. This is a
form of brute-force multi-objective optimization as it sam-
ples all the search space and evaluates the objectives in
each point. After the evaluation, a person is very likely
to put some kind of goal on the first objective and search
for the best value in the second one. This approach, how-
ever, is limited to a few parameters in the search space.
In the case of Figure 5, only the communication-step size
and the master type are varied. Control masters had been
assigned control parameters before the experiment. The
choice of control parameters is described in the rest of this
subsection.

Figure 6 shows the results of brute-force optimization
of Control21 co-simulation masters (Table 1). Unlike the
previous approach, this one plots the Pareto frontier in the
parameters space. The search space is defined as:

S = {Control21|α,h:α ∈ [0,1.1],

h ∈ [10−3,101]}
(68)

The parameter α is sampled uniformly in the search inter-
val, while h is sampled uniformly in the log-scale of the
search interval. The Pareto frontier is shown in the param-
eter space of the co-simulation master, i.e. both left-hand
and right-hand heat-maps are spanned by the communi-
cation step-size h on the y-axis and the controller gain α

on the x-axis. The shade of gray presents the value of an
objective in a heat-map. The orange, yellow, and cyan
mark points are the positions of the Pareto frontier so-
lutions in the search space. The yellow color marks the
Seidel21 masters, while orange color marks the Control21
masters with α 6= 0. From (46), it immediately follows
that a Seidel21 master is a subset of possible Control21
masters, i.e.:

Seidel21 =Control21|α=0 (69)

A closer look at the Pareto frontier reveals that Seidel21
masters (yellow points) dominate the rest of Control21 for
smaller communication step-sizes. The exception is a set
of orange points, Control21 masters at the top of the heat-
maps. These points have smaller values of spectral ra-
dius (left heat-map) which corresponds to robustness to
changes in system parameters (Figure 4). In addition, a
communication step-size can be viewed as both a param-
eter and an objective. The bigger values of the commu-
nication step-size allow less burden for the communica-
tion network and allow more freedom for internal solvers
to choose internal time-steps. In turn, this should proba-
bly decrease the CPU load. This is a rationale to prefer
points with bigger values of communication step-size on
the Pareto frontier. A smaller spectral radius and a big-
ger step-size are the reason to highlight one of the orange



Relative Consistency and Robust Stability  Measures for Sequential Co-simulation 

DOI Proceedings of the 13th International Modelica Conference 205 
10.3384/ecp19157197 March 4-6, 2019, Regensburg, Germany 

  

Figure 6. The Pareto frontier of Control21 co-simulation
is presented in the parameter space (α,h). The yellow
points present Seidel21 masters, while orange points present
the rest of Control21 masters. The cyan point represent
Control21|α=0.6,h=9.11 with objective values (70). The dashed
red line represents a stability margin for the system, i.e.
ρ(ΦΦΦ) = 1.

points as cyan (α = 0.6,h = 9.11):

ρ(Control21|α=0.6,h=9.11) = 0.45
δ (Control21|α=0.6,h=9.11) = 0.78

(70)

This master has been used in previous images to present
responses and objective values of all Control21 masters.

The presentation in Figure 6 is feasible for search
spaces with two real parameters. This is not the case for
Control12 masters which have three parameters α1, α2 and
h. The Pareto frontier can be presented in the objective
space (Figure 7). Again, the Seidel masters (yellow) seem
to dominate other Control masters (orange) on a subset of
the Pareto frontier. Orange points close to the yellow are
also close in the parameter space, but they have α1 > 0.
Again, the subset of Control masters (orange points on the
left) has better stability properties for lower communica-
tion step-sizes. One of these points has been highlighted
by cyan (α1 = 0.59,α2 = 0.36,h = 8.9):

ρ(Control12|α1=0.59,α2=0.36,h=8.9) = 0.41
δ (Control12|α1=0.59,α2=0.36,h=8.9) = 1.1

(71)

This master has been used in the previous images to
present responses and objective values of all Control21
masters.

The methods in this section are brute-force optimiza-
tion techniques. They can easily become unfeasible as
the search space scales poorly with the number of co-
simulation slaves. The calling sequence (17) of co-
simulation slaves is a permutation function, and as such
the number of its configurations is factorial of the number
of co-simulation slaves. However, the goal of this section

Figure 7. The Pareto frontier of Control12 co-simulation
is presented in the objective space (ρ,δ ). The yellow
points present Seidel12 masters, while orange points present
the rest of Control12 masters. The cyan point represent
Control12|α1=0.59,α2=0.36,h=8.9 with objective values (71). The
dashed red line represents a stability margin for the system, i.e.
ρ(ΦΦΦ) = 1.

is to demonstrate the use of objectives in choice of a co-
simulation master. The formulation of objectives (65) en-
ables the use of more advanced multi-objective optimiza-
tion algorithms (Kalyanmoy, 2001) which may tackle high
dimensional search spaces.

6 Conclusion and Future Work
This paper introduces relative consistency measure (59)
and robust stability measure (61) of a co-simulation. Both
measures have been used as objectives in multi-objective
optimization (66) in order to increase the efficacy of tun-
ing a co-simulation master.

The relative consistency measure is a worst case de-
fect measurement with respect to unknown internal states
of slaves. The experiments conducted show the global
error follows the similar trend to the proposed consis-
tency measure. This gives a suggestion that the rela-
tive consistency is a good measure to indicate how well
a co-simulation master suites the coupled system it co-
simulates. Since this measure is not dependent on an ini-
tial state, it gives the measure for any possible run of a
linear system. This measure may be applicable for a non-
iterative communication-step size control which may be
one of the topics for future work.

The analysis in this paper has been restricted to se-
quential masters. Jacobi master does parallel updates of
multiple co-simulation slaves which cannot be modeled
with a sequential matrix multiplication. Parallel execu-
tion should be modeled as a single matrix. This matrix
would align equations for doStep functions of multiple co-
simulation slaves. The construction of such matrix should
be a part of future work.

Since practical systems are usually not linear, a robust
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stability measure is introduced. It is argued that minimiza-
tion of spectral radius (61) can be used to approximate un-
structured stability radius (60). It is experimentally shown
that a co-simulation with a lower spectral radius is more
robust to changes of coupling stiffness and damping in the
two-mass oscillator system. However, the spectral radius
is only an approximation of the unstructured stability ra-
dius. Furthermore, it is not expected that the whole struc-
ture of the co-simulation is uncertain. The parameters of
a co-simulation master are assumed to be known and cer-
tain, while the structured uncertainty should be concen-
trated on parameters of co-simulation slaves. For these
reasons one of the main topics for future research will
be to develop a calculation method of the structured sta-
bility radius (Hinrichsen and Pritchard, 2005) for the co-
simulation.
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