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Abstract 
This contribution describes an open source toolchain 

which can transfer BIM models of 3D building 

constructions from CAAD programs into executable 

thermal multi-zone buildings models based on Modelica 

building energy simulation libraries. For this purpose, 

different open source libraries and tools were integrated 

into a Python-based software architecture of the 

toolchain: the IfcOpenShell/OCC libraries as the 

foundation for the import, analysis, and preparation of 

the BIM models; CoTeTo as the tool for the template-

based code generation of the Modelica building models; 

the BuildingSystems library as the base for the thermal 

multi-zone building models; and JModelica as the 

simulation tool to perform the simulation analyses. 

While the first part of the paper describes the general 

approach and the software architecture of the toolchain, 

the second part illustrates its application with an 

example of a real building. 

Keywords: Building Information Modeling, IFC, 

Modelica code generation, Multi-zone building models 

1 Introduction 

The graphical modelling approach of Modelica, based 

on visualized components, connectors, and connections 

fits well for 2-dimensional topologies of energy plant 

systems, but not for 3-dimensional shapes of buildings 

and the topology of their constructions. On the one hand, 

the manual configuration of a thermal multi-zone 

building in Modelica in a graphical editor, based on 

components of a predefined library is an error-prone 

process. For example, the definition of a thirteen-zone 

building model in Modelica leads to a mo-file with more 

than 1,500 lines of code and a huge number of connect 

statements (Nytsch-Geusen, 2017). On the other hand, 

architects are using modelling tools such as ArchiCAD 

or Revit for their 3D building designs and often also 

Rhinoceros for prototypical designs. All these tools are 

able to export the geometry and the topology of a 

building design as a structured BIM model, normally in 

the IFC format.  

For this reason, different research activities during 

the last years have been focused on the automatic 

generation of Modelica building models using IFC 

building models as the input (e.g. Thorade et al., 2015 

and Reynders et al., 2017).  

The toolchain described in Thorade et al. (2015) is 

based on the SimModel data model (O’Donnell et al. 

2011). This data structure is able to store all relevant 

information for building energy simulation (the building 

construction and the related HVAC system), which is 

present in the BIM model itself (the IFC file) and which 

is optionally added by further data sources (e.g. data for 

missing material properties of building constructions). 

All these data are gained and combined by the use of the 

simulation tool Simergy (https://d-

alchemy.com/products/simergy): with Simergy the user 

imports the architectural model as an IFC file, performs 

a space boundary analysis to obtain the topology 

information for the multi-zone building model, adds 

additional data with the Simergy GUI, and finally 

exports the entire data set as a SimModel file in the xml 

format. In the next step, a mapping tool takes the 

SimModel file, which instantiates and parameterizes the 

component and system models from present Modelica 

libraries, which reflect the problem of the BIM model. 

Because Simergy is a commercial simulation tool and 

the simulation tool used here is Dymola, not all of the 

toolchain is open source. 

The approach of Reynders et al. (2017) describes a 

toolchain Ifc2Modelica v0.2, which is based on a Python 

framework. It can read IFC-files, determine the building 

topology for multi-zone building models, and generate 

Modelica building models in four different levels of 

complexity (LOC) for the Modelica IDEAS library 

(Jorissen et al., 2018). The model complexity reaches 

from a detailed thermal multi-zone building model, 

where each IFC entity is 1:1 mapped to a correspondent 

Modelica component model (LOC1) over some 

intermediate steps (LOC2, LOC3) down to a maximum 

simplified thermal single-zone building model, where 

all IFC entities are mapped to a small number of 
Modelica wall, window and door models (LOC4). The 

simplification from LOC1 to LOC4 takes place by 
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merging constructions of the same type and orientation 

and zones with similar conditions of use with the 

objective of a minimum loss of precision in the results 

and a maximum acceleration of the computation speed. 

The simulation analyses mentioned above were 

performed with the commercial Dymola tool, and the 

Ifc2Modelica v0.2 toolchain is not released as an open 

source project. 

The approach described in this paper demonstrates a 

Python-based complete open source toolchain, which 

reaches from the BIM modelling analysis up to the 

Modelica code generation and also supports an 

executable building simulation experiment, based on an 

open source Modelica simulation tool.  

2 Toolchain 

The BIM2Modelica toolchain from the IFC file up to the 

generated Modelica model includes three serial working 

Python modules (compare with Figure 1): a module for 

the BIM data import and analysis, a building data model 

for storing the analyzed and prepared information for 

building energy simulation, and the CoTeTo tool for 

generating thermal multi-zone building models based on 

the BuildingSystems library (http://www.modelica-

buildingsystems.de). 

 

Figure 1. Software architecture of the BIM2Modelica 

toolchain. 

2.1 BIM data analysis and preparation 

The basis for the IFC data import and the subsequent 

data preparation is the IfcOpenShell library 

(IfcOpenShell, 2019) in combination with the 

OpenCascade library (pythonOCC, 2019). Based on 

these two Python libraries, a new library was 

implemented which enables the analysis and preparation 

of the imported IFC files in the following steps: 

1. Filtering and sorting of all IFC types relevant for a 

thermal building model (types IfcSite, IfcSpace, 

IfcWall, IfcSlab, IfcDoor, IfCColumn, IfcWindow, 

etc.) 

2. Extraction of all employed building constructions 

(type IfcMaterialLayerSet) from the imported IFC 

building model 

3. Identification of the contact surfaces between the 

spaces (type IfcSpace) which represent the thermal 

zones and the adjacent building elements (types 

IfcWall, IfcSlab etc.) by means of a space boundary 

analysis (1st level space boundaries) 

4. Determination of potential available openings in the 

building elements and the correspondent elements 

which fill them out (e.g. the relations between an 

IfcWall and an IfcWindow or IfcDoor) 

5. Cutting of continuous building constructions (e.g. 

IfcWall or IfcSlab) which belong to more than one 

IfcSpace into sub components. Each of them can 

represent an individual thermal building element in 

the thermal building model with a potentially 

different thermal boundary condition (2st level 

space boundaries).    

2.2 Building data model 

The building data model consists of a data structure 

which stores all of the information in an intermediate 

step, before it is used for the code generation of the 

thermal building model, expressed in Modelica. The 

building data model is realized by a couple of Python 

classes which are able to store all of the required 

geometry and topology information of each thermal 

zone and individual building element. It also includes a 

list of all of the construction types used. Further, 

information regarding the employed building materials, 

the type of use for each thermal zone (ventilation rates, 

internal heat sources, set temperatures for heating and 

cooling), the building orientation and the building 

location can be added, if not already present in the IFC 

file.  

The information collection of the building data model 

covers the typical amount of data for the parametrization 

of multi-zone thermal building models. Up to now, it has 

exclusively been used as a database for Modelica code 

generation, but in principle, it could also be applied to 

the creation of multi-zone building models for other 

simulation tools such as EnergyPlus or TRNSYS. 

2.3 Modelica code generation 

In the next step of the toolchain, the Modelica building 

models are generated using the information stored in the 

building data model. For this purpose, the Python based 

module CoTeTo (Code Templating Tool) is used, 

which was developed in the EnEff-BIM project (see 

Thorade et al., 2015).  

 

 

Figure 2. GUI of the CoTeTo code generation tool. 
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CoTeTo can be flexibly configured with pluggable 

input, filter, and output components which support the 

single steps of data acquisition, preprocessing and code 

generation using a template system. It can be used 

standalone with a GUI (compare with Figure 2) or as an 

imported module in Python applications. The code 

generation step in CoTeTo is based on the Mako 

template engine (Mako, 2019). 

2.4 BuildingSystems Library 

The CoTeTo code generator for thermal multi-zone 

models code was designed for the predefined model 

classes (thermal zones, walls, windows, doors etc.) of 

the Modelica BuildingSystems library (Nytsch-Geusen 

et al., 2016). As other Modelica libraries for building 

energy simulation such as IDEAS, AIXLib and 

Buildings, the BuildingSystems library uses as its core 

the same Modelica IBPSA library (Modelica IBPSA 

library, 2019), which is the successor of the former 

Annex 60 library (Wetter et a. 2015).   

The following code excerpt demonstrates the principle, 

upon which the model classes of the BuildingSystems 

library are instantiated and parameterized during the 

code generation process, based on a Mako template. 

Access to the required building information stored in the 

building data model takes place in the example over the 

Python dictionary data. Outgoing from a generalized 

template definition in Mako 

% for ele in data['elementsOpaque']: 

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes ${ele.name}( 

% if 

generatorCfg['MODELICA_SWITCHES'].getboole

an('surTemOut'): 

  show_TSur = true, 

% endif 

  redeclare ${ele.constructionData} 

constructionData, 

  angleDegAzi = ${ele.angleDegAzi}, 

  angleDegTil = ${ele.angleDegTil}, 

  AInnSur = ${ele.AInnSur}, 

  height = ${ele.height}, 

  width = ${ele.width}); 

% endfor 

the Modelica code for a flexible number of wall models 

of a thermal building model can be generated:  

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes wall_4( 

 redeclare Construction1 constructionData, 

    angleDegAzi = 90.0, 

    angleDegTil = 90.0, 

    AInnSur = 0.0, 

    height = 7.8, 

    width = 10.000000000000002); 

  

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes wall_5( 

 redeclare Construction1 constructionData, 

 angleDegAzi = 0.0, 

 angleDegTil = 90.0, 

 AInnSur = 0.0, 

 height = 7.8, 

 width = 9.849999999999998); 

… 

The syntax of the Mako language is similar to the 

Python language, but it works with the % sign before 

control statements and without indents. Therefore, a for-

loop or a conditional statement in Mako needs an  

% endfor and an % endif in addition to the % for and the 

% if. Expressions within curly braces, e.g. 

${ele.name}, are evaluated, and the result is used for 

the code generation process. The example of the Mako 

template also illustrates the flexibility of the code 

generation process. If the Boolean expression 
 

generatorCfg['MODELICA_SWITCHES'].getboole

an('surTemOut'): 

 

becomes true, the Modelica parameter show_TSur = 

true is generated in the Modelica code; otherwise it is 

not. 

2.5 Toolchain validation 

The toolchain was tested with a set of 33 BIM building 

models in the IFC 2x3 format, which cover a broad 

spectrum of possible geometrical and topological 

structures of building constructions (Bazjanac, 2017). 

Figure 3 shows a subset of these building models.  

 

Figure 3. Exemplary IFC test cases for validating the entire 

toolchain from the BIM data import through the data 

preparation to the Modelica code generation. 

In addition, three further IFC2X3 models with one, two 

and thirteen thermal zones were used for the validation 
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procedure. All of the building models were constructed 

in ArchiCAD and afterwards exported as (IFC) BIM-

models. 

The validation process was executed for all of the 

models in three serial steps: 

1. Correct translation of the BIM model into the 

building data model. 

2. Correct generation of the Modelica building model 

with the Mako template. 

3. Successful simulation of the generated building 

models with JModelica and Dymola and achieving 

the same simulation results with both tools. 

With the help of these test cases, many potential failures 

and weak spots in the algorithms of the IFC import and 

data preparation module (e.g. incorrectly calculated 

geometries and topologies), the building data model 

(e.g. missing attributes) and the code generation 

template used in CoTeTo (e.g. required additional 

features for a more flexible code generation) could be 

detected, fixed, and improved.  

2.6 Simulation experiment with 

JModelica 

After the multi-zone building model code was generated 

with CoTeTo, a simulation experiment could be 

performed with a Modelica tool. Because the objective 

of the development of the toolchain was a pure open 

source solution, JModelica (http://JModelica.org) was 

used for this purpose. The definition of a Modelica 

simulation experiment in JModelica takes place in 

Python script, in which the three steps model translation, 

model simulation and, result visualization have to be 

defined.  The JModelica compiler (Python module 

pymodelica) obtains the Modelica model over the 

method compile_fmu() and generates an executable 

FMU in version 1.0 or 2.0. 

 

 

Figure 4. Compilation and simulation of the thermal 

building models with JModelica.      

In the following step this FMU is taken by the JModelica 

run time system (Python module pyfmi) by using 

mymodel, an instance of the Python class 

FMUModelBase. This instance is generated as the return 

value of the function call load_fmu(). The two 

methods calls myModel.simulate_options() and 

myModel.simulate() configure the numerical options 

and start the simulation experiment. The simulation 

results are stored in a Python dictionary and visualized 

with a suitable graphical Python library such as 

matplotlib or pylab after the simulation experiment is 

performed (compare with Figure 4 and the following 

excerpt of a Python script, which defines the simulation 

experiment): 

# compile model to fmu 

from pymodelica import compile_fmu 

fmu = compile_fmu('MultiZoneBuilding',…) 

 

# load the fmu 

from pyfmi import load_fmu 

myModel = load_fmu(fmu) 

 

# simulate the fmu and store results 

opts = myModel.simulate_options() 

opts['solver'] = "CVode" 

opts['ncp'] = 240 

res = myModel.simulate(start_time=0.0, 

final_time=864000, options=opts) 

 

# plotting of the results 

import pylab as P 

fig = P.figure(1) 

y1 = res['ambient.TAirRef'] 

y2 = res['building.TAir[1]’] 

y3 = res['building.TAir[5]’] 

y4 = res['building.TAir[12]’] 

t = res['time'] 

P.subplot(2,1,1) 

P.plot(t,y1,t,y2,t,y3,t,y4) 

P.legend(['ambient.TAirRef','building.TAir

[1]'],…) 

P.ylabel('Temperature (K)') 

P.xlabel('Time (s)') 

P.show() 

3 Case study 

The described approach of the toolchain was evaluated 

by the example of a small residential living unit, the 

Rooftop building, which was developed for the Solar 

Decathlon Europe 2014 (SDE 2014) in Versailles, 

France (http://www.solardecathlon2014.fr/en/) by a 

student team from UdK Berlin and TU Berlin (see 

Figure 5).  

 

 

Figure 5. The realized prototype of the Rooftop building 

on the SDE 2014 competition site in Versailles, France. 

This rooftop construction was designed as a solar plus 

energy living unit, which can be placed on top of the 

building stock (compare with Figure 6) and can be air-



BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building 
models by using structured data from BIM models 

DOI Proceedings of the 13th International Modelica Conference 37 
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany 

  
conditioned and supplied by its own gained energy all 

the year around. A detailed description of the Rooftop 

building incl. the technologies used (reversible heat 

pump, adaptable photovoltaic facades, thermal and 

electrical storage management etc.) can be found in 

Team Rooftop (2014). 

 

 

Figure 6. The concept of the Rooftop building as a solar 

living unit for the building stock for dense city districts. 

The Rooftop building was modelled for the case study 

as a 3D BIM model in ArchiCAD. Starting from this 

information base, an IFC2X3 model was exported. 

Figure 7 shows the visualization of this IFC model with 

all construction elements, and Figure 8 shows only the 

part of the building model which is relevant to a building 

energy simulation. 

 

Figure 7. BIM model Rooftop building with all building 

elements. 

 

Figure 8. BIM model of the Rooftop building, reduced to 

the relevant building elements for building energy 

simulation. 

The inner building structure includes four thermal 

zones, two of which can be air-conditioned by a floor 

heating and a cooling ceiling system (zones lab and 

seminar). The other two are only thermal buffer zones 

with free floating temperatures (zones toilet and core). 

The building construction consists of wooden 

lightweight building elements in combination with large 

glass facades.  

 

 

Figure 9. Generated Modelica building model. 

At present, the Modelica code generation is restricted to 

the thermal building model (see Figure 9); the HVAC 

system of the building energy system still has to be 

configured by hand. 

The generated Modelica model of the Rooftop 

building was simulated with JModelica for a period of 

four hot summer days for the location Berlin. In 

Figure 10, the outside air temperature and the free-

floating air temperatures of the four thermal zones are 

illustrated. Because the air change of the generated 

building model is suppressed and the large transparent 

facades are unshaded in the configuration of the 

simulation experiment, the air temperatures in the 

seminar zone and the lab zone show the typical 

increasing overheating behavior of a “glass house” over 

the time. 

 

Figure 10. Simulated indoor climate of the Rooftop 

building during four warm summer days (location Berlin). 

4 Summary and Outlook 

A Python-based open source toolchain for generating 

thermal multi-zone building models from BIM models 

for the Modelica BuildingSystems library was 

successfully implemented, validated, and evaluated by 
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means of the case study of the Rooftop building. Up to 

now, the code generation process is limited to the 

building construction; the HVAC system of the building 

has to be manually added.  

The source code of the BIM2Modelica toolchain incl.  

the code generation tool CoTeTo, the Modelica 

BuildingSystems library, and a set of BIM test cases is 

available for free and can be downloaded as one 

software package from GitHub 

(https://github.com/UdK-VPT/BIM2Modelica).  

The future development of the toolchain will take place 

in collaboration with research partners within the 

IBPSA project 1 (https://ibpsa.github.io/project1) in 

work package 2.2 “Building Information Modeling”. 

Future developments of the BIM2Modelica toolchain 

will focus on automatic reduction of the building model 

complexity dependent on the given boundary conditions 

(orientation of façade elements, conditions of use for the  

zones), similar as described in Reynders et al. (2017).  

Further, additional specialized CoTeTo templates for C# 

code generation that supports a building model 

visualization for Unity (https://unity3d.com/de) are 

under development (see also Nytsch-Geusen et al., 

2017). 
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