
BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

DOI Proceedings of the 13th International Modelica Conference 33
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany

BIM2Modelica – An open source toolchain for generating and simulating thermal
multi-zone building models by using structured data from BIM models
Nytsch-Geusen, Christoph and Rädler, Jörg and Thorade, Matthis and Tugores, Carles Ribas

33

BIM2Modelica – An open source toolchain for generating and

simulating thermal multi-zone building models by using structured

data from BIM models

Christoph Nytsch-Geusen1 Jörg Rädler1 Matthis Thorade2 Carles Ribas Tugores3
1Institut für Architektur und Städtebau, Berlin University of the Arts, Germany, nytsch@udk-berlin.de

2Modelon, Germany, matthis.thorade@modelon.com
3AEE INTEC, Austria, c.ribastugores@aee.at

Abstract
This contribution describes an open source toolchain

which can transfer BIM models of 3D building

constructions from CAAD programs into executable

thermal multi-zone buildings models based on Modelica

building energy simulation libraries. For this purpose,

different open source libraries and tools were integrated

into a Python-based software architecture of the

toolchain: the IfcOpenShell/OCC libraries as the

foundation for the import, analysis, and preparation of

the BIM models; CoTeTo as the tool for the template-

based code generation of the Modelica building models;

the BuildingSystems library as the base for the thermal

multi-zone building models; and JModelica as the

simulation tool to perform the simulation analyses.

While the first part of the paper describes the general

approach and the software architecture of the toolchain,

the second part illustrates its application with an

example of a real building.

Keywords: Building Information Modeling, IFC,

Modelica code generation, Multi-zone building models

1 Introduction

The graphical modelling approach of Modelica, based

on visualized components, connectors, and connections

fits well for 2-dimensional topologies of energy plant

systems, but not for 3-dimensional shapes of buildings

and the topology of their constructions. On the one hand,

the manual configuration of a thermal multi-zone

building in Modelica in a graphical editor, based on

components of a predefined library is an error-prone

process. For example, the definition of a thirteen-zone

building model in Modelica leads to a mo-file with more

than 1,500 lines of code and a huge number of connect

statements (Nytsch-Geusen, 2017). On the other hand,

architects are using modelling tools such as ArchiCAD

or Revit for their 3D building designs and often also

Rhinoceros for prototypical designs. All these tools are

able to export the geometry and the topology of a

building design as a structured BIM model, normally in

the IFC format.

For this reason, different research activities during

the last years have been focused on the automatic

generation of Modelica building models using IFC

building models as the input (e.g. Thorade et al., 2015

and Reynders et al., 2017).

The toolchain described in Thorade et al. (2015) is

based on the SimModel data model (O’Donnell et al.

2011). This data structure is able to store all relevant

information for building energy simulation (the building

construction and the related HVAC system), which is

present in the BIM model itself (the IFC file) and which

is optionally added by further data sources (e.g. data for

missing material properties of building constructions).

All these data are gained and combined by the use of the

simulation tool Simergy (https://d-

alchemy.com/products/simergy): with Simergy the user

imports the architectural model as an IFC file, performs

a space boundary analysis to obtain the topology

information for the multi-zone building model, adds

additional data with the Simergy GUI, and finally

exports the entire data set as a SimModel file in the xml

format. In the next step, a mapping tool takes the

SimModel file, which instantiates and parameterizes the

component and system models from present Modelica

libraries, which reflect the problem of the BIM model.

Because Simergy is a commercial simulation tool and

the simulation tool used here is Dymola, not all of the

toolchain is open source.

The approach of Reynders et al. (2017) describes a

toolchain Ifc2Modelica v0.2, which is based on a Python

framework. It can read IFC-files, determine the building

topology for multi-zone building models, and generate

Modelica building models in four different levels of

complexity (LOC) for the Modelica IDEAS library

(Jorissen et al., 2018). The model complexity reaches

from a detailed thermal multi-zone building model,

where each IFC entity is 1:1 mapped to a correspondent

Modelica component model (LOC1) over some

intermediate steps (LOC2, LOC3) down to a maximum

simplified thermal single-zone building model, where

all IFC entities are mapped to a small number of
Modelica wall, window and door models (LOC4). The

simplification from LOC1 to LOC4 takes place by

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

34 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915733

merging constructions of the same type and orientation

and zones with similar conditions of use with the

objective of a minimum loss of precision in the results

and a maximum acceleration of the computation speed.

The simulation analyses mentioned above were

performed with the commercial Dymola tool, and the

Ifc2Modelica v0.2 toolchain is not released as an open

source project.

The approach described in this paper demonstrates a

Python-based complete open source toolchain, which

reaches from the BIM modelling analysis up to the

Modelica code generation and also supports an

executable building simulation experiment, based on an

open source Modelica simulation tool.

2 Toolchain

The BIM2Modelica toolchain from the IFC file up to the

generated Modelica model includes three serial working

Python modules (compare with Figure 1): a module for

the BIM data import and analysis, a building data model

for storing the analyzed and prepared information for

building energy simulation, and the CoTeTo tool for

generating thermal multi-zone building models based on

the BuildingSystems library (http://www.modelica-

buildingsystems.de).

Figure 1. Software architecture of the BIM2Modelica

toolchain.

2.1 BIM data analysis and preparation

The basis for the IFC data import and the subsequent

data preparation is the IfcOpenShell library

(IfcOpenShell, 2019) in combination with the

OpenCascade library (pythonOCC, 2019). Based on

these two Python libraries, a new library was

implemented which enables the analysis and preparation

of the imported IFC files in the following steps:

1. Filtering and sorting of all IFC types relevant for a

thermal building model (types IfcSite, IfcSpace,

IfcWall, IfcSlab, IfcDoor, IfCColumn, IfcWindow,

etc.)

2. Extraction of all employed building constructions

(type IfcMaterialLayerSet) from the imported IFC

building model

3. Identification of the contact surfaces between the

spaces (type IfcSpace) which represent the thermal

zones and the adjacent building elements (types

IfcWall, IfcSlab etc.) by means of a space boundary

analysis (1st level space boundaries)

4. Determination of potential available openings in the

building elements and the correspondent elements

which fill them out (e.g. the relations between an

IfcWall and an IfcWindow or IfcDoor)

5. Cutting of continuous building constructions (e.g.

IfcWall or IfcSlab) which belong to more than one

IfcSpace into sub components. Each of them can

represent an individual thermal building element in

the thermal building model with a potentially

different thermal boundary condition (2st level

space boundaries).

2.2 Building data model

The building data model consists of a data structure

which stores all of the information in an intermediate

step, before it is used for the code generation of the

thermal building model, expressed in Modelica. The

building data model is realized by a couple of Python

classes which are able to store all of the required

geometry and topology information of each thermal

zone and individual building element. It also includes a

list of all of the construction types used. Further,

information regarding the employed building materials,

the type of use for each thermal zone (ventilation rates,

internal heat sources, set temperatures for heating and

cooling), the building orientation and the building

location can be added, if not already present in the IFC

file.

The information collection of the building data model

covers the typical amount of data for the parametrization

of multi-zone thermal building models. Up to now, it has

exclusively been used as a database for Modelica code

generation, but in principle, it could also be applied to

the creation of multi-zone building models for other

simulation tools such as EnergyPlus or TRNSYS.

2.3 Modelica code generation

In the next step of the toolchain, the Modelica building

models are generated using the information stored in the

building data model. For this purpose, the Python based

module CoTeTo (Code Templating Tool) is used,

which was developed in the EnEff-BIM project (see

Thorade et al., 2015).

Figure 2. GUI of the CoTeTo code generation tool.

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

DOI Proceedings of the 13th International Modelica Conference 35
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany

CoTeTo can be flexibly configured with pluggable

input, filter, and output components which support the

single steps of data acquisition, preprocessing and code

generation using a template system. It can be used

standalone with a GUI (compare with Figure 2) or as an

imported module in Python applications. The code

generation step in CoTeTo is based on the Mako

template engine (Mako, 2019).

2.4 BuildingSystems Library

The CoTeTo code generator for thermal multi-zone

models code was designed for the predefined model

classes (thermal zones, walls, windows, doors etc.) of

the Modelica BuildingSystems library (Nytsch-Geusen

et al., 2016). As other Modelica libraries for building

energy simulation such as IDEAS, AIXLib and

Buildings, the BuildingSystems library uses as its core

the same Modelica IBPSA library (Modelica IBPSA

library, 2019), which is the successor of the former

Annex 60 library (Wetter et a. 2015).

The following code excerpt demonstrates the principle,

upon which the model classes of the BuildingSystems

library are instantiated and parameterized during the

code generation process, based on a Mako template.

Access to the required building information stored in the

building data model takes place in the example over the

Python dictionary data. Outgoing from a generalized

template definition in Mako

% for ele in data['elementsOpaque']:

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes ${ele.name}(

% if

generatorCfg['MODELICA_SWITCHES'].getboole

an('surTemOut'):

 show_TSur = true,

% endif

 redeclare ${ele.constructionData}

constructionData,

 angleDegAzi = ${ele.angleDegAzi},

 angleDegTil = ${ele.angleDegTil},

 AInnSur = ${ele.AInnSur},

 height = ${ele.height},

 width = ${ele.width});

% endfor

the Modelica code for a flexible number of wall models

of a thermal building model can be generated:

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes wall_4(

 redeclare Construction1 constructionData,

 angleDegAzi = 90.0,

 angleDegTil = 90.0,

 AInnSur = 0.0,

 height = 7.8,

 width = 10.000000000000002);

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes wall_5(

 redeclare Construction1 constructionData,

 angleDegAzi = 0.0,

 angleDegTil = 90.0,

 AInnSur = 0.0,

 height = 7.8,

 width = 9.849999999999998);

…

The syntax of the Mako language is similar to the

Python language, but it works with the % sign before

control statements and without indents. Therefore, a for-

loop or a conditional statement in Mako needs an

% endfor and an % endif in addition to the % for and the

% if. Expressions within curly braces, e.g.

${ele.name}, are evaluated, and the result is used for

the code generation process. The example of the Mako

template also illustrates the flexibility of the code

generation process. If the Boolean expression

generatorCfg['MODELICA_SWITCHES'].getboole

an('surTemOut'):

becomes true, the Modelica parameter show_TSur =

true is generated in the Modelica code; otherwise it is

not.

2.5 Toolchain validation

The toolchain was tested with a set of 33 BIM building

models in the IFC 2x3 format, which cover a broad

spectrum of possible geometrical and topological

structures of building constructions (Bazjanac, 2017).

Figure 3 shows a subset of these building models.

Figure 3. Exemplary IFC test cases for validating the entire

toolchain from the BIM data import through the data

preparation to the Modelica code generation.

In addition, three further IFC2X3 models with one, two

and thirteen thermal zones were used for the validation

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

36 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915733

procedure. All of the building models were constructed

in ArchiCAD and afterwards exported as (IFC) BIM-

models.

The validation process was executed for all of the

models in three serial steps:

1. Correct translation of the BIM model into the

building data model.

2. Correct generation of the Modelica building model

with the Mako template.

3. Successful simulation of the generated building

models with JModelica and Dymola and achieving

the same simulation results with both tools.

With the help of these test cases, many potential failures

and weak spots in the algorithms of the IFC import and

data preparation module (e.g. incorrectly calculated

geometries and topologies), the building data model

(e.g. missing attributes) and the code generation

template used in CoTeTo (e.g. required additional

features for a more flexible code generation) could be

detected, fixed, and improved.

2.6 Simulation experiment with

JModelica

After the multi-zone building model code was generated

with CoTeTo, a simulation experiment could be

performed with a Modelica tool. Because the objective

of the development of the toolchain was a pure open

source solution, JModelica (http://JModelica.org) was

used for this purpose. The definition of a Modelica

simulation experiment in JModelica takes place in

Python script, in which the three steps model translation,

model simulation and, result visualization have to be

defined. The JModelica compiler (Python module

pymodelica) obtains the Modelica model over the

method compile_fmu() and generates an executable

FMU in version 1.0 or 2.0.

Figure 4. Compilation and simulation of the thermal

building models with JModelica.

In the following step this FMU is taken by the JModelica

run time system (Python module pyfmi) by using

mymodel, an instance of the Python class

FMUModelBase. This instance is generated as the return

value of the function call load_fmu(). The two

methods calls myModel.simulate_options() and

myModel.simulate() configure the numerical options

and start the simulation experiment. The simulation

results are stored in a Python dictionary and visualized

with a suitable graphical Python library such as

matplotlib or pylab after the simulation experiment is

performed (compare with Figure 4 and the following

excerpt of a Python script, which defines the simulation

experiment):

compile model to fmu

from pymodelica import compile_fmu

fmu = compile_fmu('MultiZoneBuilding',…)

load the fmu

from pyfmi import load_fmu

myModel = load_fmu(fmu)

simulate the fmu and store results

opts = myModel.simulate_options()

opts['solver'] = "CVode"

opts['ncp'] = 240

res = myModel.simulate(start_time=0.0,

final_time=864000, options=opts)

plotting of the results

import pylab as P

fig = P.figure(1)

y1 = res['ambient.TAirRef']

y2 = res['building.TAir[1]’]

y3 = res['building.TAir[5]’]

y4 = res['building.TAir[12]’]

t = res['time']

P.subplot(2,1,1)

P.plot(t,y1,t,y2,t,y3,t,y4)

P.legend(['ambient.TAirRef','building.TAir

[1]'],…)

P.ylabel('Temperature (K)')

P.xlabel('Time (s)')

P.show()

3 Case study

The described approach of the toolchain was evaluated

by the example of a small residential living unit, the

Rooftop building, which was developed for the Solar

Decathlon Europe 2014 (SDE 2014) in Versailles,

France (http://www.solardecathlon2014.fr/en/) by a

student team from UdK Berlin and TU Berlin (see

Figure 5).

Figure 5. The realized prototype of the Rooftop building

on the SDE 2014 competition site in Versailles, France.

This rooftop construction was designed as a solar plus

energy living unit, which can be placed on top of the

building stock (compare with Figure 6) and can be air-

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

DOI Proceedings of the 13th International Modelica Conference 37
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany

conditioned and supplied by its own gained energy all

the year around. A detailed description of the Rooftop

building incl. the technologies used (reversible heat

pump, adaptable photovoltaic facades, thermal and

electrical storage management etc.) can be found in

Team Rooftop (2014).

Figure 6. The concept of the Rooftop building as a solar

living unit for the building stock for dense city districts.

The Rooftop building was modelled for the case study

as a 3D BIM model in ArchiCAD. Starting from this

information base, an IFC2X3 model was exported.

Figure 7 shows the visualization of this IFC model with

all construction elements, and Figure 8 shows only the

part of the building model which is relevant to a building

energy simulation.

Figure 7. BIM model Rooftop building with all building

elements.

Figure 8. BIM model of the Rooftop building, reduced to

the relevant building elements for building energy

simulation.

The inner building structure includes four thermal

zones, two of which can be air-conditioned by a floor

heating and a cooling ceiling system (zones lab and

seminar). The other two are only thermal buffer zones

with free floating temperatures (zones toilet and core).

The building construction consists of wooden

lightweight building elements in combination with large

glass facades.

Figure 9. Generated Modelica building model.

At present, the Modelica code generation is restricted to

the thermal building model (see Figure 9); the HVAC

system of the building energy system still has to be

configured by hand.

The generated Modelica model of the Rooftop

building was simulated with JModelica for a period of

four hot summer days for the location Berlin. In

Figure 10, the outside air temperature and the free-

floating air temperatures of the four thermal zones are

illustrated. Because the air change of the generated

building model is suppressed and the large transparent

facades are unshaded in the configuration of the

simulation experiment, the air temperatures in the

seminar zone and the lab zone show the typical

increasing overheating behavior of a “glass house” over

the time.

Figure 10. Simulated indoor climate of the Rooftop

building during four warm summer days (location Berlin).

4 Summary and Outlook

A Python-based open source toolchain for generating

thermal multi-zone building models from BIM models

for the Modelica BuildingSystems library was

successfully implemented, validated, and evaluated by

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

38 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915733

means of the case study of the Rooftop building. Up to

now, the code generation process is limited to the

building construction; the HVAC system of the building

has to be manually added.

The source code of the BIM2Modelica toolchain incl.

the code generation tool CoTeTo, the Modelica

BuildingSystems library, and a set of BIM test cases is

available for free and can be downloaded as one

software package from GitHub

(https://github.com/UdK-VPT/BIM2Modelica).

The future development of the toolchain will take place

in collaboration with research partners within the

IBPSA project 1 (https://ibpsa.github.io/project1) in

work package 2.2 “Building Information Modeling”.

Future developments of the BIM2Modelica toolchain

will focus on automatic reduction of the building model

complexity dependent on the given boundary conditions

(orientation of façade elements, conditions of use for the

zones), similar as described in Reynders et al. (2017).

Further, additional specialized CoTeTo templates for C#

code generation that supports a building model

visualization for Unity (https://unity3d.com/de) are

under development (see also Nytsch-Geusen et al.,

2017).

Acknowledgements

The research described in this paper was conducted

within the research project “EnEff BIM: Planung, Aus-

legung und Betriebsoptimierung von energieeffizienten

Neu- und Bestandsbauten durch Modellierung und

Simulation auf Basis von Bauwerkinformations-

modellen” and funded by the Federal Ministry for

Economic Affairs and Energy in Germany (reference:

03ET1177D).

References

Bazjanac, V. (2017). Testing space boundaries that transcribe

complex CAD building geometry into surface geometry

usable by EnergyPlus and similar building energy

performance simulation engines. Internal report, UdK

Berlin, Germany.

IfcOpenShell (2019). The open source IFC toolkit and

geometry engine - http://ifcopenshell.org/python.html (last

access 2019 Jan 21)

Jorissen, F, Reynders, R.; Baetens, R.; Picard, D.; Saelens, D.

and Helsen, L. (2018). Implementation and Verification of

the IDEAS Building Energy Simulation Library. Journal of

Building Performance Simulation, 11 (6), 669-688, doi:

10.1080/19401493.2018.1428361.

Mako (2019). Mako templates for Python -

http://www.makotemplates.org (last access 2019 Jan 21)

Modelica IBPSA library (2019) -

https://github.com/ibpsa/modelica-ibpsa (last access 2019

Jan 21).

Nytsch-Geusen, C.; Banhardt, C.; Inderfurth. A.; Mucha,

K.Möckel, Jens; R., Jörg; Thorade, M.; Tugores, C. (2016).

BuildingSystems – Eine modular hierarchische Modell-

Bibliothek zur energetischen Gebäude- und

Anlagensimulation. BAUSIM 2016 IBPSA. Conference

Proceedings, Dresden, Germany.

Nytsch-Geusen, C.; Inderfurth, A.; Kaul, W.; Mucha, K.;

Rädler, J.; Thorade, M. and Tugores, C.R. (2017). Template

based code generation of Modelica building energy

simulation models. 12th International Modelica

Conference, Conference Proceedings, Prag, Czechia.

O’Donnell, J.; See, R.; Rose, C.; Maile, T., Bazjanac, V. and

Haves, P. (2011). SimModel: A domain data model for

whole building energy simulation. In Proceedings of the

12th IBPSA Building Simulation Conference, Sydney,

Australia.

pythonOCC (2019). pythonOCC – 3D CAD for python -

http://www.pythonocc.org (last access 2019 Jan 21).

Reynders, G.; Andriamamonjy, A.; Klein, R; Saelens, D. 2017

Towards an IFC-Modelica tool facilitating model

complexity selection for building energy simulation (2017).

15th IBPSA Building Simulation Conference, Conference

Proceedings, San Francisco, USA.

Team Rooftop (2014), Deliverable 6 & 7 of the Solar

Decathlon Europe 2014. Official documentation of the

Rooftop project. UdK Berlin and TU Berlin, Germany.

Thorade, M.; Rädler, J.; Remmen, P.; Maile, T.; Wimmer, R.;

Cao, J; Lauster, M.; Nytsch-Geusen, C.; Müller, D. and van

Treeck, C. (2015) An open toolchain for generating

Modelica code from Building Information Models. 11th

International Modelica Conference, Conference

Proceedings, Versailles, France.

Wetter, M.; Fuchs, M.; Grozman, P.; Helsen, L., Jorissen, F.;

Lauster, M.; Müller, D.; Nytsch-Geusen, C.; Picard, D.;

Sahlin, P.; and Thorade, M. (2015). IEA EBC Annex 60

Modelica Library - An international collaboration to

develop a free open-source model library for buildings and

community energy systems. 14th IBPSA Building

Simulation Conference, Conference Proceedings,

Hyderabad, India.

	Session 1A: Buildings 1
	BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building models by using structured data from BIM models

	Session 1B: Power & Energy 1

