
Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 589
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

Thermodynamic Property and Fluid Modeling with Modern Programming
Language Constructs
Otter, Martin and Elmqvist, Hilding and Zimmer, Dirk and Laughman, Christopher

589

Thermodynamic Property and Fluid Modeling

with Modern Programming Language Constructs

Martin Otter
1
 Hilding Elmqvist

2
 Dirk Zimmer

1
 Christopher Laughman

3

1
DLR - Institute of System Dynamics and Control, Germany

{martin.otter, dirk.zimmer}@dlr.de
2
Mogram AB, Magle Lilla Kyrkogata 24, 223 51 Lund, Sweden, Hilding.Elmqvist@Mogram.net

3
Mitsubishi Electric Research Laboratories, Cambridge, MA, USA, laughman@merl.com

Abstract
Modelica is used extensively to model thermo-fluid

pipe networks. Experience shows that Modelica

models in this domain have limitations due to missing

functional expressiveness of the Modelica language. In

this paper, a prototype is described that demonstrates

how thermodynamic property and thermo-fluid pipe

component modeling could be considerably enhanced

via modern language constructs. This prototype is

based on the Modia modelling and simulation

prototype and relies on features of the Julia

programming language. It utilizes some key ideas of

Modelica.Media, and part of Modelica.Media was

semi-automatically translated to Julia.

Keywords: Modelica, Modia, Julia, Modelica.Media,
Modelica.Fluid, ModiaMedia, thermodynamic property
models, thermo-fluid models

1 Introduction

Thermodynamic property models (abbreviated as

Media models in the rest of this article) require a great

deal of flexibility with regards to the choice of

thermodynamic and dynamic states to achieve robust

and fast simulations. These medium models need

functions to describe thermodynamic relationships with

different inputs and differential equations to describe

dynamic behavior. When such medium models using

the Modelica language were first introduced, the only

mechanism available that satisfied these requirements

was that of a replaceable Modelica package (Elmqvist,

et al. 2003). Special constructs for functions were also

added to enable media modeling. This use of packages

was not part of the initial Modelica language design,

however, as they were primarily intended for the

organization of model components. As a result,

compilers typically handle packages completely at

compile time. This fact has several significant

implications, such as the restriction from changing the

medium or the level of detail of the medium model

during simulation.

This paper investigates alternative media and fluid

modelling architectures available in the modern

programming language Julia (Bezanson, et al. 2017).

Mechanisms of interest instead of replaceable packages

include member functions, function references, and

multiple dispatch
1
. The resulting architecture provides

more dynamic flexibility and uses common language

constructs so that it is easier to understand and

maintain.

The design of the fluid library for Modia is based on

a new approach by (Zimmer et al. 2018). This

approach is currently used in aircraft industry and

enables the robust modeling of fluid streams and

avoids the creation of large non-linear equation

systems that can be a major source of problems for

conventional fluid libraries in Modelica.

2 Thermodynamic Property Models

2.1 Users view

A medium model consists of a data structure that holds

the data of the medium and a set of functions operating

on this data. The fluid properties are computed from a

set of variables called the thermodynamic states of the

medium. For example, the thermodynamic states of the

ideal-gas moist air model Modelica.Media.Air.MoistAir

are temperature T, pressure p, and the mass fraction of

water X, because all other quantities can be computed

from them.

A fluid component model, such as a volume model,

defines independent variables called model states that

describe the differential equations of a component

model as functions of these states. For example, if a

medium is used only in a single phase region, often

pressure p and temperature T are used as states of the

model, whereas pressure p and specific enthalpy h

might be used if the medium enters the two-phase

region. Other choices, such as pressure p and density d,

may also be necessary to address application-specific

requirements (Laughman, Qiao 2016). All media

models in Modelica.Media therefore have various

possibilities for model states, including (p,T), (p,h),

(p,s), and (d,T), as well as mass fractions X.

1
Multiple dispatch in Julia means that method selection is

based on the types of all non-optional function arguments

(if possible at compile-time, otherwise at run-time).

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

590 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

In general, fluid properties are computed by (a)

transforming model states into medium-specific

thermodynamic states, and (b) executing medium-

specific functions having the medium-specific

thermodynamic states as input arguments. A

programming language that supports member functions

can usually implement such a scheme in a reasonable

way.

Modelica does not support member functions and

therefore the definition of media is awkward and

limited. Julia does not have member functions, but

instead supports multiple dispatch to select the desired

function based on the types of all (non-optional)

function arguments (rather than base the selection on a

single input argument, as in object-oriented

programming languages).

The implementation of this media modeling

approach, called ModiaMedia, is available on Github
2
.

From a user's point of view, a medium is an object (an

instance of a Julia immutable struct) that is returned by

function getMedium(..), given the medium name as a

string. Example:

using ModiaMedia
Medium = getMedium("Air")

All media models are stored in a dictionary and

getMedium(..) inquires the medium from this dictionary

and returns the reference to it. In a second step, the

thermodynamic state of the medium is computed from

the desired independent variables of the application, for

example,

state = setState_pT(Medium, 1e5, 300)

Here the thermodynamic state of the Air medium is

computed from p = 10
5
 Pa and T = 300 K. Given the

thermodynamic state, functions are provided to

compute other desired medium properties. For

example, the density and specific enthalpy of air can be

computed by

d = density(Medium, state)
h = specificEnthalpy(Medium, state)

An alternative implementation of setState_pT(..) could

store a reference to Medium in state. This would then

simplify the further access calls, for example: d =

density(state). This has not been implemented, as there

are open questions about this approach.

In an object-oriented programming language, the

syntax would be:

d = Medium.density(state)
h = Medium.specificEnthalpy(state)

Functions are also provided to plot properties of the

medium. In the current version of this project, the most

2
 https://github.com/ModiaSim/ModiaMedia.jl

important characteristics of a medium are plotted with

the call standardPlot(Medium). This interface is

identical for all media. Figure 1 illustrates the (current)

standard plot for Air.

In addition to constants and functions, a medium

package in Modelica.Media also defines a Modelica

model called BaseProperties that computes the

properties of a medium needed for mass and energy

balances. Since ModiaMedia is a standalone package

that does not depend on Modia and can be used in

other standalone modeling environments, no equivalent

Modia model to BaseProperties is defined in

ModiaMedia.

Figure 1. Result of: standardPlot(getMedium("Air")).

2.2 Structure of the ModiaMedia package

The Julia package ModiaMedia has many features in

common with Modelica.Media, but is based on a

hierarchical type system that allows for greater

simplicity and flexibility. The abstract type system of

ModiaMedia is a direct mapping of the

Modelica.Media class hierarchy:

abstract type AbstractMedium end
abstract type PureSubstance <: AbstractMedium end
abstract type MixtureMedium <: AbstractMedium end

The above definitions state that PureSubstance and

MixtureMedium are subtypes of AbstractMedium. A

Medium model is defined as a medium-specific Julia

struct that is either a direct or indirect subtype of

AbstractMedium and has the following structure:

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 591
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

struct MediumTypeName <: AbstractMedium
 infos::FluidInfos
 fluidConstants::SVector{1,AbstractFluidConstants}
 fluidLimits::FluidLimits
 data::Any # fluid spec. data
end

where

 FluidInfos contains all constants that are similarly

defined for a Modelica.Media package (such as

mediumName and singleState),

 fluidConstants contains all the data of the

fluidConstants vector of records of the equivalent

Modelica.Media package,

 fluidLimits defines the validity range of the

medium model and

 data contains additional fluid specific data.

Example:

struct SingleGasNasa <: PureSubstance
 infos::FluidInfos
 fluidConstants::SVector{1, IdealGasFluidConstants}
 fluidLimits::FluidLimits
 data::SingleGasNasaData

 function SingleGasNasa(...)
 # Constructor function
 ...
 end
end

The functions that are available for an AbstractMedium

are defined in the following form:

density(m::AbstractMedium,
 state::ThermodynamicState) = error("undefined")

specificEnthalpy(m::AbstractMedium,
 state::ThermodynamicState) = error("undefined")

where ThermodynamicState is the abstract super type of

all thermodynamic states.

A medium model must provide concrete

implementations for these functions, e.g.,

density(m::SingleGasNasa, state:: State_pT) =
 state.p/(m.data.R*state.T)

In summary, while ModiaMedia models store

analogous data to that which is contained in a Modelica

medium package, it is stored in a hierarchical data

structure. In comparison, all data is stored in form of

constants inside a Modelica package. The benefit of the

hierarchical data structure is that this data can be

passed as argument to a function allowing a user to

easily add functionality for pre- and post-processing.

Since a Modelica medium model is actually a package,

and Modelica does not support functions that can

operate on packages, Modelica medium models can be

used for simulation only and it is not possible to easily

implement other functions, such as those that plot data

of a Modelica medium.

It should be noted that there are several

thermodynamic property packages available where

medium models are defined with objects and member

functions implemented in a programming language

such as C++, e.g., FluidProp
3
, CoolProp

4
, and

TILMedia
5
. In comparison with these packages,

ModiaMedia is a very early prototype to experiment

with a tight integration of a thermodynamic property

package with fluid component modeling to achieve fast

simulations of transient thermodynamic processes.

2.3 Conversion of Modelica to Modia/Julia

The Modelica Standard Library has a rich set of media

models, containing data, functions for thermodynamic

properties calculation, table lookup and interpolations,

and basic media model equations. Each medium is

represented as a Modelica package. To utilize the

extensive knowledge and effort encoded in this library,

a translator
6
 performing source-to-source transfor-

mation from Modelica to Modia/Julia has been written

in Julia. It has a recursive descent handwritten LL(2)

parser. Each grammar production of Modelica

(Modelica Association 2017, Appendix B) is

represented by a Julia function. Example:

Modelica grammar production:

extends-clause :
 extends type-specifier
 [class-modification]
 [annotation]

Julia function:

function extends_clause(env)
 expect("extends")
 type_specifier(env)
 if nextItem == "("
 class_modification(env)
 end
 if nextItem == "annotation"
 annotation(env)
 end
end

A scanner updates global variables nextItem and

nextType. The function expects checks nextItem and if

found, scans the next item. The First and Follow sets

used in LL parsers have been determined manually and

are used to select productions/functions and to end

repetition. The variable env is used to transfer which

output file is used, indentation level, etc.

3
 http://www.asimptote.nl/software/fluidprop

4
 http://www.coolprop.org/

5
 https://www.tlk-thermo.com/index.php/en/software-

products/tilmedia-suite
6
https://github.com/ModiaSim/ModiaFromModelica

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

592 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

Top level packages and classes of Modelica are

translated to Julia modules, while subpackages cannot

be converted to modules because cyclic dependencies

between Julia modules, such as exist between Modelica

subpackages, are not allowed. These subpackages are

therefore removed and flattened by introducing long

names such as: Modelica_Blocks_Interfaces_SISO for the

content.
Models, connectors, blocks are converted to Modia

@model macros, while records are converted to

mutable structs. Julia supports unit handling also in

functions using the package Unitful (Keller, et al

2018).

Since expressions in Modelica are quite similar to

those in Julia, there is no need to introduce an abstract

syntax tree; as a result, the corresponding Julia text can

be generated directly by the parsing function.

Examples of slightly different syntax:

{1,2,3} → [1,2,3]

[1,2,3; 4,5,6] → [1 2 3; 4 5 6]

While regular expression substitution could be

considered for expressions, if-then-else expressions

pose problems due to the need to introduce end in

Julia:

if a then b else c → if a; b else c end

(One could have used the syntax a ? b : c instead.)

Variable declarations in models have a different

structure in Modelica and Modia:

Real x[10] = ones(10) →

 x = Float(size=(10,), start=ones(10))

This means that information needs to be moved from

one parsing function to another. This is accomplished

by temporarily building small ASTs using tuples.

In comparison, syntax for declarations in functions

is quite different, e.g.,:

Real x[10] = ones(10) → x::Array{Float64,1} = ones(10)

2.4 Conversion of Modelica.Media to

Modia/Julia

Since the Medium definitions in Modelica and in

Modia are quite different, it is not yet possible to fully

automatically transform a Modelica medium package

in an equivalent ModiaMedia model. Instead, the Julia

code generated by the translator is currently semi-

manually transformed into the desired form with the

help of an editor that supports regular expressions.

For example, the SingleGasNasa coefficients that

have been transformed from Modelica to Julia are

defined as:

const Ag = IdealGases.Common.DataRecord(
 name="Ag",
 MM=0.1078682,
 ...)

With an editor (defining the changes with regular

expressions), all 1200 definitions have been

automatically transformed to the assignment of

dictionary entries:

singleGasesData["Ag"] =
 IdealGases_Common_DataRecord(
 name="Ag",
 MM=0.1078682,
 ...)

This dictionary is then serialized and stored so that

these medium data can be quickly loaded by the user,

rather than be regenerated on every use.

A Modelica medium function of the form:

redeclare function extends density
algorithm
 d := state.p/(data.R*state.T);
end density;

can be changed to the equivalent ModiaMedia model

function:

density(m::SingleGasNasa, state::state_pT) =
 state.p/(m.data.R*state.T)

via the following rules:

1. Add the medium instance m as the first argument

to the function.

2. Add the appropriate type information for the input

and return variables.

3. Prepend m to all variable data, e.g., “data.Hf” is

changed to “m.data.Hf”.

We plan to transform the complete Modelica.Media

package to ModiaMedia. The base Modelica package

has already been transformed to Julia and the

somewhat labor-intensive semi-manual final adaptation

is currently on the way.

3 Fluid Component Models

In general, our objective is to model and simulate

thermo-fluid pipe networks, such as heat exchangers,

air conditioning systems, distillation columns, or

power plants. Traditional simulation programs in this

field tightly couple the equations of the fluid

components to the equations of the medium that is

flowing in the components. Modelica.Fluid was

designed to increase the flexibility of these models by

separating the model of the fluid component from the

medium model, enabling the use of a pipe model for

media that have different thermodynamic states. The

Modia fluid prototype continues to pursue the

simplification and generalization of the Modelica.Fluid

approach.

There are different ways to formulate fluid network

models, depending on the application and the

properties of the fluid that need to be taken into

account. To experiment with simpler and more robust

network models, the new method from (Zimmer et al.

2018) is used as basis for the fluid component models

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 593
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

and has been implemented in a small experimental

library named ModiaFluid for unidirectional, 1D

thermo-fluid pipe flow that is suited for incompressible

media or for compressible media if Ma ≤ 0.3. The

Modelica.Fluid library has a similar application area

but supports bidirectional fluid flow.

3.1 Users view

A simple pipe network is shown in Figure 2.

Figure 2. Simple pipe network with splitter and junction.

With the ModiaFluid library, this network is defined

as:

const air = getMedium("Air")
@model PipeSystem begin
 fixedSource = FixedSource(Medium=air,
 p0=1.0e5, h0=10000,)
 fixedSink = FixedSink(p0=0.8e5)
 staticPipe1 = StaticPipe(k=3e5, l=1.0, A=0.01)
 staticPipe2 = StaticPipe(l=1.0, A=0.01)
 junction = Junction()
 splitter = Splitter()
 @equations begin
 connect(staticPipe2.outPlug, junction.inPlugA)
 connect(staticPipe1.outPlug, junction.inPlugB)
 connect(junction.outPlugC, fixedSink.inPlug)
 connect(splitter.outPlugB, staticPipe1.inPlug)
 connect(splitter.outPlugC, staticPipe2.inPlug)
 connect(fixedSource.outPlug, splitter.inPlugA)
 end
end

Currently, Modia has no graphical user interface, and

the system must be manually defined with the textual

definition above. The definition on this level looks

close to a corresponding Modelica model. The essential

difference is that the medium model is defined only at

one component (because the medium is propagated

through the connection structure), whereas in Modelica

it must be defined for every component.

3.2 Fluid connectors

The ModiaFluid library currently supports only

unidirectional fluid flow. This assumption is already

built into the connectors that are defined corresponding

to (Zimmer et al. 2018):

MediumVariable() = Variable(size=())

@model InPlug(:connector) begin
 Medium = MediumVariable()
 m_flow = Float(flow = true)

 r = Float()
 p = Float(input=true)
 h = Float(input=true)
end

@model OutPlug(:connector) begin
 Medium = MediumVariable()
 m_flow = Float(flow = true)
 r = Float()
 p = Float(output=true)
 h = Float(output=true)
end

The variables have the following meaning:

 Medium is a reference to the medium data structure

of section 2 and defines the medium that is flowing

through the connector. This reference is

propagated through the connection structure by

means of alias elimination and is treated as one

Modia variable in the symbolic engine. Note, a

Modia variable can be any Julia data structure.

 m_flow is the mass flow rate into the connector,

 r is the pressure that is used to accelerate the fluid

(see section 3.4),

 p = staticPressure - r, and

 h is the specific enthalpy.

A connector is modelled as a Modia @model macro

with the Symbol :connector as macro parameter. Note

that p and h are declared as either input or output.
Formally, an InPlug connector can only be connected

with an OutPlug connector and not with another InPlug

connector, so there are restrictions how components

can be connected together.

3.3 Medium propagation

In the connectors of section 3.2, Medium is a Modia

variable, where the type of the variable is not yet

defined but will be deduced by type inference. At one

or at several components, this variable is redefined to

an instance that is a subtype of AbstractMedium.

Example:

@model FixedSource begin
 Medium = MediumVariable()
 outPlug = OutPlug()
 state = Variable()
 ...
@equations begin
 outPlug.Medium = Medium
 state = setState_ph(Medium, outPlug.p, outPlug.h)
 d = density(Medium, state)
 ...
end

const air = getMedium("SimpleAir")

@model PipeSystem begin

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

594 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

 source=FixedSource(Medium=air)
 ...
end

In model FixedSource, the Medium variable must be

redefined when the component is used. This is

performed by first generating a medium model with

air = getMedium("SimpleAir")

and then using air as modifier to the FixedSource

instance:

source=FixedSource(Medium=air)

In the FixedSource component, an equation

outPlug.Medium = Medium is present. Furthermore, the

Medium variable might be used to compute medium

properties such as the density d.

Modia treats Julia structs (such as variable Medium)

specially: Struct variables can be used as modifier or as

variable in an equation "var1 = var2". When

propagating a reference in this way, an overdetermined

system of equations can occur (when connections form

a loop, or when the same medium is defined at several

components). This issue is automatically resolved by

extended alias elimination.

Since the media in Modelica.Media are packages

and Modelica cannot use packages in equations and

also does not have special language elements to

propagate packages in connections, a medium has to be

defined in every component where it is used.

Therefore, if a pipe system has 20 components, then

the medium needs to be defined 20 times.

In ModiaFluid, a medium can be defined in one

component model and is then propagated through all

components and connections where the fluid is

flowing. The current implementation of medium

propagation has however the temporary limitation that

a medium must also be defined at all volumes, for

details see section 3.5. In principal, this mechanism

would allow changes to the medium during simulation

as long as the same BaseProperties models (see section

3.5) are used.

3.4 Momentum balance

Modelica.Fluid utilizes the steady-state or the dynamic

momentum balance depending on the chosen option. In

ModiaFluid the approach from (Zimmer et al. 2018) is

used to achieve more efficient and more robust

simulations. Hereby, the unsteady Bernoulli equation is

the starting point (Zimmer et al. 2018, Schade et al.

2013 eq. 4.4-3, Brennen 2006 section Bnda
7
)
8
.

7
http://brennen.caltech.edu/FLUIDBOOK/basicfluiddyna

mics/Unsteadyonedimensionalflow/Unsteadybernoulli/un

steadybernoulli.pdf
8
 The unsteady Bernoulli equation is derived by

integrating the Euler equations for incompressible fluid

flow along a stream line. The Euler equations in turn are

The approach is sketched with the simple example

shown in Figure 3, where three pressure drop

components (for example pipes, orifices, bends) are

connected between two volumes and fluid flows from

volume1 to volume2.

Figure 3. Three pressure drop components connected

between two volumes (𝒑𝒔𝒊 is the static pressure

at the indicated location).

For simplicity of the derivation the specific kinetic

energy is neglected. Assume that all pressure drop

components have the same area 𝐴 and component i has

length ∆𝑠𝑖, that 𝑚𝑓𝑙𝑜𝑤 is the mass flow rate, 𝑝𝑠𝑖 is the

static pressure at the indicated location and ∆𝑝𝑖−1,𝑖 is

the pressure drop correlation of component i. The

unsteady Bernoulli equation can then be formulated as:

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠1

𝐴
+ 𝑝𝑠1 − 𝑝𝑠0 = ∆𝑝01(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠0, ℎ0)

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠2

𝐴
+ 𝑝𝑠2 − 𝑝𝑠1 = ∆𝑝12(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠1, ℎ1)

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠3

𝐴
+ 𝑝𝑠3 − 𝑝𝑠2 = ∆𝑝23(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠2, ℎ2)

The specific enthalpies ℎ𝑖 are separately computed,

e.g., for isenthalpic pressure drop components the ℎ𝑖

are the upstream specific enthalpies (ℎ2 ∶= ℎ1 ∶= ℎ0).

Note, in the Modelica.Fluid library the momentum

balance is used in the form
9

𝑑𝐼𝑠
𝑑𝑡

+ (𝑝𝑠1 − 𝑝𝑠0) ∙ 𝐴 = ∆𝑝01 ∙ 𝐴

𝐼𝑠 = 𝑚𝑓𝑙𝑜𝑤 ∙ ∆𝑠1

As can be seen, this is exactly the unsteady Bernoulli

equation multiplied with 𝐴.
10

 So, the starting point of

the derivation below are exactly the same equations as

used in the Modelica.Fluid library.

The static pressures are now split into two parts:

𝑝𝑠𝑖 ∶= 𝑝𝑖 + 𝑟𝑖

where 𝑟𝑖 is the pressure that is used to accelerate the

fluid and 𝑝𝑖 is the remaining part of the pressure. In

steady state operation, 𝑟𝑖 ∶= 0, 𝑝𝑠𝑖 ∶= 𝑝𝑖 . Introducing

the differential form of the momentum balance that is

used in Modelica.Fluid.
9
 Modelica.Fluid.Interfaces.PartialDistributedFlow

10
 The unsteady Bernoulli equation has, however, the

advantage that in its general form it holds along a

streamline, so also for bends and orifices. The momentum

balance along a streamline includes the (unknown)

reaction forces on the component and therefore it can only

be used in equations for a straight pipe, where the reaction

forces in direction of the pipe flow are zero.

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 595
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

these terms in the unsteady Bernoulli equations and

utilizing the abbreviation ∆𝑟𝑖−1,𝑖 = 𝑟𝑖 − 𝑟𝑖−1 results in:

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠1

𝐴
+ ∆𝑟01 + 𝑝1 − 𝑝0 = ∆𝑝01

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠2

𝐴
+ ∆𝑟12 + 𝑝2 − 𝑝1 = ∆𝑝12

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠3

𝐴
+ ∆𝑟23 + 𝑝3 − 𝑝2 = ∆𝑝23

Since the 𝑟𝑖 are defined to solely accelerate the fluid,

the equations can be split into two parts:

𝑝1 − 𝑝0 = ∆𝑝01(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠0, ℎ0)

𝑝2 − 𝑝1 = ∆𝑝12(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠1, ℎ1)

𝑝3 − 𝑝2 = ∆𝑝23(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠2, ℎ2)
𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠1

𝐴
= −∆𝑟01

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠2

𝐴
= −∆𝑟12

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠3

𝐴
= −∆𝑟23

Furthermore, we have the boundary conditions at the

volumes:

𝑝𝑠0 = 𝑝0 (𝑟0 = 0)

𝑝𝑠3 = 𝑝3 + 𝑟3

No approximations have been introduced so far (the

original equations have been just reformulated). Now,

the approximation is made, that the dependency of the

pressure drop equations on the inertial pressure r is

neglected:

∆𝑝𝑖−1,𝑖 = ∆𝑝𝑖−1,𝑖(𝑚𝑓𝑙𝑜𝑤, 𝒑𝒊−𝟏 , ℎ𝑖−1)

Note that the pressure drop equations are typically

determined only for steady-state operations, and that

the relationships/equations that take the acceleration of

a fluid into account are often not known. In particular,

all the pressure drop correlations used in

Modelica.Fluid hold only for steady-state operations.

The big advantage of this slight approximation is

that the equations are now decoupled, as described in

the following. First, the pressures 𝑝𝑖 can be computed

in a forward sequence because the static pressures and

the specific enthalpies at the volumes are known, as

well as the mass flow rate 𝑚𝑓𝑙𝑜𝑤 (since its derivative

appears in the unsteady Bernoulli equation, 𝑚𝑓𝑙𝑜𝑤 is a

state):

𝑝1 ∶= 𝑝0 + ∆𝑝01(𝑚𝑓𝑙𝑜𝑤, 𝑝0, ℎ0)

𝑝2 ∶= 𝑝1 + ∆𝑝12(𝑚𝑓𝑙𝑜𝑤, 𝑝
1
, ℎ1)

𝑝3 ∶= 𝑝2 + ∆𝑝23(𝑚𝑓𝑙𝑜𝑤, 𝑝
2
, ℎ2)

The remaining equations then form a linear system of

equations and the coefficients of the system matrix are

constants:

[

∆𝑠1

𝐴
1 0 0

∆𝑠2

𝐴
1 −1 0

∆𝑠3

𝐴
0 1 −1

0 0 0 1]

∙

[

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
𝑟1

𝑟2

𝑟3]

=

[

𝑝𝑠0

0

0

𝑝𝑠3 − 𝑝
3]

The result is that the interconnection of pressure drop

components results only in a small linear equation
system with a constant coefficient matrix. Since this

matrix is constant, it is sufficient to perform an LU

decomposition once and then reuse it during the

simulation. If this approximation is not performed as in

the Modelica.Fluid library, nonlinear algebraic
equation systems often appear that can be either hard to

solve (especially, when starting at 𝑚𝑓𝑙𝑜𝑤 = 0) or in

which these equation systems have no unique

solutions.

For these reasons, there is a "rule of thumb" in the

Pipe-network community to always have a volume

between two pressure drop components. In

Modelica.Fluid there is, for example, the option

modelStructure in the DynamicPipe model to define

whether the pipe ends with a volume on either of the

ports or not, in order to avoid such nonlinear equation

systems. Obviously, such options are only for fluid

specialists. When using the new method, such

advanced options are no longer needed.

In (Zimmer et al. 2018) more complicated cases

with branching and joining piping networks are

additionally discussed. Here, the dynamic momentum

balance is also taken into account, whereas in

Modelica.Fluid only junction models with steady-state

momentum balances are provided.

In the ModiaFluid library the new method is used in

all components, including junctions. For example, a

pipe model is defined in the following way, directly

utilizing the equations explained above:

@model ShortPipe begin
 inPlug = InPlug()
 outPlug = OutPlug()
 ...
@equations begin
 # Medium propagation
 outPlug.Medium = inPlug.Medium

 # mass flow balance
 m_flow = inPlug.m_flow
 inPlug.m_flow + outPlug.m_flow = 0

 # Propagation of specific quantities
 outPlug.p = inPlug.p + dp
 outPlug.r = inPlug.r + dr
 outPlug.h = inPlug.h + dh
 dp = -m_flow*abs(m_flow)*k # pressure drop
 dr = -der(m_flow)/A*l # inertial pressure

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

596 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

 dh = 0.0 # isenthalpic process
 end
end

In the Modelica.Fluid package there are many options

that can be set either at the component level or

globally. For example, the user can choose either a

steady-state or dynamic momentum balance, the

presence of a volume on either port of a pipe, or the

definition of pressure drop components as functions of

the pressure difference or as functions of the mass flow

rate.

In ModiaFluid the complexity of the code and of the

options is drastically reduced by providing only the

dynamic momentum balance, by describing pressure

drop components as function of mass flow rate, and by

having only one discretization scheme for a pipe. The

simulation is also potentially more robust than when

defined with Modelica.Fluid, because no nonlinear

algebraic equations occur, even if pressure drop

components are connected together without a volume

in between.

3.5 Mass and energy balance

The definition of mass and energy balances are

essentially analogous to the approach used in

Modelica.Fluid. With the specific internal energy u,

density 𝑑, volume 𝑉, mass 𝑚, internal energy 𝑈, the

sum of the mass flow rates into the volume 𝑚𝑓𝑙𝑜𝑤, the

sum of the enthalpy flow rates in to the volume 𝐻𝑓𝑙𝑜𝑤,

the contribution due to the unsteady movement of the

fluid 𝐻𝑟, and the pressure 𝑝 and specific enthalpy ℎ as

the independent variables of the utilized medium

model, the balance equations can be formulated as:

𝑑 = 𝑑𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)
𝑢 = 𝑢𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)
𝑚 = 𝑑 ∙ 𝑉
𝑈 = 𝑚 ∙ 𝑢

𝑑𝑚

𝑑𝑡
= 𝑚𝑓𝑙𝑜𝑤

𝑑𝑈

𝑑𝑡
= 𝐻𝑓𝑙𝑜𝑤 + 𝐻𝑟

𝐻𝑟 = ∑ 𝑚𝑓𝑙𝑜𝑤,𝑖

𝑖∈𝑖𝑛𝑓𝑙𝑜𝑤𝑖𝑛𝑔

𝑟𝑖/𝑑

Since each inlet 𝑖 of a volume forms a boundary for the

pressure, a pressure difference may occur between the

volume and the inlet pressure 𝑝. This difference is

accounted by 𝑟𝑖 = 𝑝𝑠 − 𝑝𝑖. Since the volume work

𝑉𝑓𝑙𝑜𝑤,𝑖𝑟𝑖 = 𝑚𝑓𝑙𝑜𝑤,𝑖 𝑟𝑖/𝑑 of this pressure gradient is

accounting for the acceleration (or deceleration) of the

inflowing fluid, the enthalpy of the inflowing fluids

needs to be corrected by the term 𝐻𝑟. This is not

necessary for the outlets since for the outlets, the term

𝑟 is zero by definition.

If the @model equations would be defined in this

way, then 𝑚 and 𝑈 would be selected as states and the

independent medium variables, for example (𝑝, ℎ) or

(𝑝, 𝑇) would be in general determined by solving

nonlinear equation systems. The approach is to rewrite

the equations. In Modelica.Fluid this is performed by

providing the attribute StateSelect.prefer on the desired

states. The goal in Modia is to arrive at a simpler

language as Modelica and therefore an attribute

StateSelect is not supported. Instead, the derivatives are

manually expanded until the state derivatives appear.

For example, (𝑝, ℎ) shall be used as states. The mass-

and energy balance can then be reformulated to (=

manual index reduction):

𝑑 = 𝑑𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)
𝑢 = 𝑢𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)

der_d =
𝜕𝑑𝑚𝑒𝑑𝑖𝑢𝑚

𝜕𝑝
�̇� +

𝜕𝑑𝑚𝑒𝑑𝑖𝑢𝑚

𝜕ℎ
ℎ̇

der_u =
𝜕𝑢𝑚𝑒𝑑𝑖𝑢𝑚

𝜕𝑝
�̇� +

𝜕𝑢𝑚𝑒𝑑𝑖𝑢𝑚

𝜕ℎ
ℎ̇

𝑚 = 𝑑 ∙ 𝑉
𝑈 = 𝑚 ∙ 𝑢

der_d ∙ 𝑉 + 𝑑 ∙ �̇� = 𝑚𝑓𝑙𝑜𝑤

𝑚𝑓𝑙𝑜𝑤 ∙ 𝑢 + 𝑚 ∙ der_u = 𝐻𝑓𝑙𝑜𝑤 + 𝐻𝑟

By this reformulation only derivatives for the

independent medium variables (and of the volume 𝑉)

appear and therefore only these variables can be

potential states. Note, the equations above are linear in

the derivatives and no nonlinear equation system

appears anymore.

The first four equations are marked in blue to

indicate that these equations are medium specific.

Depending on the medium type, these four equations

need to be provided. This is accomplished by providing

a specific BaseProperties Modia model. Example for

the SimpleIdealGas medium that has (p,T) as states,

where d=d(p,T) and u=u(T):

@model SimpleIdealGas_BaseProperties begin
 p_start = 1e5
 T_start = 300.0
 Medium = MediumVariable()
 p = Float(start=p_start)
 h = Float()
 T = Float(start=T_start)
 d = Float()
 u = Float()
 der_d = Float()
 der_u = Float()
 state = MediumState()
@equations begin
 d = d_pT(Medium,p,T)
 u = u_T(Medium,T)
 h = h_T(Medium,T)
 der_d = d_pT_der_2(Medium,p,T)*der(p) +
 d_pT_der_3(Medium,p,T)*der(T)
 der_u = u_T_der_2(Medium,T)*der(T)
 state = setState_pT(Medium,p,T)
 end

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 597
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

end

BaseProperties(Medium:: SimpleIdealGasMedium;
 p_start=1e5, T_start=300.0) =
 SimpleIdealGas_BaseProperties(Medium=Medium,
 p_start=p_start, T_start=T_start)

Under the assumption that p,T are states and that all

used functions are available in ModiaMedia, all the left

hand side variables can be computed from p,T and their

time derivatives. In the @equations section the Modia

convention is used that fc_der_i(..) is the partial

derivative of function fc with respect to its i-th

argument. Note, the medium specific functions must

reflect the true dependency of the function from the

independent variables in order that the symbolic

transformation does not introduce singularities in the

generated code. For example, although p,T are the

thermodynamic states of this medium, the inner energy

u is only a function of T and not of p,T.

Above, for every medium type a medium specific

function BaseProperties(Medium; ...) is defined that

selects the medium specific BaseProperties @model,
instantiates it and returns this instance. Alternatively,

all medium-specific BaseProperties @models could be

stored in a dictionary, and function BaseProperties

could just return an instance of the corresponding

@model using the Medium type as a dictionary key.

Note, media types that have the same functional

dependency on d,u,h, can use the same BaseProperties

model. With these pre-requisites a general volume

model can be defined as:

@model ClosedVolume begin
 Medium = MediumVariable()
 inPlug = InPlug()
 outPlug = OutPlug()
 p0 = Medium.infos.p_default
 T0 = Medium.infos.T_default
 medium = BaseProperties(Medium; p_start=p0,
 T_start=T0)
 ...
@equations begin
 outPlug.Medium = Medium
 outPlug.Medium = inPlug.Medium
 m = medium.d*V
 U = m*medium.u
 m_flow = inPlug.m_flow + outPlug.m_flow
 H_flow = inPlug.m_flow*inPlug.h +
 outPlug.m_flow*outPlug.h
 H_r = inPlug.m_flow*inPlug.r / medium.d

 # Mass and energy balance
 medium.der_d*V + medium.d*der(V) = m_flow
 m_flow*medium.u + m*medium.der_u = H_flow+H_r

 # Propagation of specific quantities
 inPlug.p + inPlug.r = medium.p

 outPlug.p = medium.p
 outPlug.r = 0.0
 outPlug.h = medium.h
 end
end

A key part of this @model is the declaration of the

BaseProperties @model:

medium = BaseProperties(Medium; p_start=p0,
 T_start=T0)

This declaration provides an instance of a medium-

specific BaseProperties @model depending on the type

of variable Medium. The problem here is that Medium

should be propagated through connections and the

instantiation of BaseProperties can only be performed

when the type of the propagated Medium is known (so

instantiation and extended alias elimination must be

performed incrementally). Modia does not yet support

such a scheme and therefore the current

implementation of ModiaFluid requires to define the

Medium at volumes to select the BaseProperties

@model based on the Medium type.

3.6 Further Issues

ModiaFluid should optionally support bi-directional

fluid flow in the future. Additionally, there are other

issues:

Caching for media calculations

More complicated media, such as two-phase media or

mixture media, may require the solution of nonlinear

equation systems whenever medium variables, such as

specific internal energy, have to be computed. In

Modelica.Fluid typically the nonlinear solver either

starts always from the same start values of the iteration

variables, or with some very simplified models first

start values for the iteration variables are computed.

The current version of ModiaFluid only supports the

same approach.

In principal it would be possible to make such

medium calculations more efficient and more robust by

caching the medium states from the previous model

evaluation and use them as start values at the next time

instant:

setState_pT!(state, Medium, p, T)

Julia allows to update input arguments and therefore to

keep a memory between function calls. The

setState_xxx(..) functions would thus be slightly

rewritten to update the current state and hereby utilize

a cache in the state. In order that Modia knows which

variable is computed by such a call (for size inference

and equation sorting), the argument that is updated by

the call must be "somehow" marked.

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

598 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

Nonlinear equations at junctions

As described in detail in (Franke et al. 2009, section

4.2), junctions may give rise to nonlinear algebraic

equation systems where the iteration variables are

discontinuous when the mass flow rate changes sign

and therefore the solution is hard. In ModiaFluid this

cannot occur, because only unidirectional flow is

supported where the upstream direction does not

change during simulation.

Unnecessary nonlinear equations at 1:1 connections

As described in detail in (Franke et al. 2009, section

4.3), unnecessary nonlinear equation systems occur at

every 1:1 connection of fluid components if the

thermodynamic states are not (p,h) and h is a nonlinear

function of the thermodynamic states. This effect

currently appears in ModiaFluid. In Modelica.Fluid

this issue is resolved by an inverse function annotation

and an involved symbolic manipulation of the

equations. Current efforts in ModiaFluid include the

pursuit of a simpler solution to this problem.

4 Automatic Differentiation of Media

Functions

Partial derivatives of functions are needed since

relationships between thermodynamic variables are

modelled using functions and these relations needs to

be differentiated due to index reduction in the mass and

energy balance or for obtaining the Jacobian for

iterative solvers. Modelica.Media has many manually

provided derivatives of functions. The described

approach in ModiaMedia allows automatic

differentiation of functions to be easily utilized.

There are several Julia packages for automatic

differentiation, see http://www.juliadiff.org/. The

partial derivative of a function

specificEnthalpy_water(T) is obtained as follows by

using the ForwardDiff package:

specificEnthalpy_water_der_1(T) =
 ForwardDiff.derivative(specificEnthalpy_water, T)

5 Conclusion

Despite past successes of thermo-fluid modeling using

the Modelica language, there have been long-standing

discussions on how to improve thermodynamic

property modeling for dynamic systems by making it

more convenient, easier to comprehend, and more

powerful. Many of the modern programming

constructs of the Julia language, such as multiple

dispatch, lend themselves to new approaches to address

these existing challenges. The ModiaMedia and

ModiaFluid architecture described in this paper

represents one experimental effort to leverage these

recent developments: Thermodynamic property

modeling becomes an order of magnitude simpler, both

for implementation and for usage. Furthermore, it

becomes then possible to propagate medium models

through connection structures and use them in pre- and

post-processing. By adopting the new fluid approach

from (Zimmer et al. 2018), recent progress within the

Modelica community can be directly transferred to

Modia. We expect to continue developing and

enlarging this thermo-fluid modeling framework to

further explore the opportunities afforded by these new

computing paradigms and tools.

Acknowledgements

The authors want to thank Jarrett Revels, MIT for

valuable advice on Julia and automatic differentiation

using Julia.

References

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.

(2017): Julia: A Fresh Approach to Numerical Computing.

SIAM Review, 59: 65–98. doi: 10.1137/141000671

Brennen, C.E. (2006): An Internet Book on Fluid Dynamics.

http://brennen.caltech.edu/FLUIDBOOK/FLUIDBOOK.ht

m

Elmqvist, H., Tummescheit, H. and Otter, M. (2003): Object-

Oriented Modeling of Thermo-Fluid Systems, Proceedings

of the 3
rd

 International Modelica Conference, Linköping,

Sweden, November 3-4, pp. 269-286.

https://www.modelica.org/events/Conference2003/papers/

h40_Elmqvist_fluid.pdf

Franke R., Casella F., Otter M., Sielemann M., Elmqvist H.,

Mattsson S.E., Olsson H. (2009): Stream Connectors – An

Extension of Modelica for Device-Oriented Modeling of

Convective Transport Phenomena. Proceedings of the 7
th

International Modelica Conference, Como, Italy, Sept. 20-

22, pp. 108-121.

http://www.ep.liu.se/ecp/043/012/ecp09430078.pdf

Keller, A., et al: https://github.com/ajkeller34/Unitful.jl,

downloaded 19 Nov 2018.

Laughman, C.R., Qiao, H. (2016): On the Influence of State

Selection on Mass Conservation in Dynamic Vapor

Compression Cycle Models. Mathematical and Computer

Modeling of Dynamical Systems, Vol. 23, No. 3, pp. 262-

283, December 2016,

 DOI: 10.1080/13873954.2017.1298625

Modelica Association (2017): Modelica, A Unified Object-

Oriented Language for Systems Modeling.

Language Specification, Version 3.4, April 10, 2017.

https://www.modelica.org/documents/ModelicaSpec34.pdf

Schade H., Kunz E., Kameier F. and Paschereit C.O. (2013)

Strömungslehre. 4. Auflage, de Gruyter.

Zimmer D., Bender B., Pollok A. (2018): Robust Modeling

of Directed Thermofluid Flows in Complex Networks.

Proceedings of the 2
nd

 Japanese Modelica Conference, pp.

39-48, Tokyo, May 17-19.

https://elib.dlr.de/120701/

	Session 5C: Thermodynamic 1
	Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

