
“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

DOI Proceedings of the 13th International Modelica Conference 709
10.3384/ecp19157709 March 4-6, 2019, Regensburg, Germany

 “hello, (Modelica) world”: Automated documentation of complex simulation
models exemplified by expansion valves
Vering, Christian and Hinrichs, Sven and Lauster, Moritz and Müller, Dirk

709

“hello, (Modelica) world”: Automated documentation of complex

simulation models exemplified by expansion valves

Christian Vering Sven Hinrichs Moritz Lauster Dirk Müller

Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany,
cvering@eonerc.rwth-aachen.de

Abstract
The constantly increasing computing power enables the

implementation of complex simulation models.

Therefore, it is possible to create more detailed models

to predict system behavior more accurately. Modelica,

for example, has proven great suitability in modelling

complex systems, because of its high degree of

reusability. However, understanding these models is

quite difficult and many simulation models are poorly

documented. Consequently, it is very time-consuming

to retrace given model structures especially for novice.

The Unified Modeling Language (UML) provides a

user-friendly and graphical structure for documentation

to simplify working with existing simulation models.

Hence, an algorithm (ADoCSM) is developed to

automatically present the structure of a Modelica

simulation model in UML. This algorithm is

exemplarily applied to a refrigerant circuit expansion

valve model. Thereby, we contribute to an increase of

simulation model quality as well as simplifying the entry

in the world of Modelica. ADoCSM and the expansion

valve model are freely available on GitHub:

https://github.com/RWTH-EBC/ADoCSM

https://github.com/RWTH-

EBC/AixLib/tree/issue590_ExpansionValve

Keywords: Modelica introduction, simplify modelling,

automated model documentation

1 Introduction

In the last decades, modelling complex systems has

gained importance. In engineering, we utilize modelling

in order to support designing processes or to enable the

application of sophisticated control strategies like model

predictive control. Therefore, detailed simulation

models with high software quality are necessary.

However, careful modelling is time-consuming and the

documentation of models is exhausting.

In the context of building energy systems’ heat supply,

heat pumps are awarded to be a key technology

supporting the achievement of stated climate goals in

this sector (EEA, 2016). The heat pumps’ lifetime

strongly depends on the operation of its compressor.

Avoiding droplet impact within the compression

process, the heat pumps’ expansion valves adjust a level

of superheat of the refrigerant at the compressor inlet

(Jahnke, 2000). Thus, the expansion valve is very

important for the lifetime of heat pumps. Hence,

modelling expansion valves is essential to understand its

behavior within the refrigerant circuit and increase the

lifetime of the compressor by advanced expansion valve

control.

Due to superposition of thermodynamic and fluid

mechanic interactions, modelling expansion valves is

challenging (Cao, 2016). In particular, the complexity of

superposition makes good documentation necessary.

Therefore, the expansion valve modelling and

concurrent documentation offers a suitable application

to show functionality of the presented algorithm

ADoCSM (“Automated Documentation of Complex

Simulation Models”). In order to ensure both a well-

defined simulation model and a well-documented one, a

modelling as well as a documentation language need to

be chosen.

One suitable modelling language for thermal systems is

Modelica, because of its DAE-based modelling options

as well as its high degree of reusability.

Many approaches for modelling of thermal systems like

expansion valves already exist and are utilized in

literature. Thereby, two approaches are common. On the

one hand, mathematical black box approaches are

applied to ensure short simulation times by sufficient

prediction accuracy for individual refrigerants (Müller,

2016). Going for modular and scalable models on the

other hand, grey box approaches include physical

behavior by applying fundamental equations to predict

change of states. As a result, prediction accuracy can be

increased for a wider range of refrigerants by

simultaneous loose of computational speed (Müller,

2016). Joining presented advantages, we show

automated documentation of a modular and scalable

expansion valve simulation model.

A well-known and well-established model

documentation approach is using the graphical Unified

Modeling Language (“UML”) (Weilkiens, 2006). In

order to utilize UML for Modelica many tools already

exist (Loeffler, 2006). However, an automation

algorithm is not known.

Therefore, reducing entry barriers into both the structure

of Modelica as well as our algorithm, we present an

open-source solution that is applicable with a graphical

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

710 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157709

user interface (GUI). Hence, we want to educate users

in understanding Modelica as well as to improve our

algorithm to be suitable for many use-cases as easy as

possible.

Thus, within this paper, we contribute to three main

ideas by breaking up rather complicated structures:

1) Modular and scalable modelling approach for

expansions valves on refrigerant level is set up

in Section 2, combining thermodynamic and

fluid mechanic effects by consideration of

a. metastable coefficient of mass flow

and transition of two-phase flow and

b. choke effects.

2) In Section 3, we present the algorithm that

translates Modelica code into a UML code,

which enables a structured and automated

documentation of complex simulation models.

3) Reducing entry barriers in Modelica and the use

of the algorithm, we show in Section 4 a GUI

that easily offers all functionalities of the

current state of our work.

In the end of the paper, we conclude the work and

discuss the outlook for further developments.

2 Modeling expansion valves

Heat pumps are a key technology coupling sectors of

heat and electricity regarding the building stock

(Huchtemann, 2009). This enables a systematic

electrification of heat supply in order to increase the

flexibility of the energy system. Exploiting the whole

potential of this technology, detailed simulation models

are necessary to predict system behavior. Therefore,

Modelica has proven great suitability.

Figure 1 depicts a schematic of a modular and scalable

heat pump in Modelica (Dymola) that strictly separates

physical system description from system control.

Further information about this grey-box approach is

published in Storek et al. (Storek, 2018) and

Vering et al. (Vering, 2018).

Figure 1: A modular and scalable heat pump in

Modelica showing the main physical components

separated from control blocks.

The expansion valve (EV) is an important component to

ensure mass flow adjustment within the refrigerant

circuit. The mass flow directly correlates to the

refrigerant mass in the evaporator and dwell times in this

component. Thus, EV allows controlling the level of

superheated vapor at evaporator outlet and thereby at the

inlet of the compressor.

Compressors’ lifetime can be reduced by supplying it

with non-superheated vapor, which causes droplet

impact (Jahnke, 2000). Therefore, it is necessary to

avoid those refrigerant conditions. Hence, controlling

the level of superheat is important while operating a heat

pump. As consequence, a resilient prediction of the fluid

state at compressor inlet using simulation models

requires careful modelling.

The expansion valve throttles the refrigerant from a

high-pressure level to a lower one by decreasing the

flow area with a positioning cylinder as shown in

Figure 2. In this process, a superposition of

thermodynamic and fluid mechanics effects occurs,

which is a complex phenomenon (Huo, 2010). The main

effects defining this process are choke, flash, cavitation

and evaporation waves (Moreira, 2003). Modelling all

physical interactions is not recommended in literature as

well as just using the Bernoulli equation for an

incompressible fluid and frictionless fluid flow (Cao,

2016).

In consistence to the whole heat pump model, we choose

a grey-box modelling approach to estimate refrigerant

states. Therefore, basic physical equations as well as

some assumptions are covered and implemented. The

mass flow �̇� through an EV considering expansion by

an expansion factor 𝑌 can be written as (Davies, 1973):

�̇� = 𝐶d𝑌𝐴th√2 𝜌in(𝑝in − 𝑝out), (1)

𝑌 = 1 −
𝑝in − 𝑝out

3𝐹γ𝑋T
. (2)

𝐶d describes the flow coefficient, 𝐴th means flux area,

𝜌in fluid density at inlet and 𝑝𝑖 is the pressure of the fluid

at inlet and outlet. 𝐹γ𝑋T is the product of a specific heat

ratio 𝐹γ and a pressure drop factor of the valve 𝑋T.

Figure 2: Schematic of fluid phenomina within an

expansion valve showing the throtteling process for

refrigerants with phase change.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

DOI Proceedings of the 13th International Modelica Conference 711
10.3384/ecp19157709 March 4-6, 2019, Regensburg, Germany

For a fluid flow with constant density without phase

change Equation 1 is simplified by 𝑌 = 1 to Bernoulli

Equation (Li, 2013).

Modelling a choked mass flow with constant EV inlet

pressure 𝑝in Equation 1 can be written as

�̇� =
2

3
𝐶d𝐴th√2 𝜌in𝑝in𝐹γ𝑋T. (3)

It is obvious, that a two phase mass flow is always lower

than for a one phase flow. Regarding detailed modelling

approaches of the flow coefficient, we refer to (Li,

2013).

We implemented Equation 3 in Modelica to model the

physical behavior of an expansion valve and the choke

effect of the refrigerant considering two phase flow.

Showing the main governing equations,

interdependencies between different variables occur,

which are related to the reformulation of the problem.

The modeler exactly knows which variable and equation

stands for what. However, making a model open-source

available, not only the modeler uses the model, but also

end users. Simplifying the use of a model, a structured

documentation is necessary. Within this work we chose

UML to be a suitable graphical way of documentation

because of its dissemination and establishment.

Enabling the use of UML, an algorithm that translates

Modelica code into an UML readable format is required.

This algorithm is presented in Section 3.

The expansion valve model is freely available on

GitHub:

https://github.com/RWTH-

EBC/AixLib/tree/issue590_ExpansionValve

3 Automated Documentation of

Complex Simulation Models

ADoCSM stands for “Automated Documentation of

Complex Simulation Models”. It is a tool that scans

Modelica libraries and translates them into a code,

which can be interpreted by UML language. Therefore,

we use the freely available tools PlantUML and Papyrus

because they support 9 (Papyrus 13) different UML

diagrams and they are easily extendable (PlanUML,

2018).

These tools need to be interconnected via a parser to

translate Modelica main functions into UML readable

and interpretable code.

The parser is based on the Python programming

language and has to recognize keywords from Modelica

that relate to various Modelica functions.

We started implementing four main relations

“Inheritance”, “Aggregation”, “Composition” and

“Polymorphism” that are summarized in Table 1, which

are key ideas of object-oriented modelling and allow a

high level of reusability. Inheritance passes all methods

and attributes from a parent to the child class and is

initialized with the keyword “extends”. In the

composition several objects are assembled into a new

overall system and is initialized with the “modelname”.

The relation polymorphism is used to specify

interchangeable classes or object types that can be

exchanged later in the parameterization.
Table 1: Relations in Modelica that the parser finds and

translates into UML code.

Relation Modelica key
word

UML
Notations

Inheritance extends

Aggregation outer / inner

Composition model

Polymorphism replaceable
model

In a pre-processing step, a structured reformulation of

the Modelica code decreases the parser’s error rate.

Hence, we introduce two steps before starting the parser.

In a first step, the path of the Modelica model is defined.

This allows a systematic naming of packages and

classes. After that, we translate a well-defined Modelica

code into an easily parser readable formulation.

Therefore, we choose a structure that follows these

designs:

 << Variable >> << Comment >> << Annotation >>

 << Method >> << Comment >> << Annotation >>

Using the new code, the workflow of the parser is shown

in Figure 3. Further reducing error rates, there is a first

check whether a library exists. After that there is a

lookup for the existing files.

Within this, file packages are declared. A package with

its models is taken to be translated into the UML

notation. Therefore, different key words are translated

into a PlantUML format:

 Method

 Attribute

 Stereotype (model, record, type, block,

function, connector)

Using these three inputs, the parser defines all relations

within this model and repeats these steps for the whole

list of files.

After passing all steps, the parser analyses the next

layer i. The user defines the number of layers

beforehand. Finally, the Modelica code is translated into

a UML readable notation that can be interpreted e.g. by

PlantUML. The converted Modelica code can now be

loaded into the PlantUML tool and will be graphically

generated in the UML form.

Thereby, the model structure can be broken up in order

to get an overview of the model.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

712 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157709

Figure 3: Workflow of the parser translating Modelica code into an UML readable notation.

With the aid of the UML class diagram, the structure of

the model can be displayed graphically. For example,

inherited models, parameters or exchangeable classes

can be displayed. The visual representation reduces the

complexity of the model and the relationships and

composition of the model can be detected more quickly.

Furthermore, simplifying the use of this algorithm and

disseminating it, we develop a graphical user interface

(GUI) that is presented in the next section by applying

UML documentation to the expansion valve simulation

model.

4 Use of ADoCSM

Supporting the entry in the world of Modelica, by

making the structure of Modelica models more

transparent, the parser translates Modelica code into the

UML notation. For a user-friendly design, we develop a

graphical user interface (GUI).

The GUI of ADoCSM is mainly separated in six parts,

which are shown in Figure 4. These are initialization (1),

settings (2-5) and console (6).

For “initialization” the input file (1) has to be chosen.

With this file the paths of the files as well as libraries are

defined for the parser. This example uses the AixLib

(D. Müller, et al. 2016) and the Modelica standard

library in the Model Library directory.

Additionally, the result file path can be redefined.

After that, the “settings” for the parser are selected. The

user can choose, which information e.g. parameter,

constants or variables (2) of a model should be plotted

within the UML representation. In particular for

complex models with a large number of parameters,

constants or variables, it is helpful to show or hide a

specific group of attributes in order to retain the overall

overview. In particular, depicting model structures with

a high degree of polymorphism, whole packages can be

superimposed or hided out to keep overview.

Additionally, the user immediately learns, which

packages can be replaced by other ones.

Figure 4: Graphical User Interface (GUI) to simplify

the use of ADoCSM.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

DOI Proceedings of the 13th International Modelica Conference 713
10.3384/ecp19157709 March 4-6, 2019, Regensburg, Germany

Regarding a structured representation, the number of

investigation layers (3) is set and UML diagram type (4)

can be chosen.

By default, a class diagram is predefined. For further

work, it should be considered whether additional

diagram types should be added. Pushing the button (5)

executes the generation of the UML structure regarding

defined paths and settings. Using the expansion valve as

example, in Figure 5 the referring UML class diagram is

depicted with all relations and model parameter. The

“console” (6) shows in the end, if a workflow was

successfully executed or if errors occurred. A successful

execution is then shown in a separate window.

In Figure 4 all structure investigation layers are

depicted. On top, in the first layer there is the first box

of the expansion valve model with respect to choke

effects. The box is regarding UML class diagram

requirements divided into three parts. In the upper one

the indication is shown as a “model” named

“ExpansionValveChoke”. In the lower one the user can

see the corresponding parameter 𝑋T. The third box is not

required in this case, because no operators are defined

within this model. It inherits its properties from the next

layer, where the partial model

“PartialIsenthalpicExpansionValve” is shown.

On the next deeper layer, “PartialExpansionValve” with
all typical properties of an expansion valve is illustrated.

Different parameter such as “Area” or “Diameter” are

defined with a value and the corresponding SI unit.

Additionally, parameter of the type Boolean like

“useInpFil” are shown.

In the last layer, the inheritances, compositions and a

polymorphism are pointed out. The only inheritance of

a “PartialTwoPortTransport” model is revealed. A

combination of “CalcProc”, “RealInput”, “RealOutpt”,

“Filter” and “RealPassThrough” constitutes all model

compositions. Furthermore, a polymorphism

“ConstantFlowCoefficient” is shown. As consequence,

the user immediately knows, that this is a replaceable

model within the “ExpansionValveChoke” model.

Compared to typical Modelica tree structures, the UML

class diagram easily illustrates the expansion valve

simulation model structure. That supports the

understanding of inheritances and compositions as well

as polymorphism. Additionally, parameter and initial

values are revealed by the graphical representation of

the model.

All these points simplify the understanding of complex

simulation models. As consequence, training times of

model structures can be reduced and simultaneously the

code quality is increased by better documentation.

The algorithm is freely available on GitHub. We kindly

invite external users to use and improve the

functionalities of ADoCSM by online cooperation using
this link:

https://github.com/RWTH-EBC/ADoCSM

Figure 5: Representation of an expansion valve in an UML class diagram that was translated from Modelica code

showing the model structure and the relations.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

714 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157709

Improving the quality of the algorithm and doing

systematic troubleshooting, we will apply ADoCSM to

the AixLib (Müller, 2016 - 2). Thus, on the one hand,

the model quality increases due to documentation

improvements. On the other hand, the algorithm is tested

and error rate of application will be reduced.

5 Conclusion

Within this work we show that Modelica code can be

translated into UML code via the presented tool that is

freely available on GitHub:

https://github.com/RWTH-EBC/ADoCSM.

It allows to visualize the model structure and the

parameter interdependencies, which is a powerful tool

increasing the understanding of Modelica.

Using the recent version, we show for an expansion

valve example that it is possible to create UML

diagrams considering both important key words and

relations of the model.

Our presented expansion valv simulation model for

refrigerant circuits is freely available on GitHub:

https://github.com/RWTH-

EBC/AixLib/tree/issue590_ExpansionValve

The model considers idealized expansion valve

functionality as well as chocked mass flows for different

pressure to pressure drop ratios.

All in all, we show functionality of both the modelling

approach and of the parsers algorithm. The next steps

will consider the investigation of further models to start

systematic troubleshooting in order to increase the

quality of our algorithm. Therefore, AixLib will be the

first large use-case.

References

European Environment Agency (EEA). “Trends and

projections in Europe 2016”, 2016.

A. Jahnke. Webasto Schulungs-Handbuch: Kälte-Klima,

2000.

X. Cao, Z.-Y. Li, L.-L. Shao und C.-L. Zhang. Refrigerant

flow through electronic expansion valve:

Experiment and neural network modeling.

Applied Thermal Engineering, 92:210–218, 2016.

D. Müller. Simulationsmodelle für die Heiz- und

Raumlufttechnik: Heizflächen.

Vorlesungsvortrag, RWTH Aachen University,

Aachen, 2016.

M. Loeffler, Michaela Huhn, Christoph Richter, Roland

Kossel. Modelica CDV A Tool for Visualizing the

Structure of Modelica Libraries, In The 5

International Modelica Conference, pp. 55-62.,

2006.

T. Weilkiens. Sysml: Ein neuer Standard der omg. omg-

Kolumne, pages 12–15., 2006.

K. Huchtemann und D. Müller. Advanced simulation

methods for heat pump systems. In The 7

International Modelica Conference, 798–803.

Linköping University Electronic Press, 2009.

T. Storek et al. A modular modelling approach for

thermodynamic systems applied to heat pumps. In

31st ECOS Conference, 2018.

C. Vering et al. Transiente Modellierung eines Verdichters

zum Vergleich von niedrig GWP-Kältemitteln für

Kompressionswärmepumpen. In BauSIM 2018.

M. Huo. A study in the characteristics of the flow inside a

thermostatic expansion valve, Master thesis,

University of Illinois at Urbana-Champaign,

2010.

J. R. Simões-Moreira, C. W. Bullard. Pressure drop and

flashing mechanisms in refrigerant expansion

devices, Int. J. Refrig., 26:840–848, 2003.

A. Davies, T.C. Daniels. Single and two-phase flow of

dichlorodifluoromethane, R12 through sharp-

edged orifices, ASHRAE Transactions 79 (Part 1)

(1973) 109-123., 1973.

W. Li. Simplified modeling analysis of mass flow

characteristics in electronic expansion valve,

Applied Thermal Engineering, 54:8-12, 2013.

Drawing UML with PlantUML: Language Reference

Guide (Version 1.2018.2).,

http://plantuml.com/PlantUML_Language_Refer

ence_Guide.pdf, 2018

D. Müller, et al. AixLib – An open-source Modelica library

within the IEA-EBC Annex 60. In BauSIM, 2016:

3-9, 2016.

	Session 6C: Tools
	“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by expansion valves

	Session 6D: Automotive 3

