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Quantitative modeling is increasingly utilized in the drug discovery and development
process, from the initial stages of target selection, through clinical studies. The
modeling can provide guidance on three major questions–is this the right target, what
are the right compound properties, and what is the right dose for moving the best possible
candidate forward. In this manuscript, we present a site-of-action modeling framework
which we apply to monoclonal antibodies against soluble targets. We give a
comprehensive overview of how we construct the model and how we parametrize it
and include several examples of how to apply this framework for answering the questions
postulated above. The utilities and limitations of this approach are discussed.
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INTRODUCTION

Modeling and simulation tools have become an essential part of the drug development process
(Norris et al., 2000; Lalonde et al., 2007; Barrett et al., 2008; Edginton et al., 2008; Mager and Jusko,
2008; Rajman, 2008; Jones et al., 2009; Allerheiligen, 2010; van der Graaf and Benson, 2011; Zhao
et al., 2011; Jones et al., 2012a; Knight-Schrijver et al., 2016; Danhof et al., 2018; Nijsen et al., 2018).
Applying quantitative analyses early in the drug discovery can be very informative for selecting and
de-selecting those programs with the best/least chance of clinical success. Traditional
pharmacokinetics/pharmacodynamics (PKPD) models, while still widely utilized (Meibohm and
Derendorf, 1997; Derendorf and Meibohm, 1999; Rajman, 2008), have gradually given place to
increased mechanistic modeling complexity, with the intent to achieve higher predictive accuracy
and mechanistic insights. These mechanistic modeling techniques include systems biology (SB)
(Kitano, 2005; Kohl et al., 2010; Benson et al., 2011), quantitative systems pharmacology (QSP)
(Hopkins, 2008; Allerheiligen, 2010; van der Graaf and Benson, 2011; van der Graaf, 2012; Jusko,
2013; Rogers et al., 2013; Peterson and Riggs, 2015; Knight-Schrijver et al., 2016; Danhof et al., 2018;
Nijsen et al., 2018; Cucurull-Sanchez et al., 2019), and physiologically based pharmacokinetics
(PBPK) (Baxter et al., 1994; Andersen, 1995; Baxter et al., 1995; Hoang, 1995; Arundel, 1997; Blakey
et al., 1997; Nestorov et al., 1998; Grass and Sinko, 2002; Aarons, 2005; Jones et al., 2006a; Jones et al.,
2006b; Cai et al., 2006; Barton et al., 2007; Nestorov, 2007; Edginton et al., 2008; Loizou et al., 2008;
Jones et al., 2009; Chabot et al., 2011; Jones et al., 2011; Jones et al., 2012a; Jones et al., 2012b; Bouzom
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et al., 2012; Huang and Rowland, 2012; Rostami-Hodjegan et al.,
2012; Shah and Betts, 2012; Zhao et al., 2012; Jones et al., 2013).
Traditional empirical PKPD models are useful in predicting
dosing and estimating pharmacology/efficacy in later stage
clinical development and translation from pre-clinical animal
models to humans. However, an extensive amount of pre-clinical
PKPD data is needed to utilize them which limits their ability to
be used to make early pre-clinical recommendations, before lead
candidates are defined. In contrast, the mechanistic models, while
often complex and computationally intensive, appear more
suitable for overall disease and molecule modality
recommendations.

Early stage biologics drug discovery programs concern
themselves with three main questions: (1) is the proposed
target biologically relevant and is hitting the target feasible;
(2) what are the drug characteristics that would allow for
biomarker modulation or efficacy; (3) what is the efficacious
dose in humans? These three questions can be summarized as
three components to each project: right target, right
compound, right dose. Considering the high number of
potential new targets, a flexible mechanistic modeling
framework is needed that can be used to perform
sensitivity analysis on a discrete number of parameters.
This approach would quickly pinpoint gaps in knowledge
that can be tested experimentally and make timely
recommendations for each of the three components of
project development. Therefore, for this purpose, one
needs a model that is on the spectrum of complexity
somewhere between the traditional PKPD and the
multiscale systems biology models. We propose a site-of-
action (SoA) model for assisting in the discovery and
development of biologics.

The site-of-action model extends a two compartment PKPD
model by including the mechanistic interactions of the drug
and its target (e.g., binding, unbinding and drug-target
complex clearance), the relevant properties of the target, as
well as a separate compartment that models the tissues in
which the disease progresses (a so-called site of action)
(Brodfuehrer et al., 2014). Such a model can be
implemented rapidly since it captures only the relevant
biology and is expressed through a discrete number of
differential equations, variables, and parameters, which
allows for extensive sensitivity analysis to identify the
important parameters and biological assumptions that need
to be investigated further. Hence, this model should be
considered a starting point from which to build out specific
models of the biology of different targets, its main utility being
in early stage projects.

A previous iteration of the model has been described by
Tiwari et al. 2016a and used for assessing sensitivity of the
projected target neutralization to target concentrations (Tiwari
et al., 2016a) and antibody affinity (Tiwari, et al, 2017). The
current iteration makes minor changes to the old model
structure and goes into more detail in explaining the reasons
for certain modeling and parameter value choices. We have
implemented this approach successfully since, and, beyond the
theoretical treatment in Tiwari et al. 2016a, in Applications of

SoA Model Methodology of this manuscript will be
demonstrating its utility by several real-world examples. The
modeling work is highly dependent on robust assays to inform
the parametrization of the model (biomeasures), which is yet
another important expansion to the work presented in Tiwari
et al. 2016a. We have listed the typical assays and input data
used in the Target Parameters section. For the purposes of this
article, we will focus on soluble targets. Membrane targets
deserve to be covered in a separate manuscript, both in
terms of the modeling approach, as well as in terms of
utilizing the range of biomeasure assays and tools for
supporting the modeling efforts.

MODEL STRUCTURE AND METHODS OF
PARAMETRIZATION

The model is an extension of a drug-target mechanistic binding
two-compartment model that accounts for the relevant disease
tissue, which is referred to as site of action (SoA). Free plasma
drug (with concentration DP in plasma volume VP ) distributes
into non-specific (peripheral with volume VT) and SoA
(disease-specific with volume VS) compartments. In plasma
and at the SoA, the drug binds reversibly to target protein
(with concentrations TP and TS, respectively) to form a drug-
target complex (with concentrations CP and CS, respectively).
The binding kinetics are characterized by a second-order
association (kon) and first-order dissociation (koff ) rate
constants. The model assumes target synthesis and
degradation both in the central and the SoA compartments
(expressed by the zero order rates ksynS, and ksynP and first
order rates kdegTp and kdegTs , respectively), target distribution
between plasma and the SoA (kpsT and kspT ), and drug - target
complex distribution between plasma and SoA (kpsC and kspC)
and elimination in plasma only (kelC). The modeling
equations are:

dDP

dt
� A + kspDS

VS

VP
+ ktpDT

VT

VP
− kpsDP − kptDP

+ koff CP − konDPTP − kelDP

(1)

dDS

dt
� kpsDP

VP

VS
− kspDS + koff CS − konDSTS (2)

dDT

dt
� kptDP

VP

VT
− ktpDT (3)

dCP

dt
� kspCCS

VS

VP
− kpsCCP + konDPTP − koff CP − kelCCP (4)

dCS

dt
� kpsCCP

VP

VS
− kspCCS + konDSTS − koff CS (5)

dTP

dt
� kspTTS

VS

VP
− kpsTTP + koff CP − konDPTP + ksynP − kdegTpTP

(6)
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dTS

dt
� kpsTTP

VP

VS
− kspTTS + koff CS − konDSTS + ksynS − kdegTsTP

(7)

where Di, Ci and Ti represent the concentrations of free drug,
drug-target complex, and free target in plasma (i � P), or SoA
(i � S) compartment, respectively. DT is the free drug
concentration in the peripheral tissue compartment. A is the
drug influx function, which is administration dependent.

A schematic of the modeling reactions is shown in Figure 1.
Table 1 lists the variables and parameters contained in the system
of differential equations, with explanations.

The initial conditions of the variables above appear with a 0
after the subscript:DP0 is initial drug concentration in the plasma,
TS0 is initial target concentration at the SoA, etc.

Table 2 presents the value of A and initial conditions related to
the drug variables dependent on administration route. Other
administration routes can be incorporated as well.

PARAMETER DETERMINATION

The next few sections will discuss how the different parameters
are estimated and suggest typical assumptions for their values.
Initial parametrization of the model may be obtained from the
literature or data repositories. However, when such information is
unavailable, experimental determination of key model
parameters may be required. Some of the experimental
methods discussed here may not be applicable, appropriate, or
even possible for particular targets. A conversation among
modelers, biologists, and biomeasure analysts would determine
the most appropriate path to appropriate parametrization of
the model.

Drug Distribution Parameters
Monoclonal antibody (mAb) PK typically shows biphasic
behavior and such data can be modeled using two-
compartmental models, resulting in the estimation of 4 PK
parameters (e.g., V1, Cl, Q and V2) (Betts et al., 2018). A
question then arises–what is the concentration of antibody at
the SoA? There have been several preclinical studies that have
been performed to measure concentrations in tissues relative to
blood across different antibodies (Vugmeyster et al., 2008;
Vugmeyster et al., 2010; Shah and Betts, 2013; Li et al., 2017;
An et al., 2020). Antibodies distribute predominantly in the
interstitium of tissues (Janeway and Walport, 2001), therefore
the concentration ratio needs to be adjusted for the interstitial
volume of the tissue of interest. Generally, the volume of the
interstitium is around 1/3 of the total tissue volume (Poulin and
Theil, 2002) (which includes peripheral blood and cells), unless
one deals with certain specific organs like muscles or the brain
(Shah and Betts, 2013). The ratio of total tissue to serum
concentration for most organs in preclinical species is around
10% (Shah and Betts, 2013; Vugmeyster et al., 2010). Therefore,
our recommendation is to use 30% (�10%/1/3) as a standard ratio
parameter for non-brain and non-muscle tissue SoAs.

The following method can account for any ratio deemed
appropriate for the particular project.

The calculations for the drug distribution constants presented
here have two simultaneous aims: to retain mAb plasma PK and
maintain the average concentration ratio (expressed as the
parameter ratio) between the SoA and the plasma
compartments (ratio of areas under the curve (AUCs) is
equivalent). The following relationships are derived based on
steady state analysis of total mAb concentration
pharmacokinetics:

kps � ratio ksp
VS

VP
(8)

kpt � Q
VP

− kps (9)

VT � VP kpt
ktp

, (10)

where

ksp � ktp � Q
V2

.

There is an important distinction between V2 and VT which
warrants further elaboration. Fixing the ratio of average drug
concentration at the SoA vs the plasma, while preserving plasma
PK, necessitates an extra degree of freedom in the calculations.
Since drug concentrations in the peripheral tissue are rarely of
interest, the peripheral tissue volume is a convenient (and
mathematically sound) choice. However, the calculations of
the drug distribution rates are done with the peripheral tissue
volume of distribution from the PK parameter estimates, V2 (see
Table 1). In our practice, VT is not used and peripheral mAb
concentrations not tracked (as opposed to SoA concentrations),
but understanding of the mathematics behind the model would

FIGURE 1 | SoA Model Scheme: A diagram describing the distribution
and elimination of the mAb (denoted by D), synthesis, distribution and
elimination of the target (denoted by T) and the interactions between the mAb
and target and the distribution and elimination of the resulting mAb:
target complex (denoted by C). Subscripts describe the compartments - p for
plasma, t for peripheral tissues, s for the site of action. Detailed descriptions of
all variables and parameters are in Model Structure and Methods of
Parametrization and Table 1.
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be incomplete withoutVT ’s explicit inclusion in the equations and
the parameter set. Still, the reader’s ability to use the model would
not be inhibited by ignoring this extra mathematics.

Binding Parameters
If kon has not been determined by a surface plasmon resonance
method (Tang et al., 2010), or other methods, such as KinExA
(Wani et al., 2016), kon can be assumed to be 1e6M−1s−1 (Foote
and Eisen, 1995). Given a measured constant of dissociation (KD),
one can calculate koff as the product of kon and KD. Drug:target
interactions in the peripheral compartment and complex
distribution from plasma to the peripheral compartment are
typically ignored. To make binding interactions even more
mechanistic, one can include step-wise binding for each of the
antibody’s arm. In this case the binding interactions from Eqs 1–7
would need to be rewritten as follows:

dDP

dt
� . . . + koff CP − 2 konDPTP (11)

dDS

dt
� . . . + koff CS − 2 konDSTS (12)

dCP

dt
� . . . + 2 konDPTP − koff CP − konCPTP + 2 koff CP2 (13)

dCS

dt
� . . . + 2 konDSTS − koff CS − konCSTS + 2 koff CS2 (14)

dTP

dt
� . . . + koff CP − 2 konDPTP − konCPTP + 2 koff CP2 (15)

dTS

dt
� . . . + koff CS − 2 konDSTS − konCSTS + 2 koff CS2 (16)

dCP2

dt
� kspCCS2

VS

VP
− kpsCCP2 + konDPTP − koff CP − kelCCP2 (17)

dCS2

dt
� kpsCCP2

VP

VS
− kspCCS2 + konDSTS − koff CS2 (18)

For variables DP , DS, TP , TS, CP, CS, the only differences
between Eqs 11–18 and Eqs 1–7 are the binding interactions,
hence synthesis, distribution, and elimination reactions are
replaced by ellipses for simplicity. Two new species are
introduced: CP2 and CS2, which represent the concentration of
mAb bound to its target on each arm (a double complex) in
plasma and the SoA, respectively. The factors of two account for
the multiple ways in which an unbound antibody can engage a
target, or a doubly bound antibody can release a target. Whether
to include this mechanistic binding step is dependent on the
biology and the requirement for this extra complexity.

Target Parameters
The target related parameters are turnover (half-life or
degradation rate), synthesis rate, concentrations (both in

TABLE 1 | Definition of parameters used in SoA model.

Parameter Description Value Units

VP Central compartment volume (plasma) Drug specific L
Q Drug distributive clearance rate Drug specific L/day
Cl Drug elimination clearance rate Drug specific L/day
VS Volume of SoA interstitial space Tissue specific L
VT Peripheral tissue volume (calculated) Model specific L
V2 Peripheral tissue volume (from two-compartment PK) Drug specific L
D0 Dose Study specific Nanomole
ka Rate of absorption post subcutaneous drug administration Drug specific 1/day
F Bioavailability post subcutaneous drug administration Drug specific Dimensionless
Qtarget Target distributive clearance rate Target specific L/day
ratio Ratio of plasma versus SoA drug concentrations at steady state SoA specific Dimensionless
kon Drug-target concentration-dependent association rate Drug specific nM−1day−1

kps Rate constant of drug distribution from plasma to SoA ratio p Q
V2
p VS
VP

1/day
ksp Rate constant of drug distribution from SoA to plasma Q

V2
1/day

kpt Rate constant of drug distribution from plasma to peripheral tissue Q
V2
− kps 1/day

ktp Rate constant of drug distribution from peripheral tissue to plasma Q
V2

1/day
kpsT Rate constant of target distribution from plasma to SoA Qtarget

VP
1/day

kspT Rate constant of target distribution from SoA to plasma Calculated to ensure target equilibrium in absence of drug 1/day
kpsC Rate constant of complex distribution from plasma to SoA kps 1/day
kspC Rate constant of complex distribution from SoA to plasma ksp 1/day
kel Rate constant of drug elimination from plasma Cl

VP
1/day

kdegTp Rate constant of target elimination from plasma Target specific 1/day
kdegTs Rate constant of target elimination from SoA Target specific 1/day
kelC Rate constant of complex elimination from plasma For soluble target can be assumed � kel , unless data are avalable 1/day
koff First-order dissociation rate constant of antibody kon pKD 1/day
ksynP Zero order target synthesis rate in plasma Calculated to ensure target equilibrium in absence of drug nM/day
ksynS Zero order target synthesis rate in SoA Calculated to ensure target equilibrium in absence of drug nM/day

TABLE 2 | Expressions for A depending on route of drug administration.

Route of administration Expression for A Drug-related
initial conditions

Intravenous bolus A � 0 DP0 � D0 , DT0 � DS0 � 0
Subcutaneous A � D0 p F p ka DP0 � DT0 � DS0 � 0
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plasma and the SoA) and distribution rate (between the plasma
and the SoA).

Estimating Target Concentrations
There are many published methods or approaches for measuring
target levels both in serum and tissue (Becker and Hoofnagle, 2012),
including ligand binding assays and mass spectrometry. A preferred
approach, as previously highlighted due to its enhanced specificity
and selectivity, is protein or peptide immunoaffinity liquid
chromatography tandem mass spectrometry (IA LC-MS/MS).
The method requires selection of optimal capture reagents,
calibration standards and surrogate peptides for detection. In this
method, proteins and/or trypsin digested peptides are enriched by
anti-protein or anti-peptide antibodies or a sequential combination
of both approaches. The enriched peptides are quantified using
detection by nanoflow LC-MS/MS. A detailed description of this
method can be found in Palandra et al. (2013) and Neubert et al.
(2020). The addition of a stable isotope-labeled synthetic version of
the surrogate peptide(s) prior to protein digestion reduces variables
and quantitation relative to the chosen protein calibrator can be
achieved. The mass spectrometric response of the endogenous
peptide is compared to the analogous response for the labelled
peptide in all samples, including calibrators, thereby normalizing for
digestion efficiency and matrix suppression differences between the
samples (Bantscheff et al., 2007). Examples of well designed, fit for
purpose, sequential protein and tryptic peptide IA-LC-MS can
achieve lower limit of quantitation (LLOQ) of sub 10 pg/ml
(Neubert et al., 2013; Palandra et al., 2013), while protein IA and
peptide IA only approaches are typically capable of achieving sub
100 pg/ml LLOQ (McAvoy et al., 2014; Zhao et al., 2018; Shuford
et al., 2020).

Target expression levels vary widely depending on their
biological function, disease state, tissue localization, and many
other factors. For example, the growth and differentiation factor 8
(GDF-8), is present in circulation at very high expression levels of
approximately 7 ng/ml in adult humans owing to its function in
regulating muscle mass (Palandra et al., 2016). While targets like
Interleukin-21 are not detected in human serum and can only be
measured in certain human tissues such as colon tissue at an
average concentration of 1 ng/g (Palandra et al., 2013). The
alarmin cytokine, Interleukin-33 (IL-33) is present in
circulation at approximately 20–100 pg/ml (Artru et al., 2020)
and in many tissues at very elevated concentrations (200 ng/g in
the lung (Cohen et al., 2015)) owing to its ubiquitous presence in
the nucleus of all producing human cells. When the
concentrations in a tissue homogenate are measured, the
concentrations that are provided need to be adjusted for the
interstitial volume of the analyzed tissue before being applied in
the SoA model. Again, other methodologies have been used in
some cases as driven by the protein and analytical complexities.

Estimating Target Turnover
While traditionally radio-labelling methods have been used for
estimating turnover, methods based on in-vivo stable isotope
labelling and proteomics have been established to measure
physiologically relevant turnover (Bateman et al., 2006; Lindwall
et al., 2006; Doherty and Whitfield, 2011; Hinkson and Elias, 2011;

Lassman et al., 2014; Larance and Lamond, 2015). One of the
preferred methods uses immunoaffinity enrichment of the target
proteins from a stable isotope labeled amino acid tracer pulse-chase
study, either from preclinical or clinical studies. Tracer incorporation
in a surrogate peptide sequence is then measured by targeted mass
spectrometry. The workflow and details of the study have been
published (Farrokhi et al., 2018a). Once data is available for both the
tracer levels and its incorporation in the protein of interest, the
turnover rate is estimated using a series ofmodels that account for the
tracer’s incorporation, as well as the known biological properties of
the protein of interest (e.g., a shed receptor in the tissue vs cytokine
released primarily in plasma). An earlier version of these models was
used in Farrokhi et al. 2018a These assays are confined by the time
limitations in pulse-chase durations (multiple hours or a few days) in
in vivo studies and accurate measurement of slow turnover rates
(i.e., multiple days or weeks) are not feasible or are estimated from
extrapolation. Also, in some cases, measurements are not feasible due
to low concentrations of the target protein. Other methodologies
have also been published in the literature, (Bateman et al., 2006;
Lindwall et al., 2006; Doherty and Whitfield, 2011; Hinkson and
Elias, 2011; Lassman et al., 2014; Larance and Lamond, 2015), but
they are likely to experience similar limitations. Physiological target
turnover measurements in human is limited to only the soluble
targets and turnover in SoA is estimated from soluble target when
possible.

Target Synthesis Rate
Generally, once information about the target’s concentrations
and turnover are available, the synthesis is calculated assuming
that in the absence of drug the system is at steady state. The rate
constant for target distribution from the plasma to the site of
action ( kpsT ) can be fixed. The rate constant for target
distribution from the site of action to the plasma (kspT) is
derived based on the steady state levels of target in the plasma
and the SoA together with kpsT . At steady state, synthesis rates,
degradation rates, and distribution rate constants between the
plasma and the SoA must be balanced to achieve known levels of
target concentrations in both compartments.

Target steady state concentration in plasma prior to drug
administration is defined by:

dTP

dt
� ksynP − TP0(kdegTp + kpsT) + TS0 kspT VS/VP � 0 (19)

Target steady state concentration at the SoA prior to drug
administration is defined by:

dTS

dt
� ksynS − TS0(kdegTs + kspT) + TP0 kpsT VP/VS � 0 (20)

Total target synthesis in the human body (in amount,
nanomoles) is defined as:

ksynTot � ksynP Vp + ksynS VS � TP0 kdegTp VP + TS0 kdegTs VS (21)

It is rare that one has information about the ratio between
target synthesis in plasma versus the SoA. This ratio is generally
assumed taking into account what is known about the biology.
For the remainder of this section and for the purpose of equations
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and calculations, the fraction of total synthesis in the SoA is
captured by the parameter frac.

Estimating Target Distribution
While drug distribution constants can be calculated from the PK
and Eqs 8–10 above, target rates of distribution are largely
unknown. We fix kpsT :

kpsT � Qtarget

VP
. (22)

At an exploratory stage, we use a parameter value for Qtarget ,
estimated from literature data reporting a distributive clearance rate
of Albumin from Synovial joints of Rheumatoid arthritis patients
(Owen et al., 1994). While this parameter value can be used in the
initial stages of a project, as a project progresses, this value is explored
in more detail and is updated by considering a pharmacokinetics
based value for a recombinant version of the target, e.g., (Creaven
et al., 1987; Banks et al., 2000; Zhang et al., 2019), or by basingQtarget

on the molecular weight of the target (Li et al., 2017).
Since these approaches have not be largely validated and

adopted, one is advised to employ sensitivity analysis
regarding target distribution parameters.

If kpsT is fixed, assuming ksynS � frac p ksynTot
VS

and rearranging
Eqs 19 and 22 will result in:

kspT � frac
(TP0 kdegTp VP + TS0 kdegTs VS)

TS0 VS
− kdegTs + TP0 VP

TS0 VS
p kpsT

(23)

APPLICATIONS OF SITE-OF-ACTION
MODEL METHODOLOGY

This section provides four examples of application of the SoA
modeling structure to soluble targets. The examples are divided
into the three main categories for successful use of translational
modeling and simulation: right target, right compound, and
right dose.

Right Target
In the pre-clinical space, especially in early project stages, it is
appropriate to conduct feasibility analysis. At this stage, a
successful assessment is both one that progresses a target as a
part of the portfolio and eventually into the clinic, as well as one
that shows that a target is infeasible from a clinical utility
standpoint. Such analyses are performed to determine whether
sufficient levels of target coverage can be achieved via
neutralization with a monoclonal antibody and should not be
confused with determining whether the target is “right” from a
disease standpoint. Often these analyses are done with just in-
vitro functional assays, whose utility is limited - they capture a
narrow aspect of the biology andmay be done in the pre-portfolio
stage. Once the project is part of the portfolio, we recommend a
more thorough analysis with a SoA model since more resources
for modeling and biomeasures/biomarkers are available. In many

cases, the required levels of target coverage for efficacy are
unknown so a threshold is set, depending on the disease,
competitive landscape, and other factors, often at >90% or
>99% target neutralization. If the required coverage for
pharmacology cannot be achieved at a commercially viable
dose, project termination is recommended.

Osteopontin Example
The first example in this section is an example of the latter-
targeting osteopontin for rheumatoid arthritis (RA). Osteopontin
is a secreted protein from a plethora of cells, that has been
implicated in a variety of biological functions, from
inflammation and fibrosis, to tumorigenesis and metastasis
(Ashkar et al., 2000; Lund et al., 2013; Wang et al., 2014; Liu
et al., 2015; Clemente et al., 2016). The goal of the work was to
assess feasibility in suppressing osteopontin for the treatment of
RA. A full SoA model was not utilized in this case because, as you
will see, plasma levels of osteopontin were high enough to
sufficiently inform feasibility, without the need for further
modeling complexity. Target turnover was estimated using a
human D3-leucine pulse-chase study similar to discussed in
Estimating Target Turnover. Target serum concentrations
were measured using a nano flow liquid chromatography-
tandem mass spectrometry method similar to discussed in
Estimating Target Concentrations. Mean serum
concentrations were measured at around 10 nM and half-life
was estimated at around 10 min. The scenarios presented here
assume a mAb interacting with a soluble target and PK
parameters for the drug are in Table 3. For the purpose of the
example, to assess the degree of target coverage (free target
reduction) in plasma, two dosing regimens were explored –
300 mg SC and 1,000 mg IV, both every week. These are not
commercially viable doses for RA but were selected to explore the
maximum attainable coverage with a monoclonal antibody
targeting osteopontin. The effect of antibody affinity on target
coverage was simulated using KD values of 1 nM, 100 pM, for
both scenarios, and 10 pM for the IV dosing scenario. The results
of the simulations can be seen in Figures 2 and 3. Ultimately, the
high target levels and very fast target turnover resulted in low
target trough coverage even at a non-commercially viable dosing
regimens for RA. Drug affinity for the target was predicted to
have little effect on the coverage, so affinity optimization would
not help. Therefore, the target was determined undruggable with
a regular monoclonal antibody and the project was not
progressed. More detailed assessment of this target with a
different modeling approach can be seen in Farrokhi et al.
2018b, where other antibody modalities were also explored.

IL-33 Example
Another feasibility example is IL-33. IL-33 is an alarmin, member
of the IL-1 cytokine family, released by cells at the barrier surfaces
(i.e., keratinocytes and airways epithelial cells) after disruption in
the barrier function by pathogens, tissue injury, and cell death,
and has been associated with atopic dermatitis and asthma (Saluja
et al., 2015; Saluja et al., 2016). Asthma is the disease of choice for
this example, therefore the SoA is lung. IL-33 signals through
binding to ST2 and then forming a heterodimer with the IL-1
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receptor (Saluja et al., 2015; Saluja et al., 2016; Griesenauer and
Paczesny, 2017). ST2 can also be found in soluble form (sST2),
which is a scavenger for IL-33 and constraints its signaling
properties (Griesenauer and Paczesny, 2017). For the purpose
of this example, our antibody competes with sST2 for binding to
IL-33 in plasma. A scheme and description of the model is shown
in Figure 4. The antibody binds IL-33 both in plasma and at the
SoA. The distribution of the drug to the SoA and the periphery as
well as assumptions regarding the mAb:IL-33 complex have been
described earlier (see Drug Distribution Parameters). The
target-related parameters and references used are described in
Table 4. The mAb related parameters are described in Table 3
and Binding Parameters. KD for the purpose of this feasibility
analysis was assumed to be either 100 or 10 pM - kon remained
fixed (see Binding Parameters), while koff was calculated
accordingly. Figure 5 shows projected target coverage at the
site of action (lung). Based on the modeling results, the 100 mg SC
Q4W dose is predicted to achieve greater than 90% neutralization
of IL-33 at the site of action if the affinity of the mAb is closer to
10 pM than 100 pM. While a ∼10 pM affinity is challenging from
an engineering perspective, design of a high-affinity antibody
should be expected when targeting cytokines, especially if the
ligand’s binding to its natural receptor is so tight (26 pM (Palmer
et al., 2008)). In this case it was concluded, using the modelling
analysis, that the target should be explored further, however
extensive affinity optimization will likely be required to
achieve sufficient neutralization. A Matlab Simbiology model
file for this example is available in the Supplement section of
this article.

This early-stage feasibility analysis omits several potentially
important aspects of the biology of IL-33, e.g., quick inactivation
due to oxidation and proteolytic activities, and synthesis in
cellular nucleus and release under inflammatory conditions
(Cohen et al., 2015; Saluja et al., 2015; Griesenauer and
Paczesny, 2017; Scott et al., 2018). The former can increase
the apparent clearance of active IL-33 and both properties can
skew the measurements of active free IL-33 in plasma and tissue.
Also, considering the tight binding of IL-33 to sST2, further
considerations can be made regarding the expression of
membrane ST2 in the lung and the antibody’s interaction with
the target in a full receptor:target interaction mechanistic
modeling system. Potentially, a competing vs non-competing
epitope may be important for enhancing target neutralization,
which could be evaluated at the next stage of mechanistic
modeling - right molecule. Several anti-IL-33 molecules have
already been in the clinic, and a couple have shown positive

results in asthma (Anaptysbio, 2014; Regeneron Pharmaceuticals,
2019), validating the model’s conclusions.

Right Compound
Once feasibility has been established, the team delves deeper
into assessing the molecular properties of the antibody
necessary to neutralize the target. Most of the
pharmacokinetic properties would depend on molecular
assessment and there are currently few models that connect
antibody molecular assessment and pharmacokinetics (Jones
et al., 2019; Jones et al., 2020). Predominantly, modelers can
assist the engineering team with projecting what antibody
binding affinity is needed for the required level of
neutralization (coverage). We use the next example of a
clinical compound, to assess whether the mechanism was
tested adequately and what affinity is required for improved
target neutralization at a commercially viable dose.

Chemokine (C-C motif) ligand 20 (CCL20) is a
chemoattractant for lymphocytes and dendritic cells in a
variety of mucosal tissues (Schutyser et al., 2003). GSK3050002
is an anti-CCL20 monoclonal antibody that was tested in healthy
volunteers (Bouma et al., 2017). The data presented in the study
was drug, drug:target complex, and free target concentrations
both in serum and in skin blister. The drug did not appear to
inhibit monocytes and granulocytes activity in the skin blister
model, so we decided to test whether a higher affinity antibody
would be predicted to achieve higher and more sustained target
coverage at the skin. For this purpose, a SoA model was
constructed with skin as the SoA with the assumption that
CCL20 was synthesized in the skin only and eliminated in the
plasma only. Interstitial skin volume was assumed to be 1.125 L
(Shah and Betts, 2012). Two-compartment PK model parameters
(Table 4), KD (350 pM), target half-life (15 min), plasma:skin
drug concentration ratio (20%, measured), and initial CCL20
concentrations in the plasma (30 pM) were fixed based data

TABLE 3 | Antibody PK parameters for osteopontin feasibility analysis.

Parameter Value (unit) References

VP 3.2 (L)

Betts et al. (2018)V2 2.2 (L)
Cl 0.454 (L/d)
Q 0.252 (L/d)
ka 0.26 (1/d)

Assumed, (Dirks and Meibohm, 2010)
F 60 (%)

FIGURE 2 | Osteopontin coverage in plasma: Shows the projected
neutralization of osteopontin after mAb administration as described in
Osteopontin Example. Simulated dose is 300 mg SC Q1W, with two antibody
affinities – KD of 1 nM (solid blue line) and 100 pM (dashed orange line).
Even peak projected neutralization is only 20%, which is unlikely to result in
meaningful pharmacology.
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provided in Bouma et al., 2017. Skin concentrations of CCL20 are
assumed to be 10-fold higher than plasma. Under these
assumptions, even a dose of 20 mg/kg is not projected to
achieve 90% target reduction in the skin for more than ∼ a
week (Figure 6). At a regimen of 300 mg SC Q2W, the mAb is
projected to need an affinity of 3.5 pM in order to reduce the
target by 90% (Figure 7). This suggests that the affinity of the
mAb was not tight enough and that the CCL20 mechanism was
likely not adequately tested in the published clinical study.

While the general conclusion may still hold, several
assumptions affect the results of the model. Some, like the
synthesis of CCL20 in the skin, are reasonable given that the
disease of interest is atopic dermatitis. The SoA:plasma ratio was
assumed similar to the one found in IL-33 (see Table 5). That

ratio would be target-dependent and potentially sensitivity
analysis would need to be done to fully evaluate.

Right Dose
Once drug properties have been established, modeling is utilized
to project a clinical efficacious dose in different patient
populations. This step is important both from standpoint of
selecting doses for toxicology studies and assisting in dose
selection for first-in-human studies. This particular example is
a retrospective analysis of the clinical compound IMA-026, an
antagonist monoclonal antibody against IL-13 (Gauvreau et al.,
2011; Kasaian et al., 2011; Tiwari et al., 2016b). IL-13 is a cytokine
with demonstrated role in many inflammatory diseases, including
asthma. IMA-026 is an M1 type anti-IL-13 antibody (May and
Fung, 2015), which blocks IL-13 from interaction with its
receptors - IL13Rα1 (signaling receptor) and IL13Rα2 (decoy
receptor) (Chandriani et al., 2014). IMA-026 data in healthy
volunteers (NCT00517348) has been analyzed before (Tiwari
et al., 2016b), where initial IL-13 concentrations, drug affinity,
and target turnover were estimated. However, we demonstrate
here that the accumulation of total plasma concentration of IL-13
can be obtained without fitting any parameters by using literature
references (target turnover), pre-clinical observations (drug
affinity), and relevant clinical data (PK and initial target
concentrations). IL-13 target turnover was estimated to be
around 20 min in mice (Khodoun et al., 2007), drug KD was
1 nM (based on internal measurements), median initial plasma
IL-13 concentrations were estimated using ligand binding assay
(LBA) to be around 0.06 pM for healthy volunteers and 0.12 pM
for asthmatic patients, and PK parameters were estimated in
Tiwari et al., 2016b. A SoAmodel was constructed with interstitial
lung volume of 0.3 L (Shah and Betts, 2012) and SoA target
concentrations of 0.03 pM in healthy volunteers and 0.4 pM in
asthmatic patients (Kroegel et al., 1996). An average human
bodyweight of 70 kg was assumed. Figure 8 shows the
simulation of total IL-13 accumulation using the SoA model
in plasma along with the observed clinical data from the healthy

FIGURE 4 | Modeling scheme of an anti-IL-33 mAb. The general
processes are similar to the default scheme described in Figure 1, with
several details adapted to the IL-33 scenario. IL-33 is synthesized at the SoA
(lung) and distributes to the plasma. There, it can bind sST2 or get
eliminated. sST2 is synthesized and eliminated in plasma only. The sST2:IL-33
complex clears in the plasma.

FIGURE 3 | Osteopontin coverage in plasma: Shows the projected neutralization of osteopontin after mAb administration as described in Osteopontin Example.
Simulated dose is 1,000 mg IV Q1W, with three antibody affinities – KD of 1 nM (solid blue line), 100 pM (dashed orange line), and 10 pM (dotted green line). All scenarios
result in high peak neutralization, which is not sustained for the full duration of the dosing interval.
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volunteer study. IMA-026 was evaluated further in an additional
clinical study, NCT00725582, Study Evaluating the Effect of IMA-
026 on Allergen-Induced Late Asthma Response in Mild Asthma.
Two 2 mg/kg SC doses were administered 1 week apart.

The SoA model estimated that after 2 weeks dosing of 2 mg/kg
SC Q1W the drug reached only around 8% target suppression at the
site of action, while 8 weeks of dosing of 30mg/kg SC Q1W would
have achieved close to 90% coverage (Figure 9). Ultimately IMA-026
was abandoned since it did not show efficacy (Gauvreau et al., 2011).
However, had data supporting an SoA model been available at time
of the study conception, it could have projected the low coverage at
2 mg/kg and suggested either a longer duration study or a more
appropriate dose for testing the mechanism. Likely, if SoAmodeling
had been available even earlier, an affinity maturation campaign
could have been initiated to increase the affinity above 1 nM since a
dose of 30 mg/kg Q1W is not commercially feasible. Suggestions for
increased dose or improved affinity are corroborated by a crowd of
anti-IL-13 monoclonal antibodies that have subsequently shown
moderate to low efficacy in asthma (Gauvreau et al., 2011; Noonan
et al., 2013; van Hartingsveldt et al., 2013; De Boever et al., 2014;
Hanania et al., 2016), indicating the difficulty of achieving complete
neutralization of IL-13 and/or its role as a standalone mechanism in
the disease. The only anti-IL-13 mAb that has been in Phase 3 for
asthma is lebrikizumab, with reported affinity of <10 pM (Ultsch
et al., 2013). Lebrikizumab is currently in development for atopic
dermatitis with positive results (Guttman-Yassky et al., 2020).
Tralokinumab, whose affinity is reported at 58 pM (Popovic

et al., 2017), has been approved for treatment of atopic dermatitis
(LEO Pharma announces, 2021). The success and high affinity of
both mAbs validate the model’s conclusions.

DISCUSSION

We have presented a three compartment mechanistic model that
extends a typical two-compartment model by adding a site of
action - a representation of the interstitial volume of the tissue
where the interactions of the protein target with the drug are
expected to contribute to disease modulation. The modeling is
performed through a system of ordinary differential equations and
is a mechanistic representation of the interaction of the drug with
the target. The framework can be used for constructing a fit-for-
purpose model to evaluate whether a target is biologically relevant
and hitting the target is feasible (right target), guide drug properties

FIGURE 5 | Projected IL-33 neutralization in the lung at 100 mg SCQ4W dosing at 10 pM (dashed orange line) and 100 pM (solid blue line) drug affinities. The 90%
coverage line (dashed grey) is emphasized for convenience. The model projects that a 10 pM affinity would achieve 90% IL-33 neutralization in the lung.

TABLE 4 | GSK3050002 two-compartment PK parameters (Bouma et al., 2017).

Parameter Value (unit) 95% CI

VP 3.63 (L) 3.44–3.83
V2 3.19 (L) 2.89–3.52
Cl 0.475 (L/d) 0.439–0.514
Q 0.374 (L/d) 0.324–0.432

FIGURE 6 | Model projected CCL20 coverage in the skin after
administration of 20 mg/kg IV bolus dose of GSK3050002. Three mAb affinity
scenarios were modeled – 350 pM (solid blue line), 35 pM (dashed orange
line), and 3.5 pM (dotted green line). The low coverage at the base KD of
350 pM is consistent with observed lack of activity as described in Bouma
et al. 2017.
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for sufficient target engagement (right compound) and inform the
necessary doses for achieving the degree of target engagement
required for efficacy in the clinic (right dose). While the case
studies described were categorized into examples of each of these
three questions, these questions are inter-linked and in practice the
modelling approach addresses all three if used at an appropriate
stage of the drug discovery process. Ideally at project inception, a
model should be generated to explore feasibility, affinity, and PK
requirements for a desired dose level. Such an approach allows
drug companies to focus on programs with the highest chance of
success and limit the “wasted” resources on those which are more
likely to fail. Hence, our proposal is to utilize this model in the early
stages of drug discovery and, if possible, validate with clinical data.

The main feature of the SoA modeling approach is its flexibility.
Depending on the target, a modeler can include any number of SoA
compartments, ranging from zero to including everymain tissue in the
human body. Along with the system of equations, we suggest two key
biomeasures: target concentrations and turnover, which represent

essential parameters in early stage pre-clinical work. This is evident
in the exampleswe presented - osteopontin could not be covered at any
reasonable dose or affinity because of its high abundance and turnover;
IL-33 needed high affinity for high neutralization but was deemed
feasible due to relatively low expression and slow turnover; CCL20 also
needed high affinity and a high dose to neutralize due to fast turnover.
Different targets have different associated biology and will require
different strategies to overcome difficulties in neutralizing them.Hence,
while for the purpose of this discussionwe are focused on themodeling
structure, a capable biomarkers/biomeasures group is essential for the
translational research effort.

Within the SoA model framework one can implement a
variety of biological complexities: downstream or upstream
biomarkers, different cell types, ligand-receptor binding, etc.
The SoA model facilitates their implementations but one must
weigh the complexity of the model versus the questions it tries to
answer. The SoA modeling approach is not appropriate for a full
disease model, for that goal a more complex QSP implementation

TABLE 5 | List of target-related parameters used for anti-IL-33 model.

Parameter Description Value, units Comments and references

IL33s_0 Initial concentration of free IL-
33 at the SoA (lung)

11 pM 200 pg/mg of lung tissue in COPD or asthmatic patients
(Cohen et al., 2015)

IL33p_0 Initial concentration of free IL-
33 in plasma

1.5 pM Assumed similar between asthma and allergic rhinitis –

27 pg/ml (Glück et al., 2019)

sST2_0 Initial concentration of free
sST2 in plasma

27 pM 1 ng/ml in mild/moderate attack ((Oshikawa et al., 2001)),
within two-fold of most other situations in Oshikawa et al.
(2001) and levels in Glück et al. (2019)

sST2_IL33p_0 Initial concentration of sST2-
bound IL-33 in plasma

� kon ST2 p IL33p0 p
sST2p0

koff ST2+ kdeg sST2 IL33p
To preserve drug-free equilibrium values

IL-33 molecular
weight

To convert mass
concentration into molarity

18 kDa Palmer et al. (2008)

sST2 molecular
weight

To convert mass
concentration into molarity

37 kDa Mueller and Dieplinger, (2016)

kdeg_IL33p Degradation rate of IL-33 in
plasma

4.2 1/day ∼4 h half-life in human lung explants (Cohen et al., 2015)

kdeg_sST2p Degradation rate of sST2 in
plasma

2.6 1/day 6.3 h half-life (recombinant, IV administration) (Jacobs
et al., 1993)

kdeg_sST2_IL33p Degradation rate of sST2:IL-
33 complex in plasma

� kdeg sST2p Assumed

kon_ST2 Association constant
between IL-33 and sST2

358 1/nM/day Palmer et al. (2008)

koff_ST2 Dissociation rate between IL-
33 and sST2

� kon ST2 p KD IL33 sST2 KD_IL33_sST2 � 26 pM (Palmer et al., 2008)

kps_IL33 IL-33 distribution rate from
plasma to SoA

0.13 1/day See Estimating Target Distribution

ksp_IL33 IL-33 distribution rate from
SoA to plasma

� (kps IL33p p IL33p0) p
VP

VS*IL33s0
+ ksyn IL33s

IL33s0
To preserve drug-free equilibrium values

ksyn_IL33s IL-33 synthesis rate at
the SoA

� (kdeg IL33p p IL33p0 + kdeg sST2 IL33p p sST2 IL33p0) p
VP
VS

To preserve drug-free equilibrium values

ksyn_sST2p sST2 synthesis rate in plasma � kdeg sST2p p sST2p0 + kdeg sST2 IL33p p sST2 IL33p0 To preserve drug-free equilibrium values
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would be appropriate. The SoAmodel is also not a physiologically
based pharmacokinetics (PBPK) model - if the distribution of the
drug in the whole body is important for the project, a PBPK
model would likely be the appropriate tool.

The SoA model, as presented here, is fit for mAb modeling
with its representation of mechanistic target binding and
unbinding. The model can be adjusted and has been utilized
to incorporate different molecular modalities - pegylated Fab
fragments, bispecific antibodies, etc.

The examples in the manuscript are focused on soluble
targets, which simplified some aspects of the presentation.
Membrane-bound targets often present different challenges
from modeling standpoint (i.e., target-mediated drug

disposition, shedding of the membrane target) and relevant
biomarker and biomeasures assays (i.e., number of receptors per
cell, quantifying receptor internalization). These aspects can be
described in a separate manuscript but there are excellent
discussions on the topic, among which Aston et al. 2011 and
Grimm 2009.

There are a number of shortcomings to the SoA modeling
platform. The peripheral compartment may be underutilized -
the model as presented here does not include target expression
and turnover in the peripheral compartment or drug:target
complex distribution in and out of the peripheral
compartment. The method of fixing the ratio of drug
concentration in plasma vs. the SoA assumes similar

FIGURE 8 | Total IL-13 accumulation after IMA-026 administration in
Phase I trial - model simulations vs published data. Different color solid lines
correspond to different doses, open circles with corresponding colors are
clinical data. Labels: SC, subcutaneous; IV, intravenous; HV, healthy
volunteers; MA, mild asthmatics. The model reasonably captures the behavior
using internal affinity measures, previously published target data, and
published PK parameters for IMA-026, without fitting any parameters.

FIGURE 9 | Projected IL-13 neutralization in lung at two dosing
schedules for IMA-026. Two doses of 2 mg/kg a week apart (solid blue line)
was the clinically tested dose in asthma patients (NCT00725582). Eight doses
of 30 mg/kg a week apart (dashed orange line) is a hypothetical clinical
dose at which the projected IMA-026 coverage reaches close to 90% IL-13
neutralization in the lung. Modeling suggests that the mechanism of IL-13
neutralization was likely untested in the clinic due to low tested dose, which is
projected to result in low coverage.

FIGURE 7 | Projected CCL20 coverage in the skin at 300 mg SC Q2W dosing regimen and varying affinity. Three affinity scenarios were simulated – 350 pM (solid
blue line), 35 pM (solid orange line), and 3.5 pM (solid green line). Thin dashed grey line indicates 90% coverage, which is emphasized for convenience. The model
projects that a 3.5 pM affinity is required for achieving 90% CCL20 coverage in the skin.
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distribution to other previously measured antibodies. The rate of
distribution of the drug into the SoA may have an effect on the
target neutralization, and here it is calculated. Some of the
mathematical methods may lead to non-physiological rates in
order to preserve the measured concentrations at steady state. For
example, the use of target distribution fixes the rate of distribution
from plasma to the SoA and calculates the rate of distribution
from the SoA into the plasma when assuming that the target is
only synthesized in the SoA. This can lead to non-physiological
differences in the plasma:SoA back and forth distribution rates.
The very assumptions of target synthesis and distribution can
alter the estimate of target suppression. However, despite these
potential caveats of the base SoA model described in this
manuscript, it is possible to adapt the framework to capture
the relevant biological mechanisms as appropriate so that the
sought physiological modulation can be described more
accurately. Therefore, all the assumptions and calculations
presented in this manuscript are just the most current
iterations of ideas and are subject to scrutiny in the face of
new facts and better representations.

As with all models, this framework requires validation.
Early decisions can be made with sparse data and limited
measurements but in order to improve confidence in the
modeling results, ideally, measurements of key dynamics
behaviors predicted by the model (longitudinal
measurements of target engagement, free or total target
levels, etc.) in relevant species with the candidate molecule
or a suitable surrogate are needed for model validation.
Furthermore, a retrospective validation using clinical data
(external clinical data can also inform the pre-clinical
model) should be performed when data is available in order
to bridge the gap between theoretical and practical model
projections. Some aspects of these validations include
clinically-relevant disease-dependent level of target
neutralization, distribution of the mAb into various types of
SoA, or evaluation of the pre-clinical affinity biomeasures or
functional assays and their translatability to the clinical
setting. Not every project needs a site-of-action or a
quantitative systems pharmacology model for successful

translation from discovery to development. For the ones
where understanding of the underlying pharmacology is
limited, a simple exposure-response approach may be
sufficient.

CONCLUSION

Ultimately, the SoA platform model is a useful framework that
has allowed us to inform the progression of many successful
mAb programs. In particular, we have used the model to
determine the doability of targets, drug requirements for
“best in class” mAbs and dosing regimens to achieve
required levels of target coverage to demonstrate efficacy.
This modeling approach is fully integrated in the drug
discovery process with the ability to make decisions believed
to be high.
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