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Advances in genome sequencing have accelerated the growth of sequenced genomes but
at a cost in the quality of genome annotation. At the same time, computational analysis is
widely used for protein annotation, but a dearth of experimental verification has contributed
to inaccurate annotation as well as to annotation error propagation. Thus, a tool to help life
scientists with accurate protein annotation would be useful. In this work we describe a
website we have developed, the Protein Annotation Surveillance Site (PASS), which
provides such a tool. This website consists of three major components: a database of
homologous clusters of more than eight million protein sequences deduced from the
representative genomes of bacteria, archaea, eukarya, and viruses, together with
sequence information; a machine-learning software tool which periodically queries the
UniprotKB database to determine whether protein function has been experimentally
verified; and a query-able webpage where the FASTA headers of sequences from the
cluster best matching an input sequence are returned. The user can choose from these
sequences to create a sequence similarity network to assist in annotation or else use their
expert knowledge to choose an annotation from the cluster sequences. Illustrations
demonstrating use of this website are presented.
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1 INTRODUCTION

Recent advances in the development of high-throughput sequencing technologies and computing
capacity have greatly improved the speed of genome sequencing and, as a consequence, have
contributed to the exponential growth of genomes in public repositories (Tao et al., 2021).
Concomitantly, computational analysis, homology-based inference, and prediction are being
widely used to annotate proteins, but the majority of annotations have not been experimentally
verified. Lack of experimental verification contributes to inaccurate protein annotation and the
propagation of existing annotation errors. The inaccuracy and confusion associated with protein
annotation has been well reported, and it is well known that numerous protein sequences are missing
annotation (Galperin and Koonin, 1998; Gilks et al., 2005; Schnoes et al., 2009; Salzberg, 2019;
Lockwood et al., 2019; Tao et al., 2021). For example, in (Lockwood et al., 2019) homologous
clustering was performed using protein sequences downloaded from the National Center for
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Biotechnology Information (NCBI) GenBank ftp service (Benson
et al., 2005), and it was found that among 2,826 Proteobacterial
protein sequences within one homologous cluster, 82% of the
sequences used GroEL or GroL in their annotation while
annotations of the remaining sequences included “not yet
annotated,” mopA (obsolete gene name), thermosome, and
60 kDa chaperonin (11.78%). Moreover, 44 non-GroEL protein
sequences were incorrectly annotated as chaperonin GroEL by
the authors submitting the sequences. For this universally
conserved protein, the preferred annotation in the UniProtKB/
Swiss-Prot database is 60 kDa chaperonin while NCBI RefSeq
annotates it as molecular chaperone GroEL (Lockwood et al.,
2019), demonstrating a clear inconsistency even between the two
databases. In (Mohanta et al., 2020), an analysis performed on
7.15 million protein sequences of 689 fungal species found that
the protein sequence annotated as “calcium dependent protein
kinase” did not, in fact, encode calcium binding EF-hands in the
regulatory domain. In addition, protein sequences with
annotations containing “selenocysteine” did not encode the
Selenocysteine (U) amino acid. The latter work demonstrates
that protein misannotation is not only a problem for bacterial
species, but it is also a problem for fungi. The awareness of
problems with protein annotation and, in particular, the issue of
error propagation, indicates that a tool to help life scientists with
accurate protein annotation would be useful.

Traditional methods for protein annotation involve mass
spectrometry, microscopy, and RNA interference.
Unfortunately, these methods are time-consuming and require
the use of substantial resources due to their low throughput and
restricted scope of methodology (Schnoes et al., 2013; Cao and
Cheng, 2016; Frasca and Cesa-Bianchi, 2017; Hong et al., 2020).
As a result, automatic methods for annotation have been adopted,
and in recent years, considerable work on the automatic
annotation of proteins has been performed. In (Fleischmann
et al., 1999), the annotation algorithm extracts conditions
from an external database, groups the UniProtKB/Swiss-Prot
database entries that fulfill each condition to find the common
annotation among each group, and finally extends the annotation
to entries from the uncurated UniProtKB/TrEMBL database that
are grouped by the same conditions. However, this method has a
low coverage rate of 10% and focuses on high specificity because it
is impractical to enumerate all the rules and conditions. In
(Steinegger et al., 2019), the method used vectorizes and
accelerates profile Hidden Markov Model (HMM) alignment
which extends sequence profiles by increasing position-specific
amino acid substitution scores with position-specific penalties for
insertions and deletions. The idea is to use homology detection
for deep functional annotation. However, protein homology does
not guarantee the same molecular function, and further
annotation verification and evaluation are essential. In (Xie
et al., 2002), the authors achieve protein annotation based on
sequence homology with Gene-Ontology-annotated proteins and
protein domain analysis. Though text information is used to
improve annotation accuracy, the relationships between specific
words and specific Gene Ontology (GO) are based on term
frequency only, ignoring semantic information. While cutoff
thresholds can be made more stringent in traditional

similarity-based methods such as HMMER (Finn et al., 2011)
to improve the accuracy of homology detection, recent efforts in
automatic protein annotation have turned to machine learning
(ML) techniques. ML methods use features that are correlated
with a specific function in a training set containing
experimentally annotated proteins, formulating annotation as a
multi-class classification problem using models such as support
vector machines and deep neural networks (Radivojac et al., 2013;
Fa et al., 2018; Sun et al., 2020; Zhang et al., 2020). For example,
(Nakano et al., 2019) explores and evaluates the ability of
hierarchical multi-label classification methods to detect
missing or incorrect annotations in Functional Catalogue
(FunCat) or GO benchmark datasets. In (Hong et al., 2020),
the authors consider the effectiveness of applying a convolutional
neural network (CNN) method together with a protein encoding
strategy to improve prediction stability. However, none of these
efforts in annotation prediction use reliable verification and
validation of protein annotations based on experimental
evidence.

In this paper, we consider an alternative approach to accurate
protein annotation. We introduce the Protein Annotation
Surveillance Site (PASS), which provides a tool for life
scientists to choose accurate annotations for protein sequences.
This website has three major components: a database of
homologous clusters of protein sequences representing the
four domains bacteria, archaea, eukarya, and viruses, together
with sequence information; a machine-learning software tool
which periodically queries the UniprotKB database to
determine whether protein function has been experimentally
verified; and a query-able webpage where the FASTA headers
of sequences from the cluster best matching an input sequence are
returned. Protein sequences that have been marked by the human
curator as having been verified or have “function” publications in
the Swiss-Prot database are identified by colored FASTA text.
Because homology does not guarantee the same molecular
function, the user can use their expert knowledge to choose an
annotation from the cluster sequences or else they can create a
sequence similarity network (SSN) to assist with annotation. The
SSN indicates the sequences most closely related to their query
sequence. A sequence that has been confirmed experimentally is
listed in color with the SSN results.

A major advantage of using our alternative approach to
annotation, e.g., compared to using BLASTp, is that sequences
matching the query sequence are provided in the form of a
homologous cluster of sequences representing multiple species,
potentially from four different domains. Moreover, our database
contains more than 360,000 homologous clusters containing
more than eight million sequences. Illustrations demonstrating
use of the PASS website are given in the Results and Discussion
section.

2 MATERIALS AND METHODS

Our annotation pipeline contains three major components:
homologous clusters of close to 8.5 million protein sequences
deduced from the representative genomes of bacteria, archaea,
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eukarya, and viruses, which contribute to a database containing
all the sequence information; a machine-learning software tool
which periodically queries the UniprotKB database to determine
whether protein function has been experimentally verified; and a
query-able webpage where the FASTA headers of sequences from
the cluster best matching an input sequence are returned. Each
component is addressed in the following subsections.

2.1 Large-Scale Homologous Clustering
Using pClust and Sub-Cluster Merging
We collected the protein sequences for our database using the
Genome Information Browser by Organism available through the
National Center for Biotechnology Information (NCBI) in July
2020, choosing only organisms with completely sequenced
genomes in the representative category of RefSeq. The average
sequence length is 350 amino acids while the longest length is
36,805. Table 1 shows the number of organisms we collected in
each domain.

The total number of protein sequences for the 3,253 organisms
was approximately 11.2 million including duplicate sequences
and sequences with the annotation “hypothetical protein.”

2.1.1 Homologous Clustering Using pClust
There are numerous methods for clustering protein and gene
sequences, but here we mention only a few. One novel approach
by (Abnousi et al., 2018) uses an alignment-free technique to
cluster protein sequences. Another novel approach uses a 3-
dimensional method to cluster gene expression data (Lambrou
et al., 2019). For our work, we used the pClust method, in part
because it worked well for our iterative approach. To generate our
homologous protein clusters, we applied the multi-core version of
the pClust pipeline (Lockwood, 2016), employing semi-global
pairwise sequence alignment with Parasail (Daily, 2016) and
scalable community detection with Grappolo (Lu et al., 2015).
First, Parasail generates an undirected graph with edges
connecting similar sequences, where the sequences are the
vertices of the graph. Grappolo then uses the graph results
from Parasail to create clusters.

Parasail (Daily, 2016) stands for Pairwise Sequence Alignment
Library, and it is a SIMD C library which includes
implementations of the Smith-Waterman local sequence
alignment, Needleman-Wunsch global sequence alignment,
and semi-global sequence alignment algorithms. For this work,
we used the semi-global pairwise sequence alignment algorithm
because we did not want to penalize gaps at the beginning and/or
end of an alignment when the downstream part of one sequence

overlapped with the upstream part of the other or when the
lengths of two aligned sequences differed significantly. The input
for Parasail is a set of protein sequences, and the output is an
undirected graph with three alignment statistics for each edge
computed, where an edge indicates sequence similarity between
two protein sequences. The three alignment statistics are length of
alignment over maximum length, number of exact matches over
alignment length, and alignment score over self score.We focused
on the first alignment statistic, using it as the weight for each edge.
It represents the minimum required length of alignment relative
to the longest sequence among all sequences to be aligned, and the
default threshold is 80%, which has been shown to give optimal
results (Khaledian and Broschat, 2020). Only edges with values
greater than this threshold were kept to ensure strong similarity
between sequences.

Grappolo (Lu et al., 2015) clusters the sequences by
parallelization of the Louvain heuristic for community
detection in large-scale graphs. Community detection is an
NP-complete problem (Brandes et al., 2007) requiring a brute
force approach to solve. The Louvain method (Bader et al., 2012),
an iterative and greedy heuristic algorithm for producing
hierarchical communities, was proposed as an efficient method
for solving the community detection problem. Initially, each
vertex, or protein sequence, exists in a separate community.
Closely related protein sequences are considered members of
one community. Modularity (Newman and Girvan, 2004) is
defined as the fraction of edges existing within communities
minus the expected fraction of edges if they were distributed
randomly. It measures the quality of a particular division of a
network, and an increase in modularity, representing an
improvement in the quality of a network partition, is called its
gain. Modularity gain is computed after each iteration until a
desired threshold of 10–6 is reached. This threshold balances
speed of convergence and the quality of the final network
partition (Lu et al., 2015). As mentioned, Grappolo is a
parallelization of the Louvain heuristic. In each iteration of
Grappolo, all the vertices are scanned in parallel in an
arbitrary but predetermined order. For a given vertex, the
communities containing its neighbors are examined and the
modularity gain is computed when the vertex is moved from
its current community to each of the neighboring communities.
The input to Grappolo is an undirected weighted graph, and the
output is a partitioning of communities, or clusters, containing a
subset of vertices (protein sequences) for which modularity has
been maximized. It should be noted that a community can consist
of a single vertex which is called a singleton.

2.1.2 A Two-Step Iterative Clustering and Sub-Cluster
Merging Scheme
The ∼11.2 million protein sequences for the 3,253 organisms were
downloaded in FASTA files. The sequences were divided into
batches, and the sequences annotated as hypothetical proteins as
well as duplicate sequences were removed from each batch; ∼9.26
million sequences remained. This number included more than
191,000 duplicate sequences that we were unable to remove
because they were distributed across different batches. Some of
these duplicates were removed later.

TABLE 1 | Number of representative genomes of bacteria, archaea, eukarya, and
viruses obtained using the Genome Information Browser by Organism
available through the National Center for Biotechnology Information (NCBI) in
July 2020.

Bacteria Eukarya Virus Archaea

2,989 16a 47 201

aOf the 39 entries meeting the requirements, 23 did not have RefSeq links at the time of
collection.
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Given the constraints of the computing facilities available to
us, it was impossible to cluster the ∼9.26 million sequences as a
single set. Because of this, we considered clustering each batch
and then combining clusters and singletons from each batch.
However, this posed several challenges, including how to name
each cluster and singleton in different batches to avoid
confusion and how to combine them to achieve accurate
results.

We decided that a suitable approach for determining
homologous clusters was to adopt a two-step scheme using
iterative clustering with sub-cluster merging. To implement our
approach, we start by dividing all protein sequences into batches
and clustering each batch independently, obtaining homologous
clusters and singletons for each batch. Because the homologous
clusters are not in their final form, we use the term sub-clusters to
describe them. In the next iteration, we reduce the number of
sequences and batches by selecting one representative sequence
from each sub-cluster (to enable faster sequence-cluster mapping,
we select the first sequence within each sub-cluster as the
representative), adding all the representative sequences and
singletons from a batch to form a new batch, combining several
new batches, and clustering the sequences in these. In the final
iteration, clustering is performed on a single batch. Sub-clusters
generated in the current iteration indicate how sub-clusters and
singletons generated in the previous iteration are merged. For
example, if two sequences representing sub-clusters in two
different batches in the previous iteration cluster together in the
current iteration, the two sub-clusters in the previous iteration will
be merged. Sub-cluster and singleton merging starts with the
results of the final iteration, and conceptually, sequences within
each sub-cluster from the final batch are mapped to and merged
with sub-clusters or singletons generated in the previous iteration.
This is performed repeatedly until sub-clusters and singletons
obtained during the first iteration have been merged
appropriately. Details on the two steps of our scheme are
described in the following sub-sections.

2.1.3 Iterative Clustering
For the first iteration, we started with the ∼9.26 million sequences
distributed in eleven batches. The first ten batches consisted only of
bacterial sequences, while the 11th batch contained sequences from
bacteria, archaea, eukarya, and viruses. To avoid confusion between
sequences in different batches, we adopted the following naming
convention: We used the uppercase letters A-K to designate the
eleven separate batches followed by a number to indicate the index
of the sub-cluster, for example, A_0 (indexing begins at 0)
designates the first sub-cluster in the first batch and K_9 the
10th sub-cluster in the 11th batch. Individual sequences within
a batch were labeled by the lowercase equivalent of the batch letter
followed by an index value. This sequence index is determined by
pClust which indexes each sequence in a single batch sequentially
from start to finish. To identify a sequence in a sub-cluster, we
simply concatenate the sub-cluster name and the sequence label for
a given batch, for example, A_11#a_15 means the sequence labeled
a_15 from batch 1 is in the 12th sub-cluster in batch 1. For
singletons, we prefix the original sequence label by S and
concatenate this with the original sequence label, for example,

for a sequence labeled a_1 in batch 1, Sa_1#a_1 means the second
sequence in batch 1 is a singleton and Sa_1091#a_1091 means the
1092nd sequence in batch 1 is a singleton.

In our first iteration, we used pClust to cluster each of the eleven
batches of sequences separately. The number of input sequences used
and the number of sub-clusters and singletons obtained for each
batch are presented inTable 2. Also given in this table are the number
of output sequences obtained from the first iteration for use in the
second iteration. For each batch, we combined all the singletons and
the first sequence from each sub-cluster to represent it, producing a
new and much smaller set of input sequences designated as “Output
Seqs” in Table 2. The ratio in the last row and column of this table
shows a reduction in overall input size for the second iteration of
almost 80%. Note that after the first iteration, singletons can combine
with other singletons to form sub-clusters in the next iteration or they
can combine with other sub-clusters.

For the second iteration, we combined the output
sequences from batches 1, 2, and 3 together, the output
sequences from batches 4, 5, 6, and 7 together, and the
output sequences from batches 8, 9, 10, and 11 together to
form three new batches of sequences. We used pClust on each
of these three batches to obtain sub-clusters. The number of
input sequences used and the number of sub-clusters and
singletons obtained are given in Table 3. Again, the number
of output sequences in this table is the sum of the number of
singletons and the number of sub-clusters, and the ratio in
the last row and column shows a reduction in input size for
the third iteration of almost 30%.

For the third iteration, we repeated the same steps as used for
the first two except that duplicate sequences were removed, and

FIGURE 1 | We illustrate the sub-cluster merging process using a toy
example. This example doesn’t represent realistic results and doesn’t use our
naming convention. The simplification is meant to provide an understanding of
the concept underlying the formation of our final clusters. This figure
presents the partial results after completion of the iterative clustering step.
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only Batch_123 and Batch_4567 were combined and used as the
input to pClust. Values are presented in Table 4.

There were 1,261,723 output sequences at the conclusion of
the third iteration, but after removal of duplicate sequences,
1,260,580 were retained and used as the input to pClust for
the fourth and final iteration. The number of input sequences and
sub-clusters for the final iteration are presented in Table 5.

2.1.4 Sub-Cluster Merging
After completing the iterative clustering, we proceeded to
sub-cluster merging. We start with the sub-clusters found in
the fourth and final iteration. The basic idea is to map the
sub-clusters and singletons to the results of the third
iteration, then to the results of the second iteration, and
finally to the results of the first iteration, merging all the
sequences to create homologous clusters. This is possible
because of the naming convention we adopted as described
previously. Briefly, sequences from different batches are
identified by concatenating the sub-cluster name and
sequence index with the batch name.

Next, we illustrate the sub-cluster merging process using a
toy example. This example doesn’t represent realistic results
and doesn’t use our naming convention. The simplification is
meant to provide an understanding of the concept underlying
the formation of our final clusters. After completion of the

iterative clustering step, we assume the partial results shown
in Figure 1, where “bi” indicates batch number “i”, “cj”
indicates cluster number “j”, “sk” indicates sequence
number “k”, and “Sm” indicates singleton number “m”. As
shown, the results of the first iteration are a single cluster in
Batch_1 comprised of two sequences b1_s1 and b1_s2 and
one singleton each in Batch_2 through Batch_11. For the
second iteration, only the first sequence b1_s1 is used to
represent the cluster b1_c1, and this sequence clusters with
the singleton b2_S2 to form the cluster b123_c1. In addition,
the second iteration results in two more clusters composed of
singletons from the first iteration. For the third iteration,
again only single sequences from each of the clusters b123_c1
and b4567_c1 are used to represent them (note that
b891011_c1 is not used for this iteration), and the third
iteration results in the two clusters as shown (with
b891011_c1 retained from the second iteration). Finally,
the fourth iteration results in a single cluster
b1234567891011_c1 comprised of the two single
representative sequences b1_s1 and b8_S1 from the
previous iteration. Then mapping and merging give the
results shown in Figure 2. We see how the cluster
membership expands as we move from the last iteration to
the first. For example, the two sequences in cluster
b1234567891011_c1 from the last iteration are mapped

TABLE 2 | “Input Seqs” denotes the number of input sequences for each batch in the first iteration; “Sub-clusters” denotes the number of sub-clusters obtained from each
batch; “Singletons” denotes the number of singletons obtained for each batch; “Output Seqs” gives the number of output sequences from the first iteration to be used in
the second iteration; and “Out/In” indicates the reduction in size of the sequences to be used in the second iteration compared to the first. The reduction in input size for the
second iteration is almost 80%. Each value in the “Output Seqs” column is the sum of the number of sub-clusters and the number of singletons. The first sequence in each
sub-cluster was used to represent the entire sub-cluster in the second iteration.

Iter 1 Input seqs Sub-clusters Singletons Output seqs Out/In (%)

Batch 1 788,410 61,842 138,042 199,884 25.35
Batch 2 820,250 62,774 165,842 228,616 27.87
Batch 3 860,911 68,321 156,397 224,718 26.10
Batch 4 886,836 63,252 120,205 183,457 20.69
Batch 5 898,559 63,882 123,095 186,977 20.81
Batch 6 977,601 66,695 122,559 189,254 19.36
Batch 7 940,736 69,612 122,955 192,567 20.47
Batch 8 918,110 67,816 132,898 200,714 21.86
Batch 9 945,086 67,356 135,681 203,037 21.48
Batch 10 769,210 49,596 89,756 139,352 18.12
Batch 11 451,428 33,248 64,939 98,187 21.75
Total 9,257,137 674,394 1,372,369 2,046,763 22.11

TABLE 3 | “Input Seqs” denotes the number of input sequences for each batch in the second iteration; “Sub-clusters” denotes the number of sub-clusters obtained from
each batch; “Singletons” denotes the number of singletons obtained for each batch; “Output Seqs” gives the number of sequences to be used in the third iteration; and
“Out/In” indicates the reduction in size of the sequences to be used in the third iteration compared to the second. The reduction in input size for the third iteration is almost
30%. Each value in the “Output Seqs” column is the sum of the number of sub-clusters and the number of singletons. The first sequence in each sub-cluster was used to
represent the entire sub-cluster in the third iteration.

Iter 2 Input seqs Sub-clusters Singletons Output seqs Out/In (%)

Batch123 653,218 110,985 375,672 486,657 74.50
Batch4567 752,255 142,130 333,160 475,290 63.18
Batch891011 641,290 98,555 397,303 495,858 77.32
Total 2,046,763 351,670 1,106,135 1,457,805 71.22
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and merged with sequences from the third iteration. The final
result is a single homologous cluster with sequences b1_s1,
b1_s2, b2_S1, b4_S1, b7_s1, b8_S1, and b9_S1 and the five
singletons from the first iteration that didn’t cluster (b3_S1,
b5_S1, b6_S1, b10_S1, and b11_S1).

With more than nine million protein sequences, the
algorithm used to accomplish the sub-cluster merging step
was non-trivial. The end result was 361,135 homologous
clusters ranging in size from 2 to 26,577 sequences, an
average of 23 sequences, and a median of 4 sequences
(numerous clusters have only 2 sequences), as well as
818,791 singletons. The membership information for each of
the ∼9.26 million sequences populating the clusters and
singletons consists of its identification number, accession
number, annotation, cluster identification, and a validation
flag denoting whether its function has been experimentally
validated. We store this membership information as well as
the mapping of an organism to its corresponding order in a
PostgreSQL relational database (Stonebraker and Kemnitz,
1991), which is a free and open-source object-relational
database management system that can handle the workload
required for large web applications with many concurrent users.

The FASTA files for all the sequences are integrated into a
BLAST database.

2.2 An Automated, Smart Natural Language
Processing Tool
To determine whether functional annotation has been confirmed
for a protein sequence, we developed a smart natural language
processing (NLP) tool which periodically and automatically
queries the UniprotKB database to determine whether a
protein function has been experimentally verified. The input
to our smart program are publication titles retrieved from the
UniProtKB database that are linked to a given accession number
for a protein sequence; the output is a binary prediction of
whether protein function has been experimentally verified.
Prediction uses the results of recurrent convolutional neural
network, logistic regression, and support vector machine
models and employs a voting scheme. The NLP is based on
word embeddings and uses BioWordVec (Zhang et al., 2019)
and BioSentVec (Chen et al., 2019). Complete details are given in
(Tao et al., 2021).

Our smart program is integrated into the PASS website as a
back-end program which is inaccessible to PASS users. It is
executed automatically and periodically based on an estimate
of when a sufficient amount of new data are available in the
UniprotKB database. This estimate can be changed. During
program execution, each accession number for a sequence yet
to be validated is mapped to the entry identifier in the
UniprotKB database. If the entry is in the UniProtKB/
Swiss-Prot database, which is the manually curated section
of the UniprotKB database, the program checks for
publications categorized as a “Function” publication. If
such a publication exists, a validation flag is changed from
0 to 1 in the PASS PostgreSQL database. If the entry is in the
UniProtKB/TrEMBL database, publication titles associated
with the entry are extracted and used as input to the ML tool.
If at least one publication associated with a protein entry is
classified as positive, the publication title(s) and the protein
accession number are submitted to a human curator for
manual review (Tao et al., 2021). The curator is
responsible for changing the validation flag after reviewing
the relevant publication(s). Sequences with verified
functional annotation are identified by FASTA headers in
red font.

At the time of writing, our smart program had identified 370
protein sequences in the UniProtKB/Swiss-Prot database

TABLE 4 | “Input Seqs” denotes the number of input sequences for each batch in the third iteration; “Sub-clusters” denotes the number of sub-clusters obtained from each
batch; “Singletons” denotes the number of singletons obtained for each batch; “Output Seqs” gives the number of sequences to be used in the fourth iteration; and “Out/
In” indicates the reduction in size of the sequences used in the fourth iteration compared to the third. The reduction in input size for the fourth iteration is about 22%. Each
value in the “Output Seqs” column is the sum of the number of sub-clusters and the number of singletons. The first sequence in each sub-cluster was used to represent the
entire sub-cluster in the fourth and final iteration.

Iter 3 Input seqs Sub-clusters Singletons Output seqs Out/In (%)

Batch1234567 960,807 170,279 595,586 765,865 79.71
Batch891011 641,290 98,555 397,303 495,858 77.32
Total 1,602,097 268,834 992,889 1,261,723 78.75

TABLE 5 | “Input Seqs” denotes the number of input sequences in the single
batch in the fourth and final iteration; “Sub-clusters” denotes the number of
sub-clusters obtained.

Iter 4 Input seqs Sub-clusters

Batch1234567891011 1,260,580 194,521

FIGURE 2 | We illustrate the sub-cluster merging process using a toy
example. This example doesn’t represent realistic results and doesn’t use our
naming convention. The simplification is meant to provide an understanding of
the concept underlying the formation of our final clusters. This figure
presents the results after mapping and merging.
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whose function has been experimentally validated. Initial
use of the NLP algorithm identified 814 protein sequences
with publications potentially containing proof of
experimental validation. These publications are currently
awaiting review by our human curator. Subsequent
deployment of the NLP algorithm will likely result in
significantly smaller numbers. The total number of
sequences, less than 1200, is a small fraction of the total
number of sequences in the database, but this number will
increase with time. In the meantime, sequences with
consensus annotations will provide useful guidance for
the correct annotation, and when there is no clear
consensus, the SSN, described in the next section, will
allow a user to determine the annotation most likely to be
correct for their sequence.

2.3 Sequence Similarity Networks
A sequence query submitted by a PASS user will return a list
of FASTA headers for the cluster that best matches the query.
When there is a consensus annotation, the user will have no
issue, but if there are distinctly different annotations, the
user will have to decide which annotation to use. The user
can either infer the correct annotation based on their
expertise or else create a sequence similarity network
(SSN) on our website. Because homology does not
guarantee the same molecular function, an SSN can assist
a user with choosing an accurate annotation. The user simply
selects a minimum of two sequences from the FASTA
headers in the cluster, including any that have been
verified, and an SSN is generated. Visualization of the
SSN is implemented by NetworkX, a Python package for
network analysis, based on the pairwise distances between
sequences provided in a distance matrix. The best match in
the SSN is listed, where 0 is a perfect match, i.e., sequences
are identical.

To create the distance matrix, we use Clustal Omega
(Sievers et al., 2011). Clustal Omega provides a fast and
accurate alignment program and generation of the pairwise
distance matrix used in NetworkX to create the SSN. To
create the distance matrix, Clustal Omega compares
unaligned sequences using k-mer distance (Wilbur and
Lipman, 1983).

2.4 The Protein Annotation Surveillance Site
Query-Able Website
The Protein Annotation Surveillance Site (PASS) is
implemented in a clear and easy-to-use style using Django, a
free, open-source web framework which uses Python. The
PASS flowchart is provided in Figure 3. The web page
interface links directly with the underlying database system.
Figure 4 displays the PASS homepage with the query window.
Administration of the PASS website is performed directly from a
web browser for sequence curation and via the host server for
other functions.

After a user enters their query sequence and clicks on the
search button, the query engine looks for similar sequences using

BLAST and retrieves the cluster with the best match, displaying
the header of the FASTA file with annotation information for
each sequence in the cluster. If the query is unsuccessful, the user
is returned to the homepage. The user can scroll through the list
of all cluster members and select the sequences they believe are
most likely to be related to their query sequence to create an SSN.
Any sequences that have been validated experimentally are
highlighted in red. When available, the user can include
sequences of proteins that have been experimentally validated
to make a more informed annotation choice. In the next section
we present several examples to demonstrate use of the PASS
website.

3 RESULTS AND DISCUSSION

In this section, we present two use cases to demonstrate the use of
PASS. We consider two protein sequences, one from the yeast
Kluyveromyces lactis and one from a coronavirus.

3.1 Example 1: Eukarya
We use the protein sequence annotated as uncharacterized
protein KLLA0_C15807 g from the yeast Kluyveromyces lactis
as the query sequence for the PASS website as shown in
Figure 5. Its complete FASTA file is available at www.ncbi.
nlm.nih.gov/protein/XP_452906.1?report�fasta. The FASTA
file can be used with or without its header.

Our query sequence matches a homologous cluster
containing eleven sequences (Figure 6). We choose the six
sequences with annotations to create a sequence similarity
network; the input sequence is automatically included in the
SSN. From the SSN in Figure 7 we note that the query sequence
is most similar to the sequence with accession number
NP_983056.1, with a distance of 0.134454, and annotated as
ABR109Cp. However, this annotation is not particularly
informative, and the majority of sequences are annotated as
cyclin-dependent kinase regulatory subunit. In addition, the
distance between, for example, our query sequence and
sequence #6, annotated as cyclin-dependent kinase regulatory
subunit, is 0.151515 which indicates close similarity between
them as well. Thus, it is probably best to use the majority
annotation in this example.

3.2 Example 2: Virus
For our second example, we use a spike protein from a
coronavirus (CoV) as our query sequence as shown in
Figure 8; its complete FASTA file is available at www.ncbi.
nlm.nih.gov/protein/YP_009825061.1?report�fasta. The
query sequence matches a homologous cluster with three
sequences as shown in Figure 9. One of the three cluster
sequences is highlighted by red font, indicating that the
function of this sequence has been experimentally validated. We
choose all three sequences to generate the SSN shown in Figure 10
where we see that the query sequence is identical to the validated
sequence (#2), i.e., the distance between the two sequences is 0,
with accession number NP_828858.1 and annotated as
nucleocapsid protein from SARS-CoV. Interestingly, sequence
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#2 is from SARS-CoV, sequence #3 is from MERS-CoV, and
sequence #4 is from SARS-CoV-2. From the SSN results, it’s
most likely that the query sequence is from SARS-CoV. The

SSN also shows that the nucleocapsid proteins for SARS-CoV
and SARS-CoV-2 are more similar to each other than to the
nucleocapsid protein of MERS-CoV.

FIGURE 3 | PASS flowchart demonstrating the query process.

FIGURE 4 | PASS home page showing the query window where a user enters their protein sequence.
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FIGURE 5 | The protein sequence annotated as uncharacterized protein KLLA0_C15807 g from the yeast Kluyveromyces lactis is used as the query sequence in
PASS.

FIGURE 6 | The query sequence for the yeast protein matches a cluster with eleven sequences, and the six sequences with annotations are chosen to create a
sequence similarity network (SSN).
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FIGURE 7 | Sequence similarity network (SSN) composed of the query sequence and sequences selected by the user. In an SSN, smaller distances indicate more
similarity between sequences and a greater likelihood of similar function.

FIGURE 8 | A spike protein from a coronavirus (CoV) is used as the query sequence in PASS.
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FIGURE 9 | The query sequence for the coronavirus spike protein matches a cluster with three sequences. All three sequences are chosen to create an SSN.

FIGURE 10 | Sequence similarity network (SSN) composed of the query sequence and sequences selected by the user. In an SSN, smaller distances indicate more
similarity between sequences and a greater likelihood of similar function.
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4 CONCLUSION

In this work, we presented the Protein Annotation Surveillance
Site (PASS), a system developed to help life scientists with protein
annotation and their fundamental research on proteins. The
proposed system has multiple advantages. First, our database
contains homologous clusters of close to 8.5 million protein
sequences deduced from the representative genomes of
bacteria, archaea, eukarya, and viruses. Our data source for
protein sequences is the National Center for Biotechnology
(NCBI) Reference Sequence (RefSeq) collection which contains
a comprehensive, non-redundant, and well-annotated set of
protein sequences. Our system provides a foundation for
protein-related studies, and protein sequences in our database
have the potential to serve as useful references for sequences of
interest to users. Second, we developed an innovative approach
for clustering millions of protein sequences into homologous
groups using a two-step approach. The first step involved iterative
clustering. Batches of sequences were clustered, results from each
batch were used to create smaller batches, and this process was
repeated until sequences from a single batch were clustered. In the
second step, results from the final iteration were merged with the
previous iteration, and the procedure continued until merging of
the initial results was completed. Our two-step approach is
efficient, and it overcomes the constraints of limited
computational power. Third, our system uses peer-reviewed
publications with experimental validation of protein function.
Because of the dearth of existing experimental verification,
extension of this information from individual protein
sequences to other protein sequences is valuable, and our
system provides this capability. In addition, given that
homology does not guarantee the same molecular function,
the ability to create sequence similarity networks for sequences
of interest to a user, which is provided by our system, assists in
preventing assignment of annotation based only on homology.
Altogether, use of our PASS system website assists users with the
accurate annotation of protein sequences of interest to them.
Finally, we developed a novel ensemble machine-learning (ML)
program that uses natural language processing via word
embeddings and voting based on the results of three different
models. Our ML algorithm has been integrated into the PASS
system and automatically provides updates from the UniProtKB
database. Function-related publications in the curated
UniProtKB/Swiss-Prot database are used for direct validation
of protein function for sequences in our PASS database, while
publications in the uncurated UniProtKB/TrEMBL database are
used with our ML program, and if prediction is positive, the
results are passed to a human curator for manual review to
guarantee 100% validation accuracy.

Several enhancements to the PASS system are possible.
First, the incorporation of active learning to our ML
program is likely to improve its current performance. When

a publication that doesn’t provide experimental evidence of
protein function is incorrectly predicted to provide this
evidence, the error will be caught by our human expert.
After a sufficient number of errors have been found, these
data can be combined with the existing training data to retrain
the model. Second, the number of complete representative
genomes will continue its exponential growth. While it’s
probable that the majority of protein sequences for bacteria
already exist in the database, this is not true for archaea,
eukarya, and viruses simply because the majority of
genomes in the NCBI database are bacterial. Protein
sequences deduced from the genomes of archaea, eukarya,
and viruses can be clustered as they become available, and then
BLAST can be used to determine whether the clusters or
singletons match clusters already in the database. If so, they
can be added to these clusters; if not, they can be added to the
database as new clusters. Third, an interesting direction would
be to implement the two-step approach of iterative clustering
and sub-cluster merging in parallel. This would help to
eliminate the constraints of computational resources and
make homologous clustering at any scale possible.
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