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With the rapid development of next-generation sequencing (NGS), multi-omics

techniques have been emerging as effective approaches for crop improvement.

Here, we focus mainly on addressing the current status and future perspectives

toward omics-related technologies and bioinformatic resources with potential

applications in crop breeding. Using a large amount of omics-level data from

the functional genome, transcriptome, proteome, epigenome, metabolome,

and microbiome, clarifying the interaction between gene and phenotype

formation will become possible. The integration of multi-omics datasets

with pan-omics platforms and systems biology could predict the complex

traits of crops and elucidate the regulatory networks for genetic

improvement. Different scales of trait predictions and decision-making

models will facilitate crop breeding more intelligent. Potential challenges

that integrate the multi-omics data with studies of gene function and their

network to efficiently select desirable agronomic traits are discussed by

proposing some cutting-edge breeding strategies for crop improvement.

Multi-omics-integrated approaches together with other artificial intelligence

techniques will contribute to broadening and deepening our knowledge of crop

precision breeding, resulting in speeding up the breeding process.
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Introduction

Food security is the major issue for humans in the world nowadays. The three major

grain crops, rice, wheat, and maize, have fed billions of people. However, the climate

change, lack of arable land, and population expansion have led to food shortages, which

require constant improvement in technologies of plant breeding (Huang et al., 2022). To

date, crop breeding and improvement have achieved three major stages: phenotype-based

artificial selection, hybrid breeding, and molecular breeding [marker-assisted selection

(MAS) and genetically modified (GM)] (Shen et al., 2022). Thus, to feed the increasing

population, new technologies, such as multi-omics, artificial intelligence (AI), and
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genome editing, are gradually widely used for plant breeding

(breeding 4.0) to precise design. The goal of crop improvement is

to select favorable alleles with high yield, good quality, and

tolerance to biotic and abiotic stresses to promote the

breeding of elite varieties. Using the omics technologies, new

breeding strategies were further developed, such as genomic

selection (GS) technology which is based on genomic

estimated breeding value (GEBV) (Crossa et al., 2017).

Next-generation sequencing (NGS) technologies, including

genomics, resequencing, functional genomics, transcriptomics,

metabolomics, and epigenomics, have been widely applied in

crop improvement. Clearly, the single-omics approach suffers

from limitations that affect its sensitivity or specificity.

Integration of multiple-omics technologies can overcome

some of these limitations. With the acquisition of abundant

sequencing data, the integrative analysis of multi-omics has

become a usual method to study the genes that control

important agronomic traits in crops. The association analysis

combined with multi-omics makes full use of the data of

comprehensive analysis and the verification of the selected

core data with application in breeding. Multi-omics

approaches with cutting-edge technologies such as precise

genome editing tools will not only identify functional genes in

a large scale to reveal the molecular mechanism of plant

development and response to stress, but also provide new

strategies for crop improvement. Here, we summarize current

progress in this field made by multiplex omics technologies and

provide a perspective for the future.

Integration of genomics and
phenomics

During the past decades, sequencing technologies have been

greatly reformed and developed. Thus, high-quality reference

genome sequences of many crops have been generated and

improved. Based on these reference genomes, resequencing of

lots of crop accessions can obtain millions of genetic variations

and identify functional genes for agronomic traits during the

crop domestication and improvement, such as rice, soybean,

maize, cotton, and so on (Xu et al., 2012; Zhou et al., 2015; Wang

et al., 2017; Wang et al., 2020).

In recent years, dozens of powerful tools for quantitative trait

loci (QTL) mapping have been developed based on deep

sequencings, such as restriction-site associated DNA

sequencing (RAD-seq), genotyping-by-sequencing (GBS),

bulked segregant analysis sequencing (BSA-seq), and specific

locus amplified fragment sequencing (SLAF-seq) (Bundo et al.,

2022). These mapping approaches used the genetic map or

limited number of SNPs to seek the candidate genomic

regions and genes for the traits. The disadvantage of these

strategies is that the candidate region is large and mainly

dependent on the parental traits as well as not precise enough.

Combining the genetic variations (genotype) with

phenotype, a genome-wide association study (GWAS) could

dissect complex traits and identify candidate genes with

natural variations based on millions of SNPs (Fang et al.,

2017a; Fang et al., 2017b). In rapeseed, a total of

628 associated loci were detected for 56 agronomically

important traits in 403 diverse accessions, including the

BnRRF gene for 1000-seed weight (Hu et al., 2022). These

genetic loci and causative candidate genes provide a valuable

genomic resource for important traits in crops, which will

facilitate crop improvement and variety development.

Furthermore, pan-genome could cover much more genetic

variations, and graph-based pan-genome can provide

abundant genetic resources for plant breeding (Shen et al., 2022).

The genotyping platforms combined with high-

throughput phenotyping could achieve valuable genetic

information for complex traits in crops with

standardization and high reproducibility (Zhang et al.,

2017). For plant phenomics, advanced sensors, machine

vision, and automation technology have been used for

phenotyping, including unmanned aerial vehicles (UAV),

hyperspectral imaging, and computed tomography (CT)

(Yang et al., 2020). Using the automatic phenotyping

platform, high-throughput phenotyping data were obtained

in several crops such as rice, maize, and rapeseed (Yang et al.,

2014; Guo et al., 2018; Li et al., 2020; Wu et al., 2021). For

instance, using a high-throughput multiple optical

phenotyping system, image-based traits (i-traits) were

extracted and detected 2,318 candidate genes by GWAS for

drought response in maize (Wu et al., 2021). Also, based on

the time-resolved i-traits in rapeseed, the genetic architecture

of plant growth and yield were dissected (Li et al., 2020). Using

CT, tillering in rice was modeled for approximately

700 associated traits (Wu et al., 2019). High-throughput

phenotyping with deep learning analysis pipelines, such as

deep plant phenomics (DPP), made the phenotypic

identification more precise and faster (Ubbens and

Stavness., 2017) (Table 1).

Integration of genomics and
transcriptomics

Generally, the candidate gene interval detected by GWAS or

QTL mapping was large. Furthermore, combining with

transcriptome data, analyzing the expression level of the

candidate genes could better determine the key genes for

complex quantitative traits. Using the integrative approach of

GWAS for upland rice with transcriptomic profiles, the natural

variation in the promoter of DROUGHT1 (DROT1) was

identified to confer drought resistance in rice (Sun et al.,

2022). MADS26 was identified by GWAS and transcriptomic

to affect seed germination in maize (Ma et al., 2022). Moreover,
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integrating genetic and transcriptomic analysis in potato has fine

mapped the Ro locus for tuber shape (Fan et al., 2022).

Combining BSA-seq and RNA-seq, a WOX gene associated

with plant architecture in rapeseed was identified for the

compact phenotype (Ye et al., 2022).

GWAS combined with transcriptome-wide association study

(TWAS) was also recently developed to detect causal genes for

agronomic traits, which explained more heritable variation.

Integrating GWAS and TWAS, the genetic basis of seed oil

content and glucosinolate content were revealed in rapeseed

(Tang et al., 2021; Tan et al., 2022). In maize, the genetic

architecture of leaf cuticular conductance was elucidated by

GWAS and TWAS (Lin et al., 2022). The expression QTL

(eQTL) analysis is the association between the genetic variant

and gene expression, which is also an important tool to elucidate

complex phenotypes. Combining GWAS and TWAS with the

eQTL analysis, the genetic regulatory network for cell wall

biosynthesis in cotton has been uncovered (Li et al., 2020).

Integrated QTL and eQTL mapping revealed candidate genes

for fatty acid composition and flowering time in Brassica napus

(Li et al., 2018a).

Integration of genomics,
transcriptomics, and metabolomics

The genome-wide association study based on metabolomics

analysis (mGWAS) is another powerful complementary tool for

phenotypic trait mapping, which has been widely used in crops,

including rice, maize, wheat, barley, and tomato (Chen et al.,

2014; Zhu et al., 2018; Chen et al., 2020; Zeng et al., 2020). The

information of metabolites and metabolic pathways with genetic

variations could elucidate the metabolic diversity and their

relevance to complex traits for metabolomics-associated

breeding in crops (Chen, et al., 2021).

Integrated metabolomics and transcriptomics analysis can

establish the metabolite–gene correlation network and screen

candidate genes for involving themetabolic pathways (Wen et al.,

2014). For instance, the non-targeted metabolomics analysis of

leaves for 385 maize lines was conducted with the eQTL analysis

to identify drought tolerance hub genes (Zhang et al., 2021).

Combined genomes, transcriptomes, and metabolomes reveal

how the fruit metabolite content alterations occur in tomatoes

during breeding. Also, the results suggested that the selection of

TABLE 1 List of online software packages and algorithms for crop multi-omics analysis.

Software Supported omics platform Core algorithm Availability/URL Reference

CARMO Genomics and transcriptomics Database http://bioinfo.sibs.ac.cn/
carmo

Wang et al. (2015)

DCT Integration of transcriptome data from
different tissues

Joint correlation non-negative matrix
factorization (jcNMF)

https://github.com/
ztpub/DCT

Hu et al. (2020)

DPP (deep plant
phenomics)

Phenomics Neural networks Ubbens and
Stavness, (2017)

GpemDB Genome, phenomics, transcriptome,
proteome, metabolome, and enviromics

Scalable entity-relationship model Gong et al. (2022)

IOMA Proteomics and metabolomics Quadratic programming (QP) Yizhak et al. (2010)

KBCommons
(knowledge base
commons)

Phenomics, epigenomics, genomics,
transcriptomics, proteomics, and
metabolomics

Database https://kbcommons.org Zeng et al. (2019)

OmicsPLS Metagenomics, transcriptomics,
proteomics, and metabolomics

Two-way orthogonal PLS (O2PLS) https://github.com/
selbouhaddani/OmicsPLS

Bouhaddani et al.
(2018)

Plant regulomics Epigenomics, genomics, transcriptomics,
and proteomics

Database http://bioinfo.sibs.ac.cn/
plant-regulomics

Ran et al. (2020)

PMN (plant metabolic
network)

Database that integrates genomics,
proteomics, and metabolomics

Database https://plantcyc.org/ Hawkins et al.
(2021)

MCIA Transcriptomics, epigenomics, and
proteomics data

Multiple co-inertia analysis https://rdrr.io/bioc/
omicade4/

Meng et al. (2014)

mixOmics Metagenomics, transcriptomics,
proteomics, and metabolomics

Partial least square-discriminant analysis
(sPLS-DA)

http://mixomics.org/ Rohart et al. (2017)

MLLASSO Transcriptome and metabolome Multilayered least absolute shrinkage and
selection operator

Hu et al. (2019)

MODAS Genotypic data associated with mRNA
transcripts and metabolic compounds

Dimensionality reduction (DR), Regional
association (RA), Mendelian
randomization (MR)

Liu et al. (2022)

SNF Integration of DNA methylation, mRNA,
and miRNA expression

Computes and fuses similarity networks https://github.com/
maxconway/SNFtool

Wang et al. (2014)

TOP (target-oriented
prioritization)

Genomics and phenomics Target-oriented prioritization with machine
learning

https://github.com/
yingjiexiao/TOP

Yang et al. (2022)
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genes associated with larger fruits changed the metabolite

profiles, and the selection of five major loci that reduced

antinutritional compounds rendered the fruit more edible

(Zhu et al., 2018). Moreover, through RAD-seq and mGWAS

via integrating metabolome and transcriptome data, novel

candidate genes for seed coat color were identified, revealing

the molecular mechanism of yellow seed in Brassica rapa (Zhao

et al., 2022). Integrating QTL mapping, transcriptome, and

metabolic profiling, two homologs of EIN4 and TRN1 in

loquat were identified as promising candidate genes for fruit

weight (Peng et al., 2022).

Integration of genomics,
transcriptomics, and microbiomics

The plant microbiome is the basis of plant growth and stress

tolerance, including drought and disease resistance. The

rhizosphere microorganisms which are the interface between

root and soil, can not only promote the absorption of mineral

nutrients by plants but also help plants resist the invasion of

pathogens. The metagenomic analysis combined with

transcriptome profiles revealed that soil microbiota affecting

nitrogen metabolism contribute to the ultrahigh yield of rice

(Zhong et al., 2020). Microbiome-wide association studies in

cassava revealed Lactococcus sp. played an important role in

disease resistance, which could be used for control of cassava

disease (Zhang et al., 2021). Metagenomic and

metatranscriptomic analyses of different watermelon cultivars

suggested that the fruit-associated microbiome might play an

important role in the carbohydrate metabolism of ripe fruits

(Saminathan et al., 2018). Genome-resolved metagenomics with

time-series root transcriptome implicated iron metabolism in the

root microbiome dynamics in response to drought stress (Xu

et al., 2021). Lately, using metagenomics information as an

external quantitative phenotype with genomic and

transcriptomic data, candidate genes in barley were identified

for shaping microbiota composition (Escudero-Martinez et al.,

2022). Also, in tomatoes, the bacterial genes involved in the

metabolism of iron, sulfur, and vitamins were reported to

associate with specific QTLs (Oyserman et al., 2022). The

discovery of plant probiotics can increase crop yield, resist to

biotic or abiotic stresses, and minimize chemical input (Levy

et al., 2018). Thus, the microbiome could be another useful

information to incorporate into crop breeding programs.

Integration of genomics,
epigenomics, and transcriptomics

Epigenetic variations are mainly dependent on the

environments (e.g., biotic and abiotic stresses), which

reprogram the transcriptome and maintain the genome

stability to adapt to dynamic environments. Epigenetic

diversity could produce new heritable phenotypes to widen

the source of genetic and phenotypic variations, which has

potential for crop improvement (Tirnaz and Batley, 2019;

Hou and Wan, 2021). Integrating epigenomic information and

transcriptome in 20 representative rice varieties provides

comprehensive rice functional DNA elements maps for

transcriptional regulation (Zhao et al., 2020). The epigenome

maps combined with transcriptomes of B. napus also lay a

foundation for the genetic regulation of traits in crop

improvement (Zhang et al., 2021). Epigenetic modifications

can regulate fertility transition and heterosis via altering the

gene expression (Hu et al., 2015). Global DNA methylation,

transcriptome, and small RNA profiling analysis revealed the

regulatory networks and genes related to hybrid vigor in pigeon

peas (Sinha et al., 2020). In wheat, through comprehensive

analyses of the open chromatin, DNA methylome, and

transcriptomic data elucidated the roles of cis-regulatory

elements affecting transcription on a genome scale (Li et al.,

2019). Also, combined with nascent RNA sequencing and

epigenome profiling, the active transcription of enhancers in

the wheat genome was revealed to regulate gene expression (Xie

et al., 2022). Comparing the epigenomes and transcriptomes

from various tissues under different developmental and

environmental conditions provides valuable resources for

regulomics in wheat (Wang et al., 2021). In addition, the

epigenome and transcriptome changes in response to

Magnaporthe oryzae infection implied that epigenomics is

involved in rice fungal pathogens (Cui et al., 2021). Therefore,

epigenetic variations can be used to reprogram their

transcriptome for balancing the various important agronomic

traits, and epigenetic diversity is a necessity in crop breeding

programs (Tirnaz and Batley, 2019).

Integration of other multi-omics
approaches

To comprehensively reveal the potential mechanism at

genetic and protein levels in crops under biotic and abiotic

stresses, transcriptomics and proteomics were often used to

analyze the global changes. Transcriptomics and proteomics

analysis of soybean symbiosis with arbuscular mycorrhizal

fungi (AMF) gives some insights into the molecular basis of

disease resistance (Zhang et al., 2020). Using transcriptomics-

and proteomics-based screening, small secreted proteins (SSPs)

were identified to regulate rice immunity by rice blast (Wang

et al., 2020). Integration of proteomic and transcriptomic

profiles, systematic salt tolerance in cotton, and the alternative

molecular network of N-deficiency stress in rice were revealed

(Peng et al., 2018; Liang et al., 2021). In addition, the genome-

scale metabolic pathways integrated with other databases (eg.,

PMN) were constructed (Hawkins et al., 2021) (Table 1).
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Integrated gene regulatory network of microRNAs

(miRNAs) and transcription factors (TFs) and genes revealed

that intertwined miRNA-containing FFLs are associated with

miRNA hubs in Arabidopsis (Gao et al., 2021). Lipidomic and

transcriptomic analysis enable the understanding of citrus fruit

quality maintenance (Wan et al., 2020). In rice, the genetic

architecture of ionome variations has been elucidated via

GWAS analysis of 17 mineral elements in grains (Yang et al.,

2018).

Integrative methodologies and
databases

Due to a large amount of high-throughput data, multi-

omics system biology, such as software tools, databases, and

approaches are required for multi-omics integration.

Recently, these large data sets can be comprehensively

assimilated, annotated, as well as modeling using a

systematic multi-omics integration (MOI) (Jamil et al.,

2020). Machine learning (ML) and deep learning (DL) have

been widely used to integrate omics datasets to reveal the

functional relationships with these data. Lately, target-

oriented prioritization (TOP) was developed to learn the

inherent correlations among traits and balance the selection

of multiple traits simultaneously (Yang et al., 2022) (Table 1).

Several unsupervised clustering methodologies were

developed to integrate the multi-omics data, such as

GpemDB, IOMA, mixOmics, OmicsPLS, MODAS, multiple

co-inertia analysis (MCIA), and similarity network fusion

(SNF) (Yizhak et al., 2010; Meng et al., 2014; Wang et al.,

2014; Rohart et al., 2017; Bouhaddani et al., 2018; Tini et al.,

2019; Gong et al., 2022; Liu et al., 2022) (Table 1). This

multiple molecular level (omics) data analysis can extract

more knowledge from the available data. Thus, we should

consider integrating the omics data simultaneously and

reduce false-positive results by adding a priori information

(Tini et al., 2019).

A comprehensive database integrates multi-omics data

from the same crop and provides a valuable resource for

gene cloning or study of the regulatory network, promoting

crop improvement, such as MBKbase, WheatOmics, ZEAMP,

and so on (Gui et al., 2020; Peng et al., 2020; Ma et al., 2021).

On the other hand, many web database platforms were also

developed to explore the functional information from multi-

omics data, including CARMO, OmicsAnalyst, MapMan4,

KBCommons, and Plant regulomics (Wang et al., 2015;

Schwacke et al., 2019; Ran et al., 2020; Zeng et al., 2020;

Zhou et al., 2021). Lately, an integrative platform in the

ENCODE standards, ChIP-Hub, has provided rich

resources from the regulome and epigenome data in plants

(Fu et al., 2022). Moreover, the integration of regulome and

genetic variations leads CRISPR-cereal to promote precise

gene editing for wheat, rice, and maize (He et al., 2021). In

addition, integrative pipelines for transcriptome or

epitranscriptome sequencing data could also offer a clue to

the discovery of candidate genes. For instance, to identify the

key genes across multiple tissues for yield in rice, a novel

dynamic cross-tissue (DCT) network analysis based on the

transcriptome was developed to map genotype to phenotype

by gene networks (or modules), namely, genotypes→ network

→ phenotypes (Hu et al., 2020). Also, deepEA is a

containerized web server for the integration of

epitranscriptome with different chemical modifications,

including 5-methylcytidine (m5C), N6-methyladenosine

(m6A), and so on (Zhai et al., 2021). Using an algorithm,

gene co-expression network differential edge-like

transformation (GRN-DET), the key regulatory miRNAs

for plant development and important traits can be

identified by co-variances of miRNA-mRNA (Hu et al., 2018).

Since the features of the large scale, high dimension, high

noise, and strong heterogeneity of multi-omics data, more

software or algorithms should be developed for gene discovery

in crop improvement.

FIGURE 1
Integration of multi-omics technologies accelerates crop
improvement. MS, mass spectrometry; NMR, nuclear magnetic
resonance; HPLC, high-performance liquid chromatography; GC,
gas chromatography; AI, artificial intelligence.
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Discussion and future perspectives

Due to NGS technologies generating large-scale sequence

data, the collation and utilization of this vast data would require

an interdisciplinary approach to integrate, which will be precise

tools for crop improvement. GS with doubled-haploid (DH)

technology (haploid breeding) could accelerate the breeding

process to obtain the elite varieties (Hu et al., 2019; Fu et al.,

2022). Multi-omics technologies including genomics,

transcriptomics, proteomics, and metabolomics can link the

genotype and phenotype, and integrate more information for

systematic analysis to largely identified candidate genes for crop

improvement (Figure 1). Multi-omics data will be analyzed in a

more systematic and integrated way for accelerating crop

improvement, such as an intelligent seed selection system.

When integrating the multi-omics datasets, “phenotype to

genotype” and “genotype to phenotype” as well as the

genotype and environment interaction should be considered

with the system biology approach to provide the basis for

crop genetic improvement. Epigenetic diversity should also be

considered in crop breeding programs due to desirable

phenotypes by epigenetic modifications. De novo

domestication based on the high-quality genome could

speedily domesticate wild crops with retaining genetic

diversity and elite alleles, which is a new breeding strategy to

meet future agricultural challenges, such as rice and tomato (Li

et al., 2018b; Yu et al., 2021). The utilization of omics

technologies with genome editing, genomic selection, and

haploid induction augmented by multi-scale “pan-omics” data

will promote crop improvement to obtain a high yield, good

quality and to enhance the tolerance of stresses (Figure 1) (Ghosh

et al., 2018, Weckwerth et al., 2020).

There is a challenge to integrate disparate data from different

platforms and formats across the genotype–phenotype spectrum

as well as analyze and interpret the final results. The other

problem is how to improve the phenotypic prediction based

on the large-scale multi-omics data. Novel algorithms or models

should also be developed to predict heterosis or complex

phenotypes with AI including machine learning and deep

learning (Dan et al., 2021; Wang et al., 2021). Thus,

integration of more robust visualization tools, multi-omics

analysis approaches, statistical genetic models, bioinformatics

tools, and cloud computing with interdisciplinary should be

integrated to explore candidate variations underlying

agronomic traits.

In the future, a promising frontier is the integration of multi-

omics data on the single cell level, single-cell multi-omics, which

has great potential for crop improvement. The single-cell analysis

will be used to identify non-anatomical markers for various cell

populations and map individual cell stages during the

differentiation of crop plants (Luo et al., 2020). With the

development of single-cell multi-omics technologies, it will be

possible to conduct simultaneous analyses of the genome,

transcriptome, metabolome, and epigenome from a single cell

(Shaw et al., 2021). These multi-omics integrative analyses of

single cells provide valuable information on how genotype to

phenotype at the single-cell level occur.
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