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Analyzing 16S ribosomal RNA (rRNA) sequences allows researchers to elucidate the
prokaryotic composition of an environment. In recent years, third-generation sequencing
technology has provided opportunities for researchers to perform full-length sequence
analysis of bacterial 16S rRNA. RDP, SILVA, and Greengenes are the most widely used
16S rRNA databases. Many 16S rRNA classifiers have used these databases as a
reference for taxonomic assignment tasks. However, some of the prokaryotic
taxonomies only exist in one of the three databases. Furthermore, Greengenes and
SILVA include a considerable number of taxonomies that do not have the resolution to
the species level, which has limited the classifiers’ performance. In order to improve the
accuracy of taxonomic assignment at the species level for full-length 16S rRNA
sequences, we manually curated the three databases and removed the sequences
that did not have a species name. We then established a taxonomy-based integrated
database by considering both taxonomies and sequences from all three 16S rRNA
databases and validated it by a mock community. Results showed that our taxonomy-
based integrated database had improved taxonomic resolution to the species level. The
integrated database and the related datasets are available at https://github.com/yphsieh/
ItgDB.

Keywords: taxonomy assignment, 16S full length, ITGDB, sequence classification, 16S rRNA (16S rDNA),
metagenomics 16S, third-generation sequencing

1 INTRODUCTION

Since the advent of next-generation sequencing (NGS) technology, analyzing 16S ribosomal RNA
(rRNA) has allowed biologists to assess the bacterial or archaeal composition of an environment. The
16S rRNA gene consists of nine hypervariable regions (V1–V9) and includes approximately
1,500 ~1,600 nucleotides (Bukin et al., 2019; Johnson et al., 2019). These regions have varying
conservation and are rich in taxonomic information. Different hypervariable regions were
investigated to improve the taxonomic assignment performance (Wang and Qian, 2009; Allard
et al., 2015; Yang et al., 2016; Bukin et al., 2019; Johnson et al., 2019; Abellan-Schneyder et al., 2021).
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In the past decade, the 16S rRNA V4 or V3–V4 regions were
targeted for microbial composition analysis (Richards et al., 2017;
Jha et al., 2018;Moustafa et al., 2018; Peters et al., 2018). However,
NGS technology generated short reads that covered only a few
16S rRNA regions (Yang et al., 2016). Using only one or two
hypervariable regions makes it difficult to classify the bacterial
16S rRNA sequences down to the species level in taxonomic
assignment tasks (Johnson et al., 2019). For a prokaryotic 16S
sequence classifier, it requires at least 400 nucleotides to assign a
16S sequence down to the genus level (Okubo et al., 2009).
However, after quality control, the read length of the trimmed
16S sequences was about 250 ~500 base-pairs (bp), which limits
the taxonomic resolution only to the genus levels. Thus, full-
length 16S rRNA sequence analysis could be the resolution to
improve the taxonomic depth down to the species level.

In recent years, third-generation sequencing (TGS)
technology, such as Pacific BioScience (PacBio) (Rhoads and
Au, 2015; Schloss et al., 2016) and Nanopore (Lu et al., 2016; Lin
et al., 2021), has provided long-read sequencing methods,
making it possible for researchers to analyze the full-length
of 16S rRNA (Cuscó et al., 2018; Klemetsen et al., 2019). The
full-length sequence analysis could enhance taxonomic
resolution to the species level because the long reads that
include the V1–V9 regions provide more comprehensive
taxonomic information (Johnson et al., 2019). The single-
molecule real-time (SMRT) and circular consensus
sequencing (CCS) technologies developed by PacBio could
provide high quality 16S full-length sequencing (Korlach,
2013). During the past 5 years, a growing number of studies
took the advantage of long read sequencing technology to attain
more comprehensive microbial composition of the
environments (Hur and Park, 2019; Tremblay and Yergeau,
2019; Lam et al., 2020; Wade and Prosdocimi, 2020; Mahmud
et al., 2021; Pootakham et al., 2021). However, although there
were several widely used 16S analytical pipelines for NGS data
analysis, such as QIIME2 (Bolyen et al., 2019), Mothur (Schloss,
2020), and UPARSE (Edgar, 2013), there still lacks
comprehensive and convenient 16S tools for TGS data
analysis. Researchers may need to build their own 16S full-
length analytical pipeline. Yet, the advantages of 16S full-length
sequence analysis could only be demonstrated when the
taxonomic assignment tools, including 16S rRNA classifiers
and sequence databases, are well prepared.

Several classification algorithms have been proposed to classify
bacterial 16S rRNA sequences (Wang et al., 2007; Allard et al.,
2015; Edgar, 2016; Bokulich et al., 2018; Schloss, 2020). These
classification algorithms used prokaryotic 16S databases, such as
the ribosomal database project (RDP) (Maidak et al., 1997),
SILVA (Quast et al., 2012), or Greengenes (DeSantis et al.,
2006), as references. The RDP and SILVA databases are still
being updated regularly, whereas Greengenes was not updated
after August of 2013. Therefore, Greengenes includes fewer
bacterial species than RDP and SILVA.

Next, regarding these 16S rRNA databases, some taxonomies
have annotated to the species level, while others may only include
information to the genus, family, order, class, or even just phylum
level. Even among the sequences with taxonomic information at

the species level, the species information does not always have
exact species name (sometimes the species names are listed as
metagenome, candidate_division, bacterium, etc.). Sequences
with anomalous nucleotide composition or labeled with low-
resolution taxonomy dramatically limits the performance of
classifiers. Furthermore, RDP, SILVA, and Greengenes have
their own unique taxonomies (Abellan-Schneyder et al., 2021;
Balvočiu�tė and Huson, 2017), and it is impossible for a classifier
to identify the bacterial taxonomy from these three databases
other than the reference database used to establish the classifier.
Therefore, in order to improve the classification performance, the
16S rRNA integrated database (ITGDB) was developed in this
study by two ways: sequence-based and taxonomy-based
integration. Both of the integrated databases were compared
with RDP, SILVA, Greengenes, and other curated 16S
reference databases, including 16S-UDb (Agnihotry et al.,
2020), Genomic-based 16S rRNA database (Abellan-Schneyder
et al., 2021), and Genome taxonomy database (Parks et al., 2021).
The integrated database (ITGDB) can be used for any classifier
that was developed in a specific reference database and largely
improved the assignment resolution to the species level. The
proposed 16S rRNA integrated databases can be downloaded
from https://github.com/yphsieh/ItgDB.

2 MATERIALS AND METHODS

RDP (version NO.18 trainset) (Maidak et al., 1997), SILVA
(version 138, 99% clustering similarity) (Quast et al., 2012),
and Greengenes (version 13_8, 99% clustering similarity)
(DeSantis et al., 2006) databases were used for integration.
Redundant sequences were removed by clustering all the
sequences in these databases with 99% similarity. The
sequence numbers of RDP, SILVA, and Greengenes were
21,295, 436,681, and 203,452, respectively. The percentages of
the sequences that had exact species names in RDP, SILVA, and
Greengenes were 94.86, 16.10, and 10.19%, respectively. Among
these databases, RDP had the smallest quantity of sequences but
possessed the highest percentage of sequences with exact species
names. SILVA had the largest quantity of sequences, but most of
the sequences did not have taxonomic resolution to the species
level. The sequences without exact species names were manually
removed from the databases.

In our integration workflow, since RDP and SILVA included
the newest information on bacteria and archaea, these two
databases were firstly integrated. This integration produced an
intermediate database—RDP and SILVA integrated database
(RS-ITGDB). Next, the intermediate RS-ITGDB was further
integrated with the Greengenes database. There were two types
of integration—sequence-based integration and taxonomy-based
integration (Figure 1). Both integrations were developed by using
Python scripts. The algorithms were described as follows.

2.1 Sequence-Based Integration
The concept of sequence-based integration was to collect all the
sequences from RDP, SILVA, and Greengenes, regardless of the
quality of taxonomic annotation. The workflow of sequence-
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based integration of any two databases (called the ‘basis’ database
and the ‘candidate’ database) is shown in Figure 1(A). The
algorithm first took RDP as the basis database and integrated
RDP with SILVA to produce the intermediate RDP-SILVA
integrated database (RS-ITGDB). Next, the algorithm took RS-
ITGDB as the basis database and integrated RS-ITGDB with
Greengenes to produce the final sequence-based integrated
database (ITGDB). During the sequence-based integration, the
algorithm checked whether each sequence Si in the candidate
database already existed in the basis database by comparing the
nucleotide composition between the sequences. If the nucleotide
composition of sequence Si contained the nucleotide composition
of a sequence Sj from the basis database, i.e., Si was longer than Sj,
then sequence Sj would be replaced with sequence Si in the
integrated database. If sequence Si could not be found in the
basis database, then sequence Si would be directly added to the
integrated database. Sequences Si and Sj were regarded as
different sequences (not contain each other) even if they only
had one nucleotide difference. The algorithm terminated after

comparing all the sequences between the basis database and
candidate database.

2.2 Taxonomy-Based Integration
For taxonomy-based integration, all sequences without exact
species names were manually removed from RDP, SILVA, and
Greengenes. For example, Acidocella_sp. only indicates the genus
name with the abbreviation “sp.” in the species name. Some
taxonomies only showed ambiguous description at the species
level, such as “bacterium,” “metagenome,” “candidate_division,”
“human_gut,” and “unidentified.” All sequences with such
ambiguous species names were manually removed from the
16S databases to ensure each sequence had taxonomic
resolution to the species level.

The concept of taxonomy-based integration was first to collect
the unique taxonomy from RDP, SILVA, and Greengenes and
then integrate the different sequences for each taxonomy. The
workflow of taxonomy-based integration of any two databases is
shown in Figure 1B. It is similar to the sequence-based

FIGURE 1 | Workflow of sequence-based and taxonomy-based Integration. (A) Sequence-based integration and (B) taxonomy-based integration. For both
sequence-based integration and taxonomy-based integration workflows, the algorithm took RDP as the basis database and SILVA as the candidate database in the first
round to produce the intermediate RS-ITGDB. Then, the algorithm took RS-ITGDB (new basis) and Greengenes (new candidate) as inputs to run this workflow again and
produce the final integrated database.

Frontiers in Bioinformatics | www.frontiersin.org August 2022 | Volume 2 | Article 9054893

Hsieh et al. 16S-ITGDB

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


integration. The algorithm first took RDP as the basis database
and integrated RDP with SILVA to produce the intermediate
RDP-SILVA integrated database (RS-ITGDB). Next, the
algorithm took RS-ITGDB as the basis database and integrated
RS-ITGDB with Greengenes to produce the final taxonomy-
based integrating database. During the taxonomy-based
integration procedure, if a sequence Si from the candidate
database had taxonomy that could not be found in the basis
database, then sequence Si was added to the integrated database.
The algorithm checked whether the taxonomy of sequence Si
already existed in the basis database by comparing the string of
taxonomic label of sequence Si with all taxonomies in the basis
database. If the taxonomy of sequence Si already existed in the
basis database, then the algorithm further compared the
nucleotide composition between sequence Si and all the
sequences of the basis database that possess the same
taxonomy as Si. If the nucleotide composition of Si had at
least one nucleotide difference with the sequences of the basis
database under the same taxonomy, then sequence Si was added
to the integrated database. Inversely, if sequence Si had already
been collected in the basis database, no integration occurred.

2.3 Validation
Two experiments were carried out to validate the performance of
the developed ITGDBs. One was database comparison, and the
other was the ITGDBs’ performance with different classifiers. The
purpose of the database comparison analysis was to compare the
performance of our developed ITGDBs with other 16S reference
databases. Another experiment was to measure the performance
of several widely used 16S sequence classifiers using the ITGDB as
the reference database.

2.3.1 The Applied 16S Reference Databases
Our proposed sequence-based ITGDB and taxonomy-based
ITGDB were compared with RPD, SILVA, Greengenes, and
other manually curated 16S sequence datasets, such as 16S-UDb
(Agnihotry et al., 2020), Genomic-based 16S rRNA database
(GRD) (Abellan-Schneyder et al., 2021) (https://metasystems.
riken.jp/grd/), and Genome taxonomy database (GTDB) (Parks
et al., 2021). Part of the 16S-UDb content was curated from early
versions of SILVA (version 123), Greengenes (version 13_5), and
RDP (version 11.4) based on 97% similarity in OTU clustering
threshold. The 16S sequences in the GRD dataset were curated
from the complete genome sequences and had sequence length
from 65 to 2,900 nucleotides (Desai et al., 2020). Each sequence in
16S-UDb and GRD had taxonomic information down to the
species level. The sequence numbers of 16S-UDb and GRD
were 13,078 and 13,202, respectively. GTDB is a comprehensive
metagenomic database that curated prokaryotic genome and
taxonomies from the NCBI Assembly database (Parks et al.,
2021). GTDB also supported 16S rRNA sequences that were
extracted from the genomic database (Alishum, 2021). The
sequence number of GTDB 16S dataset was 32,884.

2.3.2 Validation Datasets
The validation dataset for sequence-by-sequence validation was
created by integrating the public mock communities, including

Mockrobiota (Bokulich et al., 2016), PacBio HMP (Callahan
et al., 2019), and PacBio Zymo (Callahan et al., 2019). First,
unique sequences in 15 mock communities with comprehensive
taxonomy information in Mockrobiota (Bokulich et al., 2016),
such as mock 3, 4, 5, and 12 to 23, were used for the
experiments. Next, PacBio HMP (Callahan et al., 2019) and
PacBio Zymo (Callahan et al., 2019) mock communities were
used, too. Since sequences in the PacBio HMP and Zymo mock
community lacked taxonomy information, BLAST
accompanied with the NCBI microbial 16S rRNA database
was performed to annotate all sequences with species
information (Bokulich et al., 2016). Finally, the validation
dataset was created by combining Mockrobiota with the
PacBio HMP and Zymo dataset. In total, the combined mock
validation dataset contained 98,284 reads with taxonomy names
to the species level in 94 species. The average sequence length
was 1,548 bp.

To test whether ITGDB had better performance in identifying
the unique taxonomies than other three databases, another three
validation datasets were prepared—Union, Exclusion, and
Intersection. Among these datasets, Union and Exclusion were
designed to collect the unique taxonomies from different
databases, while the Intersection dataset was used to validate
the performance of different reference databases without unique
taxonomies. The concepts of producing Union, Exclusion, and
Intersection datasets are shown in Figure 2.

All the sequences in the validation datasets had exact species
names. The Union dataset contained all the available sequences
with exact species names in any of the three source databases. The
Exclusion dataset contained the sequences whose species names
were only available in one of the databases. The Intersection
dataset contained the sequences whose species names were
present in all three databases.

2.3.3 Classifiers
To assess the ITGDBs’ performance with compatible classifier
experiments, we chose several widely used 16S classifiers: QIIME2
(RDP Bayesian classifier, version 2020.8) (Bokulich et al., 2018),
SINTAX (usesarch version 11.0.667) (Edgar, 2016), SPINGO
(version 1.3) (Allard et al., 2015), and Mothur (RDP Bayesian
classifier, version 1.45.2) (Schloss, 2020).

For the database comparison analysis, SINTAX was used as
the standard for taxonomic assignment because SINTAX
provided more comprehensive assignment results. Just like
other 16S RDP-like classifiers, SINTAX also calculated a
confidence score for each taxonomic level and used confidence
thresholds to filter out the taxonomic levels that had scores lower
than the threshold. SINTAX provided both “cut-off” and “no cut-
off” results for its users. The setting of /the SINTAX classifier for
the “cut-off” results was 0.8 (default setting). The “no cut-off”
results included the assignment information from the kingdom to
the species level, and these results were used for validation to
ensure that each sequence included species information. Given
the 16S full-length reads provided by the third-generation
sequencing technology include approximately 1,200 ~1,500
nucleotides, the “no cut-off” assignment was applied in this
study to assign the sequences to the species level.
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2.3.4 Validation Metrics
The validation metrics included accuracy, precision, recall, and
F1-score, as shown in the following equations:

Accuracy � TP + TN

TP + FP + TN + FN
(1)

Precision � TP

TP + FP
(2)

Recall � TP

TP + FN
(3)

F1 − score � 2 × precision × recall

precision + recall
(4)

where TP is true positive, FP is false positive, TN is true negative,
and FN is false negative.

We measured all four metrics for each taxonomic level. For a
classified sequence, if the assigned taxonomic name in a taxonomic
level matched the name in the validation dataset’s corresponding
level, it was regarded as a correct assignment for the taxonomic
level. However, the scientific names in some databases were used to
describe the microbial taxonomy, while others might apply
different naming conventions (Federhen, 2012). This situation
formed an obstacle to comparing the taxonomic names from
phylum to the species levels. Therefore, NCBI taxonomy dump
files (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/), which included
scientific names and all possible synonyms of each taxonomic level
for one microbial species, were applied to address this issue.

2.3.5 Performance Comparison Between Reference
Databases
SINTAX was used for taxonomy assignment in the database
comparison experiment because SINTAX showed good
performance in sequence classification and provided

comprehensive assignment results (Hung et al., 2022). Each
reference database, including RDP, SILVA, and Greengenes, was
used as the SINTAX’s reference for taxonomic assignment tasks. The
assignment results were compared with the correct taxonomies in
the validation data to calculate the accuracy, precision, recall, and F1-
score for comparison. Then, the performance of using different
reference databases for taxonomic assignment was compared.

As mentioned before, SINTAX provided both “cut-off” and
“no cut-off” assignment results. “No cut-off” taxonomies were
applied to ensure the assignment results including species
information. For the “cut-off” results, the cut-off value was set
at 0.8 (default setting).

2.3.6 Work With Different Classifiers
The performance of thewidely used 16S sequence classifiers, such as
SINTAX, SPINGO, Mothur, and QIIME2, was compared with our
proposed integrated database. All the classifiers were set at default
values and in “no cut-off”mode to ensure the assignment results to
the species names. The settings of the SINTAX classifier were the
same as described previously in Section 2.3.5. For the SPINGO
classifier, the k-mer size and bootstrap value were set as 8 and 10
(default values). TheMothur classifier was set as “wang,”which was
an RDP-like classification method. The k-mer size was 8 (default),
and the cut-off value was set as 0. For the QIIME2 Bayesian
classifier, the k-mer size parameter was set as 7 (default) and the
confidence threshold value was set as “disable.”Accuracy, precision,
recall, and F1-score were measured for each classifier.

3 RESULTS

To enhance taxonomic assignment resolution, we manually
curated RDP, SILVA, and Greengenes datasets and removed

FIGURE 2 | The Venn diagram of the Union, Exclusion, and Intersection datasets. (A) Union, (B) Exclusion, and (C) Intersection.
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the sequences that did not have exact species names. In total, the
numbers of sequences that were manually removed were
1,095 from RDP, 366,392 from SILVA, and 182,728 from
Greengenes, respectively. The final numbers of sequences in
the sequence-based and taxonomy-based ITGDBs were
486,640 and 110,780, respectively. For ITGDBs and the source
databases, the sequence counts of the hypervariable regions for
16S metabarcoding studies are listed in Table 1. RDP and
sequence-based ITGDB have the minimum (4,644) and
maximum (113,460) V1-V9 sequences, respectively.
Taxonomy-based ITGDB (34,639) has fewer number of V1-V9
sequences than SILVA (101,649), Greengenes (49,286), and
sequence-based ITGDB (113,460) due to the removal of the
sequences with blurred species information.

The accuracy results of all databases using the mock
community, Union, Exclusion, and Intersection validation
datasets are shown in Figure 3A, Figure 3C, Figure 3E, and
Figure 3G. In Figure 3, the taxonomy-based ITGDB had the
highest accuracy at the family, genus, and species levels in all the
validation datasets, while the sequence-based ITGDB had the
second highest accuracy in the Union and Exclusion test cases.
When compared with RDP, SILVA, Greengenes, GRD, 16S-UDb,
and GTDB, the taxonomy-based ITGDB had at least 16, 21, and
1% higher accuracy than the above databases at the species level
in Union, Exclusion, and Intersection datasets, respectively.

The results of accuracy, precision, recall, and F1-score of the
different databases are shown in Table 2. The scatter plots in
Figure 3B, Figure 3D, Figure 3F, and Figure 3H illustrate
precision and recall for each reference database. The
taxonomy-based ITGDB also showed the best performance in
all the validation datasets. For the mock community, SILVA’s
performance was in the second place in most of the validation
metrics. For Union and Exclusion datasets, sequence-based
ITGDB demonstrated the second-best performance in all the
validation metrics. The accuracy difference between the ITGDBs
and SILVA became larger in the Exclusion dataset than Union
because ITGDBs contained more complete taxonomies than
SILVA. For the Intersection dataset, Greengenes and
sequence-based ITGDB were in the second place in most of
the validation metrics. Greengenes did not show good

performance in the mock community, Union, and Exclusion
datasets, but inversely demonstrated accuracy similar to the
taxonomy-based ITGDB in the Intersection dataset.

As in Table 2 and Figure 3, 16S-UDb and GRD showed good
performance on mock community classification. GRD had higher
accuracy, precision, recall, and F1-score than 16S-UDb. However,
for Union, Exclusion, and Intersection datasets, the trend was
shown inversely that 16S-UDb had better performance than
GRD. GRD did not demonstrate good accuracy at the family,
genus, and species levels in Union and Exclusion datasets. GTDB
did not have good accuracy at the species level in all the test cases.

Since the taxonomy-based ITGDB showed the best
performance in the database comparison analysis, we further
used the taxonomy-based ITGDB to compare the accuracy with
different 16S rRNA classifiers, as shown in Figure 4 and Table 3.
SINTAX and Mothur showed similar accuracy at the family and
genus levels (Figure 4). For species level assignment, SINTAX
and SPINGO had an accuracy of more than 80% in all the
validation datasets. QIIME2 had lower accuracy in all the
validation datasets. For the mock community dataset, SINTAX
demonstrated the best performance in most of the validation
metrics (Figures 4A,B; Table 3). For the Union dataset, SINTAX
showed the best performance at species level assignment, while
Mothur was in the second place in most of the metrics
(Figure 4C, Figure 4D, and Table 3). For the Exclusion
dataset, SINTAX had the highest scores in all the validation
metrics. The Mothur classifier was in the second place in most of
the metrics in the Exclusion dataset (Figure 4E, Figure 4F, and
Table 3). For the Intersection dataset, SINTAX, SPINGO, and
Mothur had accuracy more than 90%. Both SINTAX andMothur
possessed the best or the second best in most of the metrics
(Figure 4G, Figure 4H, and Table 3).

Setting a confidence threshold for full-length sequence
assignment can limit a classifier’s performance. The
comparison results of using “Confidence threshold” and “No
confidence threshold” settings in SINTAX are shown in Table 4.
When setting the confidence threshold (default = 0.8) to limit the
assignment depth, less than 50% of the sequences in Union,
Exclusion, and Intersection datasets could be assigned at the
species level. Conversely, when classifying the sequences without
limitation, more than 99% of the sequences of all the validation
datasets could be assigned to the species level, and most of the
sequences were correctly assigned (Figure 3 and Table 2).

4 DISCUSSION

In this study, we proposed two types of 16S rRNA integrated
databases for prokaryotic sequence classification—taxonomy-
based integration and sequence-based integration databases.
The taxonomy-based integration database, assembled by
collecting the sequences with exact species names and then
integrating all the unique sequences from RDP, SILVA, and
Greengenes, showed the best performance in most of the
validation metrics.

Reasons of the taxonomy-based integration database with the
best performance are discussed below. In this study, sequence-

TABLE 1 | The sequence number of the hypervariable regions in the source
databases and ITGDB.

Regions RDP SILVA Greengenes Seq_ITGDBa Taxa_ITGDBb

V1-V2 7,034 168,480 97,881 192,781 46,607
V1-V3 5,761 143,412 83,900 163,782 40,634
V3 20,551 411,072 197,086 459,207 107,675
V4 20,970 386,890 202,617 436,366 110,039
V3-V4 20,365 367,701 197,762 415,735 107,635
V3-V5 20,327 366,873 197,277 414,767 107,510
V4-V5 20,900 384,157 202,370 433,543 109,905
V6-V8 19,888 316,720 176,913 358,965 101,316
V6-V9 9,931 143,014 70,820 161,039 52,613
V7-V9 10,282 145,409 72,801 163,863 54,159
V1-V9 4,644 101,694 49,286 113,460 34,639

aSeq_ITGDB: sequence-based integrated database.
bTaxa_ITGDB: taxonomy-based integrated database.
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based integration collected all the sequences from RDP, SILVA,
and Greengenes without taking taxonomic annotation quality
into consideration, which was used to show that only collecting all
the sequences could not give promised performance. Sequence-
based integration included more sequences than taxonomy-based
integration. Intuitively, a database with more reference sequences

might provide better classification performance. However, if the
collected sequences were annotated with ambiguous taxonomy
names or only had low taxonomic depth information (e.g., only
included taxonomic information down to the phylum, class, or
order level), the blurred sequences limit a classifier’s performance
(Lan et al., 2012). This situation could be observed from Figure 3

FIGURE 3 | Performance comparison of using different reference databases to classify sequences in the combined mock community, Union, Exclusion, and
Intersection datasets. Accuracy of classifying the mock community (A), Union dataset (C), Exclusion dataset (E), and Intersection dataset (G). Precision and recall of
classifying the mock community (B), Union dataset (D), Exclusion dataset (F), and Intersection dataset (H).
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and Table 2 when comparing the performance between
taxonomy-based ITGDB and sequence-based ITGDB. Only
integrating all 16S sequences could not guarantee the
classification performance. Therefore, taxonomy-based
integration is suggested for application.

In the past, NGS platforms sequenced part of the 16S rRNA
hypervariable regions to identify the species to which a sample
belonged. These sequenced regions included approximately
200 ~500 nucleotides. The 16S rRNA classifiers set their
confidence thresholds to prevent the over-classification issue

TABLE 2 | Performance comparison between different 16S rRNA databases. The bold font and underline symbol indicate the highest and the second highest value,
respectively.

Dataset Metrics Level RDP SILVA Greengenes GRDa 16S-UDb GTDBb Seq_ITGDBc Taxa_ITGDBd

Mock Accuracy (%) Fe 98.30 99.88 99.65 99.81 98.24 95.51 99.89 99.88
Gf 98.29 99.85 98.01 92.27 98.23 93.77 99.86 99.85
Sg 85.18 99.77 45.64 92.21 98.07 66.04 97.63 99.77

Precision (%) F 95.58 97.83 89.96 94.88 84.01 95.76 94.22 99.69
G 89.71 95.65 71.00 94.24 79.03 92.55 95.08 99.98
S 91.26 95.23 75.57 86.06 79.89 83.41 92.64 96.95

Recall (%) F 96.53 98.25 91.29 96.23 87.33 95.19 94.04 99.13
G 92.15 96.05 73.50 94.81 83.92 92.17 95.27 99.01
S 91.45 94.96 76.51 87.76 81.92 83.06 92.04 96.62

F1-score (%) F 96.00 98.01 90.16 95.37 85.04 94.67 93.91 99.25
G 89.93 95.83 71.79 94.47 80.07 91.54 94.78 99.33
S 90.27 94.98 75.09 86.59 80.54 83.06 92.08 96.68

Union Accuracy (%) F 93.12 97.46 89.24 86.40 92.20 92.11 97.81 99.19
G 89.18 96.35 81.56 72.04 89.66 87.06 97.08 98.77
S 67.74 76.52 33.02 29.80 51.75 42.21 81.35 93.23

Precision (%) F 83.19 91.82 74.30 64.27 80.32 83.70 94.50 96.67
G 77.81 84.14 65.03 53.47 70.03 72.44 91.72 94.55
S 75.68 91.32 69.93 62.68 73.71 73.00 92.87 95.27

Recall (%) F 83.40 93.5 70.59 58.36 78.15 84.74 93.14 96.37
G 80.47 86.35 61.66 47.05 71.06 74.17 92.53 94.72
S 77.14 93.00 66.20 59.65 73.85 73.06 93.07 95.74

F1-score (%) F 82.71 92.10 70.56 58.96 77.57 82.90 93.33 96.27
G 78.21 84.60 61.40 46.82 68.71 71.49 91.34 94.36
S 75.67 91.61 67.09 59.60 73.01 72.19 92.6 95.30

Exclusion Accuracy (%) F 77.57 93.63 78.07 76.60 78.04 82.24 96.87 99.06
G 65.94 91.02 68.68 63.46 73.99 72.29 96.26 98.66
S 47.98 70.18 16.59 16.35 27.54 27.89 87.06 91.45

Precision (%) F 79.04 86.71 62.77 66.78 74.12 83.68 95.43 98.63
G 73.69 74.66 53.34 51.08 65.89 75.05 94.92 97.94
S 71.03 87.63 61.38 59.20 68.44 68.80 95.77 97.97

Recall (%) F 81.74 88.31 63.03 65.72 74.03 84.97 95.11 98.49
G 77.65 78.33 57.17 54.70 68.25 77.00 94.60 98.02
S 72.39 88.27 61.73 58.64 68.82 68.75 95.32 97.97

F1-score (%) F 78.73 86.29 60.75 64.53 72.69 82.94 94.89 98.41
G 74.20 75.43 53.52 51.25 65.87 74.88 94.28 97.78
S 70.95 87.39 60.34 57.79 68.01 68.30 95.36 97.89

Intersection Accuracy (%) F 98.25 97.54 98.82 93.56 98.43 93.67 98.13 99.33
G 96.93 96.57 97.82 80.67 96.52 91.25 97.43 98.97
S 71.10 37.94 93.83 40.64 79.17 45.37 52.39 95.20

Precision (%) F 94.36 94.14 96.26 78.28 94.48 89.89 94.99 97.40
G 93.74 93.49 93.87 76.97 92.22 84.90 94.81 96.91
S 93.97 94.69 94.82 68.88 90.08 86.97 95.72 96.87

Recall (%) F 94.25 95.33 96.11 75.64 93.64 90.89 94.93 96.99
G 94.07 93.98 93.45 68.63 91.57 83.93 94.75 96.78
S 93.56 94.80 91.96 65.80 89.42 84.87 95.04 96.72

F1-score (%) F 94.01 94.29 96.07 75.97 93.49 89.42 94.46 96.98
G 93.67 93.08 93.44 69.63 91.12 83.00 94.29 96.53
S 93.32 94.06 92.88 65.14 89.11 84.96 94.96 96.38

aGRD, genomic-based 16S rRNA database.
bGTDB, genome taxonomy database.
cSeq_ITGDB, sequence-based integrated database.
dTaxa_ITGDB, taxonomy-based integrated database.
eF, family.
fG, genus.
gS, species.

Frontiers in Bioinformatics | www.frontiersin.org August 2022 | Volume 2 | Article 9054898

Hsieh et al. 16S-ITGDB

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


based on these short reads. Previous studies reported that in order
to assign a sequence to the genus level accurately, the sequence
length needs to be at least 400 nucleotides (Okubo et al., 2009),
and a full-length sequence could provide taxonomic resolution
to the species level (Jeong et al., 2021). Notice that the 16S
rRNA full-length sequences include approximately 1,500 ~1,600
nucleotides (Nossa et al., 2010; Wagner et al., 2016). Since our

classification target was the prokaryotic 16S full-length sequences,
we found that using confidence thresholds to limit the taxonomic
assignment depth made the prediction too conservative to reach
the species level (Table 4). Therefore, the “no cut-off” assignment
results were applied in our analyses.

The database comparison analyses indicated that the
taxonomy-based ITGDB had the best performance. In the

FIGURE 4 | Performance comparison of different classifiers using the taxonomy-based ITGDB as the reference database to classify the sequences in mock
community, Union, Exclusion, and Intersection datasets. Accuracy of classifying the mock community (A), Union dataset (C), Exclusion dataset (E), and Intersection
dataset (G). Precision and recall of classifying the mock community (B), Union dataset (D), Exclusion dataset (F), and Intersection dataset (H).
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Union dataset, the taxonomy-based ITGDB showed better
accuracy than other databases, especially at the species level.
There were two factors that explain why the taxonomy-based
ITGDB could identify most of the species. One was that the
taxonomy-based ITGDB covered all of the available species of
RDP, SILVA, and Greengenes. The other was that the taxonomy-
based ITGDB removed a considerable number of anomalous
sequences by only integrating the sequences with exact species
names. The Venn diagram in Figure 5 investigates the unique

species names collected in RDP, SILVA, and Greengenes. The
unique species taxonomies in RDP, SILVA, and Greengenes
were 1,113, 31,509, and 411, respectively. Greengenes included
the smallest number of species labels because this database had
not been updated for many years, which was also the reason why
Greengenes had the lowest performance among all the
databases. However, Greengenes showed good performance
with the Intersection dataset (the second highest scores in
most of the metrics) because this dataset did not have unique

TABLE 3 | Performance comparison between different classifiers using the taxonomy-based integrated database. The bold font and underline symbol indicate the highest
and the second highest value, respectively.

Dataset Metrics Level SINTAX SPINGO Mothur QIIME2

Mock Accuracy (%) Fa 99.88 89.50 99.71 46.64
Gb 99.85 89.48 99.63 46.61
Sc 99.77 83.93 62.36 39.22

Precision (%) F 99.69 85.76 97.57 98.77
G 99.98 84.29 95.78 98.05
S 96.95 87.99 92.88 97.20

Recall (%) F 99.13 82.19 96.89 86.78
G 99.01 80.86 95.15 89.68
S 96.62 85.48 91.31 85.73

F1-score (%) F 99.25 82.78 96.97 90.59
G 99.33 81.40 95.20 92.41
S 96.68 85.91 91.74 89.45

Union Accuracy (%) F 99.19 95.22 99.01 99.16
G 98.77 95.22 98.50 98.60
S 93.23 92.35 88.48 83.09

Precision (%) F 96.67 98.65 96.23 97.64
G 94.55 93.23 93.92 95.19
S 95.27 92.44 94.13 95.64

Recall (%) F 96.37 94.18 96.23 98.11
G 94.72 91.85 95.21 96.96
S 95.74 90.22 94.75 96.08

F1-score (%) F 96.27 96.01 95.97 97.63
G 94.36 91.48 94.02 95.59
S 95.30 90.76 94.20 95.71

Exclusion Accuracy (%) F 99.06 91.21 98.74 99.22
G 98.66 91.21 98.21 98.49
S 91.45 87.81 86.05 67.29

Precision (%) F 98.63 97.05 97.34 98.54
G 97.94 94.54 96.89 98.56
S 97.97 93.14 97.42 98.32

Recall (%) F 98.49 91.09 97.45 98.87
G 98.02 89.81 96.81 98.81
S 97.97 90.47 97.40 98.52

F1-score (%) F 98.41 93.41 97.24 98.57
G 97.78 91.31 96.62 98.51
S 97.89 91.38 97.31 98.34

Intersection Accuracy (%) F 99.33 96.41 99.28 99.27
G 98.97 96.41 98.97 98.96
S 95.20 94.34 93.56 91.80

Precision (%) F 97.40 98.80 97.57 97.72
G 96.91 95.89 97.07 97.12
S 96.87 94.68 96.06 96.62

Recall (%) F 96.99 95.51 97.55 97.62
G 96.78 93.54 97.33 97.42
S 96.72 92.01 96.48 96.90

F1-score (%) F 96.98 96.91 97.44 97.50
G 96.53 94.33 96.86 96.95
S 96.38 92.93 95.92 96.70

aF, family.
bG, genus.
cS, species.
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taxonomy (the taxonomies only exist in one of RDP, SILVA, and
Greengenes).

The sequence-based ITGDB ranked second in accuracy when
using the Union and Exclusion datasets for validation (Table 2).
However, the accuracy performance of the sequence-based
ITGDB became worse than RDP and Greengenes with the
Intersection dataset. This situation indicated that simply
collecting more sequences could not enhance the
classification performance. The reason why the sequence-
based ITGDB performed well with the Union and Exclusion
datasets was that the sequence-based ITGDB included all the
available taxonomies from RDP, SILVA, and Greengenes to
overcome the unique taxonomy issue. However, collecting all
the available sequences also meant having more sequences with
low resolution taxonomies. Namely, the information at the
species level did not have an exact species name, which could
interfere with the taxonomic assignment procedure (Xue et al.,
2022). This shortcoming was exposed when the validation
dataset did not have unique taxonomy issues (e.g., the
Intersection dataset).

The sequence-based ITGDB showed better performance than
SILVA with the Intersection dataset because the sequence-based
ITGDB collected longer sequences under the same taxonomies.
This might be the reason why the sequence-based ITGDB could
identify the sequences more accurately than the SILVA database
(Karagöz and Nalbantoglu, 2021). The reason why SILVA had
better performance than Greengenes and RDP with the Union
and Exclusion datasets, but lower performance with the
Intersection dataset, was similar to the reasons outlined above
for the sequence-based ITGDB.

RDP had the smallest number of sequences, but it contained
better curated sequences and taxonomies than SILVA (Edgar R.,
2018), with 94.86% of sequences in RDP having taxonomic
resolution at the species level. This could be the reason why
RDP showed better performance than SILVA with the
Intersection dataset. However, RDP included much less unique
taxonomy than SILVA, and this prevented RDP from having
better performance than SILVA with the Union and Exclusion
datasets. For mock community validation, the reason why SILVA
had better performance than RDP might be that SILVA included

much more sequences than RDP. More reference reads allow
SILVA to identify the type strain sequences more efficiently.

Greengenes did not perform well in most of the analyses. For
the mock community, Union, and Exclusion datasets,
Greengenes showed low accuracy at the species level because
most of Greengene’s sequences did not have taxonomic
resolution to the species level, and the fact that its content had
not been updated for many years. It is impossible for a classifier to
identify the newly discovered bacteria using Greengenes as a
reference database.

The 16S-UDb had mediocre performance among the test
cases. Two reasons may explain that 16S-UDb had lower
performance than taxonomy-based ITGDB, especially for the
species level assignment. One was that 16S-UDb collected the
97% OTU clustering sequences from RDP, SILVA, and
Greengenes, which may put the sequences of different species
into the same cluster and lost considerable taxonomies and
reference sequences (Edgar RC., 2018; Chiarello et al., 2022).
Inversely, taxonomy-based ITGDB applied 99% OTU clustering
sequences from the reference databases to retain the taxonomies
and sequences, ensuring taxonomy-based ITGDB could have
better classification ability. Another reason was that 16S-UDb
was built based on the older version of SILVA, Greengenes, and
RDP, which meant it lacked the newly updated taxonomies. In
Figure 3 and Table 2, 16S-UDb had better performance with the
mock community and Intersection datasets than with the Union
and Exclusion datasets because the mock community and
Intersection datasets did not include unique taxonomies. Each
sequence in 16S-UDb was full-length and with an exact species
name, which could provide good performance of identifying the
type-strain sequences in mock community and non-unique
taxonomies in the Intersection dataset. Inversely, the Exclusion
and Union datasets included a large number of unique

TABLE 4 | The comparison of assignment depth using the taxonomy-based
ITGDB with and without application of a confidence threshold.

Dataset Type Family (%)a Genus (%)a Species (%)a

Mock No threshold 100.00 100.00 100.00
Threshold 99.41 97.97 87.02

Union No threshold 99.87 99.87 99.87
Threshold 71.12 67.34 38.25

Exclusion No threshold 99.79 99.79 99.79
Threshold 80.25 75.39 48.86

Intersection No threshold 99.91 99.91 99.91
Threshold 65.63 63.94 43.48

aNumbers indicate the percentage of sequences assigned to the corresponding
taxonomic levels.

FIGURE 5 | Species distribution of RDP, SILVA, and Greengenes
databases. The Venn diagram depicts the number of shared and unique
species between the three databases.
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taxonomies, which exposed the shortcoming that 16S-UDb did
not collect enough reference sequences and taxonomies.

GRD also identified the sequences of the mock communities
quite well, but had worse performance than 16S-UDb, when
classifying the sequences of the Intersection dataset. The collected
species number of GRD and 16S-UDb was 2,603 and 7,399,
respectively. The difference of the collected species number might
be the reason why 16S-UDb could have better ability to overcome
the unique taxonomy issues than GRD when classifying the
sequences of the Union, Exclusion, and Intersection datasets.

GTDB did not have good performance at the species level.
Reasons for this phenomenon were that many sequences in the
GTDB dataset did not have exact species names (only showed “sp
[number]” at the species level) because some metagenomics
assembled genomes did not include 16S gene fragments
(Alishum, 2021), which interfered the performance of the
classification algorithm.

By observing the number of full-length sequences (V1-V9) in
Table 1, the database performance comparison in Table 2, and
the species Venn diagram in Figure 5, we found that taxonomy-
based ITGDB did not possess the largest number of full-length
sequences (Table 1) but had the best performance in all the
validation datasets (Table 2). Inversely, sequence-based ITGDB
and SILVA had the largest and the second largest number of full-
length sequences (Table 1) but did not have the highest scores in
all the test cases. This situation indicates that large quantity of
full-length sequences alone could not ensure good assignment
results. The completeness of taxonomy information also needs to
be considered. A large proportion of sequences without exact
species names limited the classification performance of sequence-
based ITGDB and SILVA. Since taxonomy-based ITGDB
included all the taxonomies of RDP, SILVA, and Greengenes
and each sequence was assigned with an exact species name, this
is the reason why taxonomy-based ITGDB could have the best
performance in all the validation datasets. In summary, taking
reference sequence count, taxonomy completeness, and
taxonomy count into consideration could enhance a sequence
classifier’s taxonomic resolution.

Analyses of the ITGDBs’ performance with different classifiers
demonstrated that the taxonomy-based ITGDB could work well
with several widely used classifiers. For the mock community
dataset, SINTAX showed the best performance at the family,
genus, and species levels (Figure 4). For the Union, Exclusion,
and Intersection datasets, SINTAX, SPINGO, and Mothur
showed good performance at all the taxonomic levels.
QIIME2 had lower accuracy in all the test cases. We found
that the QIIME2 classifier worked normally when classifying
the sequences of HMP and Zymo mocks but did not work well
with Mockrobiota sequences (97% Mockrobiota sequences were

classified as “Spiroplasma mirum” species). However, other
classifiers, SINTAX, SPINGO, and Mothur, did not have such
a problem. Therefore, for species-level assignment, SINTAX,
SPINGO, and Mothur are suggested to be used with
taxonomy-based ITGDB.

5 CONCLUSION

This work proposed two types of 16S rRNA integrated
databases—sequence-based integration and taxonomy-based
integration. The experimental results showed that taxonomy-
based integration provided better performance and could work
well with the widely used 16S rRNA classifiers. The proposed
databases can support full-length 16S rRNA classification and
enhance the taxonomic resolution to the species level.
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