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Genomic selection, which predicts phenotypes such as yield and drought

resistance in crops from high-density markers positioned throughout the

genome of the varieties, is moving towards machine learning techniques to

make predictions on complex traits that are controlled by several genes. In this

paper, we consider sparse Bayesian learning and ensemble learning as a

technique for genomic selection and ranking markers based on their

relevance to a trait. We define and explore two different forms of the sparse

Bayesian learning for predicting phenotypes and identifying the most influential

markers of a trait, respectively. We apply our methods on a Saccharomyces

cerevisiae dataset, and analyse our results with respect to existing relatedworks,

trait heritability, as well as the accuracies obtained from linear and Gaussian

kernel functions.We find that sparse Bayesianmethods are not only competitive

with other machine learning methods in predicting yeast growth in different

environments, but are also capable of identifying the most important markers,

including both positive and negative effects on the growth, from which

biologists can get insight. This attribute can make our proposed ensemble of

sparse Bayesian learners favourable in rankingmarkers based on their relevance

to a trait.
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1 Introduction

Genomic Selection (GS) is a computational and statistical problem which predicts

phenotypes such as growth and fertility in livestock (Kemper and Goddard, 2012; García-

Ruiz et al., 2016), and yield and drought resistance in crops (Beyene et al., 2015), using

genetic information of individuals, that is, sequences of genome-wide molecular markers.

Single Nucleotide Polymorphisms (SNPs) are the most common type of genetic markers.

GS is ideal for complex traits, which are controlled by many genes with different effects

across the genome (Poland and Rutkoski, 2016). GS in plants or animals are mainly used

in the breeding industry to facilitate the selection of superior genotypes and accelerate the

breeding cycle (Meuwissen et al., 2016; Crossa et al., 2017).

Previous work on GS has focused primarily on statistical models, including Best

Linear Unbiased Prediction (BLUP) and its variants (Bloom et al., 2013; Habier et al.,

2013; Spindel et al., 2016; You et al., 2016; Zhang et al., 2016). However, machine learning

methods, such as random forests (Breiman, 2001) and Support Vector Machines (SVMs)
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(Schölkopf et al., 2003), have also seen an increasing interest in

GS research on plants (Jannink et al., 2010; Okser et al., 2014;

Blondel et al., 2015; Li et al., 2015; Grinberg et al., 2018, 2016) and

animals (Moser et al., 2009; González-Recio et al., 2014; Yao et al.,

2016). In this research, we use sparse Bayesian learning (Tipping,

2001) for predicting phenotypes and identifying influential

markers on growth in the yeast Saccharomyces cerevisiae. This

learning method uses Bayesian inference to obtain sparse

solutions for regression and classification tasks. The model is

also known as the Relevance Vector Machine (RVM), as it can be

viewed as a kernel-based model of identical form to the SVM,

which is a theoretically well-motivated classification algorithm in

modern machine learning (Mohri et al., 2012). Although the

predictive performance of RVMs is similar to SVMs, they have

some advantages that SVMs lack, such as having probabilistic

outputs and the ability to work with arbitrary kernel functions.

More importantly for our purposes, RVMs construct much

sparser models based on identifying more meaningful

representatives of training data compared to the SVMs

(Tipping, 2001). We use these representatives to help link

phenotype predictions and identification of important markers

in the yeast genome.

In this work, we consider the association problem as an

embedded feature ranking problem wherein features are

biological markers (e.g., SNPs), and the feature selection

process is part of the predictive model construction. Then, the

ranks of features based on their relevance to the trait will give

candidate markers which can be further investigated. Motivated

by the sparse solution property of sparse Bayesian learning, we

investigate a novel ensemble architecture for feature selection

and ranking. More precisely, we merge sparse Bayesian learning,

ensemble and bagging techniques for ranking influential SNP

markers on a quantitative trait. Note that there are also limited

studies that used sparse Bayesian method for feature selection in

bioinformatics (Li et al., 2002; Krishnapuram et al., 2004; Cawley

and Talbot, 2006; Yang et al., 2017). However, this work,

specifically on genes associated with disease, was only for

classification, and did not incorporate ensemble techniques.

2 Data and methods

2.1 Dataset

Bloom et al. (2013) developed 1,008 haploid strains of

Saccharomyces cerevisiae as a result of crosses between

laboratory and wine strains of the yeast. The parent strains

had sequence level differences of 0.5%. The genotypes consist

of SNP markers that correspond to 11,623 sequence locations in

the genome. The locations are coded as 1 if the sequence variation

came from the wine strain parent, or 0 if it came from the

laboratory strain parent.

Bloom et al. modified the environment of 1,008 yeast strains

in 46 different conditions (first column in Table 1), andmeasured

the population growth under those different conditions. For

example, they varied the basic chemicals used for growth (e.g.,

galactose, maltose), or added minerals (e.g., copper, magnesium

chloride), then measured growth in that condition. To quantify

growth, Bloom et al. calculated the radius of the colonies from an

image taken after approximately 48 h of growth. Some results,

such as irregular colonies, were removed and treated as missing

data. Most conditions had more than 90% of readings included.

2.2 Sparse Bayesian learning

Sparse Bayesian modelling (Tipping, 2001; Tipping and Faul,

2003) is an approach for learning a prediction function y (x; w),

which is expressed as a linear combination of basis functions:

y x;w( ) � ∑M
m�1

wmρm x( ) � wTρ x( ), (1)

where ρ(x) � (ρ1(x), . . . , ρM(x))T are basis functions, generally

non-linear, and w1, . . . , wM are the adjustable parameters, called

weights. Given a dataset of input-target training pairs (xi, ti){ }Ni�1,
the objective of the sparse Bayesian method is to estimate the

target function y (x; w), while retaining as few basis functions as

possible. The sparse Bayesian algorithm often generates

exceedingly sparse solutions (i.e., few non-zero parameters wi).

In a particular specialization of (1), such as the one that

SVMs use,M = N and the basis functions take the form of kernel

functions, one for each data point xm in the training set. In this

case, we get ρm(x) = K (x, xm), whereK: X × X → R is the kernel

function. This form of sparse Bayesian modelling is called the

Relevance Vector Machine (RVM). Tipping, (2000) introduced

the RVM method as an alternative to the SVM method of

Vapnik, (1998). However unlike SVMs, where the kernel

functions must be Positive Definite Symmetric (PDS)

(Hofmann et al., 2008), we can use arbitrary basis sets in

the RVM.

Assuming that the basis functions have the form of kernel

functions, we illustrate the sparse Bayesian algorithm for

regression as follows. Corresponding algorithms for arbitrary

basis functions can be easily induced from them.

2.2.1 Relevance vector regression
We follow the framework developed by Tipping, (2001). In

the regression framework, the targets t � (t1, . . . , tN)T are real-

valued labels. Each target ti is representative of the true model yi,

but with the addition of noise ϵi: ti = y (xi) + ϵi, where

ϵi ~ N(0, σ2). This means p (ti|xi, w, σ2) = N (y (xi), σ
2), or

p t | w, σ2( ) � 2πσ2( )−N/2 exp − 1
2σ2

‖t −Φw‖2{ }, (2)
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TABLE 1 Coefficient of determination (R2) and standard deviation of the best performing model (std) of RVM predictions among the 46 traits.

Trait Linear Basis Linear Gaussian Best RVM std

Cadmium Chloride 0.639 0.033 0.454 Linear Basis 0.005

Caffeine 0.074 0.216 0.233 Gaussian (γ3) 0.006

Calcium Chloride 0.113 0.273 0.287 Gaussian (γ3) 0.007

Cisplatin 0.133 0.287 0.29 Gaussian (γ3) 0.005

Cobalt Chloride 0.258 0.439 0.466 Gaussian (γ2) 0.006

Congo red 0.327 0.467 0.491 Gaussian (γ1) 0.006

Copper 0.146 0.334 0.379 Gaussian (γ3) 0.01

Cycloheximide 0.317 0.473 0.514 Gaussian (γ1) 0.005

Diamide 0.277 0.473 0.483 Gaussian (γ2) 0.005

E6 Berbamine 0.211 0.375 0.414 Gaussian (γ2) 0.008

Ethanol 0.276 0.457 0.476 Gaussian (γ2) 0.006

Formamide 0.114 0.207 0.25 Gaussian (γ2) 0.006

Galactose 0.076 0.206 0.241 Gaussian (γ3) 0.008

Hydrogen peroxide 0.234 0.343 0.397 Gaussian (γ2) 0.01

Hydroquinone 0.087 0.139 0.208 Gaussian (γ3) 0.009

Hydroxyurea 0.12 0.296 0.342 Gaussian (γ2) 0.01

Indoleacetic Acid 0.128 0.255 0.313 Gaussian (γ2) 0.007

Lactate 0.36 0.542 0.555 Gaussian (γ2) 0.005

Lactose 0.374 0.553 0.574 Gaussian (γ2) 0.008

Lithium Chloride 0.531 0.597 0.678 Gaussian (γ1) 0.006

Magnesium Chloride 0.102 0.245 0.255 Gaussian (γ3) 0.005

Magnesium Sulfate 0.187 0.366 0.41 Gaussian (γ3) 0.005

Maltose 0.409 0.484 0.523 Gaussian (γ2) 0.005

Mannose 0.079 0.213 0.197 Linear 0.007

Menadione 0.216 0.389 0.411 Gaussian (γ3) 0.006

Neomycin 0.422 0.583 0.596 Gaussian (γ2) 0.003

Paraquat 0.31 0.442 0.454 Gaussian (γ2) 0.005

Raffinose 0.185 0.385 0.388 Gaussian (γ3) 0.007

SDS 0.199 0.36 0.398 Gaussian (γ2) 0.004

Sorbitol 0.176 0.343 0.364 Gaussian (γ3) 0.009

Trehalose 0.326 0.48 0.503 Gaussian (γ2) 0.005

Tunicamycin 0.417 0.594 0.622 Gaussian (γ1) 0.006

4-Hydroxybenzaldehyde 0.23 0.34 0.367 Gaussian (γ2) 0.008

4NQO 0.44 0.496 0.512 Gaussian (γ2) 0.005

5-Fluorocytosine 0.215 0.323 0.378 Gaussian (γ2) 0.008

5-Fluorouracil 0.326 0.505 0.559 Gaussian (γ2) 0.005

6-Azauracil 0.152 0.3 0.304 Gaussian (γ3) 0.005

Xylose 0.282 0.455 0.478 Gaussian (γ3) 0.004

YNB 0.379 0.224 0.515 Gaussian (γ1) 0.009

YNB:ph3 0.059 0.18 0.177 Gaussian (γ3) 0.005

YNB:ph8 0.203 0.327 0.361 Gaussian (γ2) 0.006

YPD 0.368 0.266 0.511 Gaussian (γ1) 0.008

YPD:15C 0.211 0.334 0.356 Gaussian (γ2) 0.006

YPD:37C 0.473 0.566 0.611 Gaussian (γ2) 0.006

YPD:4C 0.18 0.406 0.438 Gaussian (γ2) 0.005

Zeocin 0.316 0.46 0.475 Gaussian (γ3) 0.004
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where w � (w1, . . . , wN)T, and the data is hidden in the design

matrix (kernel matrix) P � [ρ(x1), . . . , ρ(xN)]T, wherein

ρ(xi) � [K(xi, x1), . . . , K(xi, xN)]T. For clarity, we omit the

implicit conditioning on the set of input vectors {xi} in (2)

and subsequent expressions.

We infer weights using a fully probabilistic framework.

Specifically, we define a Gaussian prior distribution with zero

mean and αi−1 variance over each wi: p(wi | αi) � N(0, αi−1), or:

p w | α( ) � ∏N
i�1

N 0, αi
−1( ). (3)

The sparsity of the RVM is a result of the independence of the

hyperparameters α � (α1, . . . , αN)T one per basis function

(i.e., weight), which moderate the strength of the prior

information (Li et al., 2009).

Using Bayes’ rule and having the prior distribution and

likelihood function (3) and (2), the posterior distribution over

the weights would be a multivariate Gaussian distribution:

p w | t, α, σ2( ) � p t | w, σ2( )p w | α( )
p t | α, σ2( ) � N μ,Σ( ), (4)

where the covariance and the mean are:

Σ � σ−2ΦTΦ + A( )−1, (5)
μ � σ−2ΣΦTt, (6)

and A = diag (α1, . . . , αN).

The likelihood distribution over the training target t, given by

(2), is marginalized with respect to the weights to obtain the

marginal likelihood for the hyperparameters:

p t | α, σ2( ) � ∫p t | w, σ2( )p w | α( )dw � N 0,C( ), (7)

where the covariance is given by C = σ2I + ΦA−1ΦT. Values of α

and σ2 which maximize (7) cannot be obtained in closed form,

thus the solution is derived via an iterative maximization of the

marginal likelihood p (t|α, σ2) with respect to α and σ2:

αi
new � 1 − αiΣii

μi
2

, (8)

σ2( )new � ‖t −Φμ‖
N −∑N

i�1 1 − αiΣii( ). (9)

By iterating over (5), (6), (8), and (9), the RVM algorithm

reduces the dimensionality of the problem when αi tends to

infinity (note that αi has a negative power in (3)) (Ben-Shimon

and Shmilovici, 2006). The algorithm stops when the likelihood p

(t|α, σ2) stops increasing. The non-zero elements of w are called

Relevance Values. The input vectors which correspond to the

relevance values are called Relevance Vectors (RVs) as an analogy

to Support Vectors in the SVM (Ben-Shimon and Shmilovici,

2006). Having the relevance vectors, xr{ }|RVs|r�1 , and the relevance

values, wr{ }|RVs|r�1 , the RVM makes prediction on a new data

instance x*:

yp � ∑RVs| |

r�1
wrK xp, xr( ),

where |RVs| denotes the cardinality of the set of relevance

vectors.

Given the kernel matrix, the computationally intensive part

of the RVM algorithm is the matrix inversion in (6) which

requires O(N3) operations for a dataset of size N. This is

similar to the O(N3) training time for SVMs using standard

algorithms.

The regression framework can be extended to the

classification case using the approximation procedure

presented in (Tipping, 2000).

2.3 Kernel RVM versus basis RVM

Kernel methods are flexible techniques that allow the user to

select a kernel function that enables tools such as RVMs and

SVMs to define non-linear decision boundaries (Cortes et al.,

2004). For example, consider a binary classification problem in

which input patterns are not linearly separable in the input space

(i.e., inputs cannot be separated into two classes by passing a

hyperplane between them). In such a case, one solution is to use a

non-linear mapping of the inputs into some higher-dimensional

feature space in which the patterns are linearly separable. Then,

we solve the problem (i.e., finding the optimal hyperplane) in the

feature space, and consequently, we will be able to identify the

corresponding non-linear decision boundary for the input

vectors in the input space. To do this procedure, a kernel

method only requires a function K: X × X → R, which is

called a kernel over the input space X. For any two input

patterns xi, xj ∈ X, K (xi, xj) is the dot product of vectors

φ(xi) and φ(xj) for some mapping φ: X → H to a feature

space H:

∀xi, xj ∈ X, K xi, xj( ) � 〈φ xi( ),φ xj( )〉.
In this research, we define sparse Bayesian learning in such a

way that we can discriminate between kernel and basis

functions, i.e., “kernel” RVM versus “basis” RVM. The

basis RVMs, which do not have counterparts in SVMs,

will be mainly used to enable feature selection. For

example, we define two types of linear RVMs, which we

call linear kernel RVMs and linear basis RVMs. In a linear

kernel RVM, the basis functions in (1) are linear kernel

functions, i.e.,

ρm x( ) � K x, xm( ) � 〈x, xm〉.

When we use linear kernels, in fact we have no mapping. In

other word, there is no feature space (as we use input vectors

directly), so our estimator tries to pass a hyperplane through

input vectors in the input space (e.g., in the case of regression).
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In our linear basis RVM, the basis functions are linear and

equal to the features of the input vectors, i.e.,

ρm x( ) � x m[ ],

where x[m] refers to the mth feature in an input vector x with M

dimensions. We can view it as if we have no basis function in a

linear basis RVM, as we use input vectors directly in (1) instead:

y x;w( ) � wTx.

That is, in this formulation with a linear basis RVM, the

model is a Bayesian linear regression using the RVM

optimization and anticipated sparsity. We can restate (2) with

weights w � (w0, w1, . . . , wM)T, where M is the number of

features, and the design matrix is

ΦN× M+1( ) �
1 x1

1[ ] x1
M[ ]

1 x2
1[ ] x2

M[ ]

/
1 xN

1[ ] xN
M[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

where the first column handles the intercept w0, and N is the

number of training individuals.

Thus, this linear basis RVM will find the RVs which

corresponds to the features; i.e., the obtained sparsity will be

in the feature set rather than the training individuals. This is

exactly what we expect from a feature selection method.

Therefore, this RVM can perform target prediction as well as

feature selection. For example, in a GS in crop breeding, the

individuals are breeds of a crop, the features are the markers

(SNPs), and a phenotype is a target. Then, a linear basis RVM

would identify a subset of relevant markers to that phenotype,

while it is trained for phenotype prediction.

Similar to linear RVMs, we can define any other non-linear

RVMs (i.e., Gaussian RVM as Gaussian kernel RVM or Gaussian

basis RVM). In our experiments, we apply kernel RVMs with

different PDS kernel types to investigate how they perform in

predicting phenotypes. However, we only examine linear basis

RVMs for phenotype prediction and influential marker

identification.

Compared to the SVM method, we should note that there is

not an SVM counterpart for a basis RVM, as the design matrix

(10) resembles a non-PDS function which specifically cannot be

used in an SVM. In a kernel RVM, we can use PDS kernels, such

as polynomial and Gaussian kernels, or non-PDS kernels, such as

sigmoid kernels (neural network kernels (Schölkopf and Smola,

2002)). In the case of using PDS kernels, the kernel RVM

prediction accuracies will be comparable to the SVM results.

2.3.1 Kernel types
In our experiments with kernel RVMs, we use Gaussian,

polynomial and linear kernels. For any constant γ > 0, the

Gaussian kernel is the kernel K: RN → R:

∀x, x′ ∈ RN, K x, x′( ) � exp −γ‖x − x′‖2( ),

where ‖x‖ is the norm of the vector x. Also, a polynomial kernel

of degree d such as K is defined by:

∀x, x′ ∈ RN, K x, x′( ) � x · x′ + c( )d,
for a fixed constant c ≥ 0. A linear kernel is a polynomial kernel

with c = 0 and d = 1.

2.3.2 RVM as a phenotype predictor
We consider the yeast dataset as 46 separate regression

problems: we construct a separate RVM model for predicting

growth under each of 46 conditions. We train each RVM with

linear basis function, linear kernel, Gaussian kernel (with

different values of γ parameter), and a set of n-gram kernels.

Using the coefficient of determination (R2) as measure, and

running 10 times of 10-fold cross-validation (each time with

random different folds), we evaluate the results of RVM models.

As the process for this dataset along with repeating cross-

validations is computationally heavy, the process is done in

parallel on the WestGrid (www.westgrid.ca) platform. To

facilitate direct comparison between our results and those of

previous work below, we use R2 as a measurement of the

goodness of fit between the predicted and actual

measurements on the yeast dataset (i.e., predicted versus

actual colony size).

2.4 Ensemble RVM

In an ensemble, a set of classifiers is trained and for new

predictions, the results of each of the classifiers is combined to

obtain a final result (Dietterich, 2000). Ensembles often produce

better predictive performance than a single model by decreasing

variance (bagging), bias (boosting), or improving predictions

(stacking) (Zhou, 2012). Moreover, ensemble techniques have

the advantage of handling large data sets and high dimensionality

because of their divide-and-conquer strategy. Random Forests

(Breiman, 2001) and Gradient Boosting Machines (GBMs)

(Friedman, 2001) are examples of ensemble methods.

In this research we use ensemble RVM with bagging

approach. Bagging (bootstrap aggregating (Breiman, 1996)) is

based on bootstrapping, where sample subsets of a fixed size are

drawn with replacement from an initial set of samples. In

bagging, a large number of separate classifiers in an ensemble

are trained on separate bootstrap samples and their predictions

are aggregated through majority voting or averaging. Bagging is

commonly used as a resolution for the instability problem in

estimators.

We use ensembles of basis RVMs for feature selection and

ranking. Each RVM model in an ensemble finds a set of

representatives (the RVs) which represent important features.

Then, aggregating RVs of the ensemble lets rank the features. The

top ranked markers are chosen based on a threshold. In other
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words, we define the most influential markers as those who are

chosen by a specific percentage of the RVMs in the ensemble as

RVs. Ranking mechanisms allow us to reduce dimensionality and

enhance generalization (Saeys et al., 2007). Furthermore, they

enable us to recognize interpretable or insightful features in the

model.

We use SpareBayes software package for Matlab (Tipping,

2019) to implement the RVMs in this research. The code for the

RVM experiments is available at https://github.com/

maryamayat/YeastRVM.

3 Results and discussion

3.1 Predicting phenotypes

The prediction accuracies plus the standard deviation of

cross-validation results in the best RVM model are shown in

Table 1 (Note the following Gaussian parameters that are used in

the table: γ1 = 1e − 4, γ2 = 2e − 4, and γ3 = 3e − 4.). The value

reported for the γ parameter of Gaussian function in the table is

the best of a range of values for model selection. Note that

Gaussian kernel RVMs mostly produce promising results. Even

in a trait such asMannose, the linear kernel RVM shows a slightly

better accuracy than the Gaussian. The only exception is

Cadmium Chloride in which linear basis RVM presents a

significantly better accuracy. The RVM models are stable,

based on the standard deviations. In following subsections, we

analyse the results with more details. In practice, optimal values

for γ can be obtained through well-studied grid search techniques

similar to those implemented for, e.g., SVM classification and

regression. The Friedman and Nemenyi tests indicate that the

mean of coefficients of determination for Gaussian RVMs are

significantly different from Linear Basis and Linear RVM (p =

0.001 for both cases).

3.1.1 Linear kernel RVM versus linear basis RVM
As explained before, a linear basis RVM can be viewed as

an RVM with no basis function, as we use input vectors

directly in the data model instead. Similarly when we use

linear kernels, it means we do not map the inputs into a higher

dimensional feature space, so our estimator tries to pass a

hyperplane through input vectors in the input space. Here, we

might expect that both linear kernel and linear basis RVMs

produce similar results or with subtle difference, as both are

linear and in the same space. However, that is not the case,

i.e., linear kernel RVM and linear basis RVM produces

different hyperplanes as we see in the results in Table 1.

Consider Cadmium Chloride and YPD:4C, as two extreme

examples. In the former, the linear basis RVM has high

accuracy, while in the latter the linear kernel RVM shows

higher accuracy. As a corollary we can say that linear basis

RVM produces results which classic linear SVM is not able to.

We know that the linear kernel cannot be more accurate than a

properly tuned Gaussian kernel (Keerthi and Lin, 2003), but

we cannot conclude the same for the linear basis function.

Therefore, even if we have conducted a complete model

selection using the Gaussian kernel RVM for a problem, it

FIGURE 1
Pearson correlation coefficient between RVM accuracies and different heritability measures.
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is still valuable to consider the linear basis RVM, just as we saw

linear basis superiority to Gaussian kernel in Cadmium

Chloride.

3.1.2 Heritability versus accuracies
Bloom et al. (2013) provided estimates for narrow-sense and

broad-sense heritability for the yeast dataset. They considered

broad-sense heritability as the contribution of additive genetic

factors (i.e., narrow-sense heritability) and gene-gene

interactions. Thus, the broad-sense heritability is always

greater than the narrow sense heritability, and their difference

can be interpreted as a measurement of gene-gene interactions

(Bloom et al., 2013). The broad-sense heritability estimates

among the 46 traits ranged from 0.40 (YNB:ph3) to 0.96

(Cadmium Chloride), with a median of 0.77. Also, the

narrow-sense heritability estimates ranged from 0.21 (YNB:

ph3) to 0.84 (Cadmium Chloride), with a median of 0.52.

Using the difference between two heritability measures, Bloom

et al. estimated the fraction of genetic variance due to gene-gene

interactions, which ranged from 0.02 (5-Fluorouracil) to 0.54

(Magnesium Sulfate), with a median of 0.30. Therefore, the

genetic basis for variation in some traits, such as 5-

Fluorouracil, is almost entirely due to additive effects, while

for some others, such as Magnesium Sulfate, approximately

half of the heritable component is due to gene-gene interactions.

To determine if there is a correlation between heritability and

RVM prediction accuracies, we calculated the Pearson

correlation coefficient between estimates of heritability and

prediction accuracies. The correlation coefficients in three

RVM categories (Gaussian, linear, and linear basis) are shown

in Figure 1.

The values related to the broad- and narrow-sense

heritability (blue and orange bars) indicate that heritability

and RVM accuracies, particularly in Gaussian and linear basis

RVMs, have strong positive association. In other words, we will

have better predictions when the amount of heritability increases.

In particular, a higher narrow-sense heritability yields better

prediction rates for the RVM predictor.

To determine if RVMs are less successful in predicting

traits with larger non-additive effects, we also calculated the

correlation coefficient between RVM accuracies and gene-

gene interactions effects (green bars in the figure). These

values indicate that gene-gene effects and accuracies,

particularly in Gaussian and linear RVMs, have small

negative association, indicating that we cannot infer the

RVM performance is deteriorating when gene-gene

interactions effects increases. This confirms previous results

where non-parametric and semi-parametric machine learning

techniques, such as SVMs, RKHS, and random forests, have

been shown to have good prediction abilities for non-additive

traits (Howard et al., 2014; Liu et al., 2018). However, if we

have narrow-sense heritability estimates before constructing

an RVM model, we are able to anticipate behaviour of the

predictor, due to the higher weight of additive effects (as most

genetic variance in populations is additive (Forsberg et al.,

2017)).

3.1.3 Comparison with related work

Grinberg et al. (2018) recently compared several learning

methods including forward stepwise regression, ridge

regression, lasso regression, random forest, GBM, and

Gaussian kernel SVM with two classical statistical genetics

methods (BLUP and a linkage analysis done by Bloom et al.

(2013)). Grinberg et al. used the coefficient of determination

(R2) as accuracy measure, and evaluated their models with one

run of 10-fold cross validation. In Table 3, the columns “G:

Best of Others” and “G: SVM” refer to Grinberg et al.‘s results.

Also, the R2 value in the RVM column belongs to the best

RVM given in Table 1. Compared to the SVM, RVM models

show better predictions overall. The Friedman and Nemenyi

tests indicate that the differences mean of coefficients of

determination for SVM and the different RVMs from

Table 1 are all significant, with the exception of SVM

compared to Gaussian RVM (p = 1e − 21 for the Friedman

test, p-values for Nemenyi test are given in Table 2).

The RVM is comparable to the best of the methods tested

by Grinberg et al., except in six traits including Cadmium

Chloride, Indoleacetic Acid, Magnesium Sulfate, Maltose,

4NQO, and YPD:37C in which GBM or Bloom et al.‘s

method showed superiority. However, the mean broad

sense heritability of these six traits is 0.88, and the mean

narrow sense heritability is 0.66. This confirms that nonlinear

techniques, including GBM and RVM, are competitive for

predictions involving traits with high broad sense heritability.

TABLE 2 Nemenyi test p-values for SVM and RVMs.

SVM Gaussian RVM Linear Basis RVM Linear RVM

SVM 1.000000 0.128475 0.001 0.007769

Gaussian RVM 0.128475 1.000000 0.001 0.001000

Linear Basis RVM 0.001000 0.001000 1.000 0.001000

Linear RVM 0.007769 0.001000 0.001 1.000000
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Also, we should note that we do not know about the stability of

the methods experimented by Grinberg et al., as they ran only

one 10-fold cross-validation, while the RVM shows high

stability, as its standard deviations in 10 runs of 10-fold

cross-validation were small.

3.2 Identifying influential markers

For identifying the most influential markers (SNPs) on the

traits, we used our RVM ensemble architecture for ranking

markers. An ensemble for a trait was composed of 400 linear

basis RVMs, each with subsampling 50–60% of training data.

As we are only interested in a small set of top ranked markers,

we observed that the size of subsampling does not affect the

results (data not shown). To demonstrate how well the

ensemble RVMs act in identifying influential markers, we

present the top ranked markers in three conditions (traits):

Cadmium Chloride, Lithium Chloride, and Mannose. We

chose Cadmium Chloride and Mannose as samples which

the linear basis RVM showed excellent and poor phenotypic

prediction accuracies (Table 1), respectively, while we chose

Lithium Chloride for comparison to the work of Bloom et al.

(2013). Also, these conditions are across a wide range of broad

sense heritability: the broad sense heritability of Cadmium

Chloride is 0.98, Mannose is 0.42 and Lithium Chloride

is 0.87.

The ensemble RVMs for each of the three traits ranked

around 90% of the markers with rank values in the range [1,

400]. The unranked markers indicate the markers that do not

have any effect (even minor) on a trait. We define the most

influential markers as those that are chosen by half of the

RVMs in the ensemble as RVs, so in this dataset we will have

less than ten influential markers in the three traits. The ranked

markers indicate those who may have positive or negative

effects on a trait. In other words, we not only find the markers

which have additive effects on yeast growth in an

environment, but also we find those which have adverse

effects on growth.

3.2.1 Comparison with related work
Previously, Bloom et al. (2013) conducted a linkage

analysis with high statistical power to map functional QTL

in all 46 traits. They found that nearly the entire additive

genetic contribution to heritable variation (narrow-sense

heritability) in yeast can be explained by the detected loci.

Bloom et al. specifically showed that for one trait (Lithium

Chloride), the loci detected by their method explained most of

the heritability.

We compare our identified influential markers in three traits

to Bloom et al.‘s QTL. Bloom et al. found 6, 22, and 10 additive

QTL in Cadmium Chloride, Lithium Chloride, and Mannose,

TABLE 3 RVM results versus Grinberg et al.‘s (G) (Grinberg et al., 2018).
RVM represents the best performing RvM model and its standard
deviation.

Trait G: Best of Others G: SVM RVM(std)

Cadmium Chloride GBM:0.797 0.565 0.639 (0.005)

Caffeine GBM:0.250 0.234 0.233 (0.006)

Calcium Chloride BLUP: 0.268 0.261 0.287 (0.007)

Cisplatin GBM: 0.338 0.272 0.29 (0.005)

Cobalt Chloride GBM: 0.460 0.448 0.466 (0.006)

Congo red Lasso:0.504 0.487 0.491 (0.006)

Copper GBM:0.452 0.338 0.379 (0.01)

Cycloheximide SVM:0.529 0.529 0.514 (0.005)

Diamide BLUP:0.498 0.486 0.483 (0.005)

E6 Berbamine GBM:0.412 0.390 0.414 (0.008)

Ethanol GBM:0.518 0.455 0.476 (0.006)

Formamide GBM:0.350 0.240 0.25 (0.006)

Galactose GBM:0.235 0.217 0.241 (0.008)

Hydrogen peroxide SVM:0.399 0.399 0.397 (0.01)

Hydroquinone BLUP:0.225 0.188 0.208 (0.009)

Hydroxyurea GBM:0.337 0.301 0.342 (0.01)

Indoleacetic Acid Bloom et al.:0.480 0.3 0.313 (0.007)

Lactate Lasso:0.568 0.557 0.555 (0.005)

Lactose GBM:0.582 0.565 0.574 (0.008)

Lithium Chloride GBM:0.711 0.680 0.678 (0.006)

Magnesium Chloride Bloom et al.:0.278 0.267 0.255 (0.005)

Magnesium Sulfate Bloom et al.:0.519 0.378 0.41 (0.005)

Maltose GBM:0.809 0.522 0.523 (0.005)

Mannose GBM:0.255 0.215 0.213 (0.007)

Menadione GBM:0.432 0.402 0.411 (0.006)

Neomycin Lasso:0.614 0.597 0.596 (0.003)

Paraquat Lasso:0.496 0.479 0.454 (0.005)

Raffinose GBM:0.383 0.364 0.388 (0.007)

SDS Lasso:0.411 0.383 0.398 (0.004)

Sorbitol Bloom et al.:0.424 0.318 0.364 (0.009)

Trehalose GBM:0.515 0.477 0.503 (0.005)

Tunicamycin SVM:0.634 0.634 0.622 (0.006)

4-
Hydroxybenzaldehyde

GBM:0.397 0.36 0.367 (0.008)

4NQO GBM:0.636 0.542 0.512 (0.005)

5-Fluorocytosine GBM:0.399 0.364 0.378 (0.008)

5-Fluorouracil Lasso:0.552 0.546 0.559 (0.005)

6-Azauracil GBM:0.315 0.279 0.304 (0.005)

Xylose GBM:0.516 0.460 0.477 (0.004)

YNB GBM:0.543 0.525 0.515 (0.009)

YNB:ph3 BLUP:0.195 0.166 0.177 (0.005)

YNB:ph8 BLUP:0.356 0.334 0.361 (0.006)

YPD GBM:0.556 0.524 0.511 (0.008)

YPD:15C Bloom et al.:0.432 0.333 0.356 (0.006)

YPD:37C Bloom et al.:0.711 0.603 0.611 (0.006)

YPD:4C GBM:0.485 0.421 0.438 (0.005)

Zeocin GBM:0.495 0.475 0.472 (0.004)

Frontiers in Bioinformatics frontiersin.org08

Ayat and Domaratzki 10.3389/fbinf.2022.960889

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.960889


respectively. Therefore, we chose the top 6, 22, 10 ranked

SNPs in the three traits as well. Figures 2–4 show results in

each of the three traits accordingly. Each of the figures

includes two parts (a) and (b) corresponding to the map of

yeast chromosomes 1-8 and 9–16, respectively. The results

were demonstrate that the markers identified by the RVM

ensembles have similar distribution to the Bloom et al.‘s QTL.

Also, the RVM ensembles were relatively successful in finding

the exact markers in the traits (33% match rate in Cadmium

Chloride, 36% in Lithium Chloride, and 40% in Mannose). We

note that the highest match rate among the three traits belongs

to Mannose in which the linear basis RVM had poor

prediction accuracy. This could be an advantage of the

RVM being capable of recognizing true “representatives” of

FIGURE 2
Top six influential markers on growth in Cadmium Chloride recognized by ensemble RVMs versus Bloom et al.‘s six QTL.
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a population, despite unacceptable predictions. Another

advantage is in the ranking system, where we can always

recognize the effect of a marker on a trait with its weight,

even in the small set of top-ranked markers. However, we can

also go further and conclude that those top ranked markers

that are close to each other (e.g., markers at loci 649 kb,

656 kb, and 677 kb on Chromosome 12 in Figure 3) suggest

to a higher impact of a locus near to those markers on a trait

due to genetic linkage.

For comparison purposes, we only provided an equal

number of top ranked markers to Bloom et al.‘s QTL.

However, when we decrease the threshold, the number of

influential markers would increase. For instance, Figure 5

shows the top ten (instead of six) most influential markers in

FIGURE 3
Top 22 influential markers on growth in Lithium Chloride recognized by ensemble RVMs versus Bloom et al.‘s 22 QTL. (To view the improved
version of (b) follow the link:(b) - Interactive Chart).
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Cadmium Chloride. In this case, another additive QTL in

chromosome 12 is identified (i.e., at position 464 kb). As not

all influential markers have additive effects, the identified

markers which are distant from Bloom et al.‘s QTL present a

good set of candidates for further investigation, to determine

if they have non-additive effects with other loci.

FIGURE 4
Top 10 influential markers on growth in Mannose recognized by ensemble RVMs versus Bloom et al.‘s 10 QTL.
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4 Conclusion

In this research, we studied how RVMs perform on growth

prediction of yeast in 46 different environments, comparing

its performance with other learning methods such as SVM and

GBM. Our obtained phenotype prediction accuracies suggest

that RVM shows positive results, and can be used as an

alternative method in genomic selection. It is well-known

that no machine learning technique performs best in all

datasets (Ogutu et al., 2011; Grinberg et al., 2018).

We investigated different kernels in RVM. We illustrated how

different linear RVMs, i. e, linear kernel RVM and linear basis RVM,

perform in phenotype prediction.We observed that Gaussian RVMs

had the best accuracies.

We also investigated the relationship between different

heritability measures and RVM prediction accuracies. The results

FIGURE 5
Top 10 influential markers on growth in Cadmium Chloride recognized by ensemble RVMs versus Bloom et al.‘s six QTL.
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indicate an strong association between narrow-sense heritability and

prediction accuracy in RVMs. On the other hand, new research

points out that the most genetic variance in populations is additive

(Forsberg et al., 2017). Therefore, if the heritability is known in

advance, we can consequently anticipate the performance of the

model before constructing it.

The last part of the experiments was devoted to identifyingmost

influentialmarkers on the traits, as well as non-relevantmarkers.We

chose three traits with different phenotype prediction accuracies as

samples, and demonstrated how well our RVM ensembles work to

rank the markers in each trait, comparing the results with other

research which used a traditional linkage analysis to find additive

QTL. The comparison validates the results of RVM ensembles in

finding markers with additive effects. However, we can learn more

from the RVM ensembles, as those are capable of identifying both

growth-increasing and growth-decreasing markers in yeast.

It may be observed that our ensemble linear basis RVM for

feature selection takes in to account only linear relationships.

Although this linear separability is a reasonable assumption for

high dimensional data, it is desirable to investigate nonlinear basis

substitution, particularly Gaussian functions, to handle nonlinear

relationships. Gaussian basis RVM still gives feature RVs as each

Gaussian basis in the model operates on a different dimension

(feature). However, employing Gaussian basis RVM requires setting

not only the variance (σm) in eachGaussian basis function in (1), but

also the mean or center (μm): ρm(x) � exp(−(x[m] − μm)2/σm2),
where x[m] refers to the mth feature in an input vector x with M

dimensions. Investigating any appropriate approach, with

acceptable computational complexity, for choosing parameters in

Gaussian basis RVMs, and employing these RVMs in an application

remain as future work.
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