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1 Introduction

Propedia is a web database of peptide-protein interactions, which introduced a clustering
approach based on three methods: (i) sequences, (ii) structure interface, and (iii) binding sites.
Developed between the years 2015–2020, the first version of Propedia presented a total of
19,813 complexes peptide-protein, grouped by 1,845 sequence clusters, 1,891 interface clusters,
and 1,466 binding site clusters. Here we show the first large-scale Propedia update: version 2.3.
Propedia v2.3 presents over 49,300 peptide-protein complexes (an increment of approximately
150%) and introduces a new representative approach developed using graph-based structural
signatures. In this data report, we also describe how the structural signatures of peptides from
Propedia were calculated using the aCSM-ALL algorithm.We performed two case studies using
seven machine learning algorithms to evaluate these new Propedia resources: (i) clustering
based on sequences; and (ii) clustering based on six Propedia sub-dataset determined from
PDB’s classification. Our analyses demonstrated that graph-based signatures could be useful in
classifying peptides. Propedia v2.3 is available at http://bioinfo.dcc.ufmg.br/propedia2/.

1.1 Peptides

Peptides are biomolecules containing two to dozens of amino acid residues linked through
peptide bonds (Neduva et al., 2005). Peptides represent a unique class of pharmaceutical
compounds, molecularly poised between small molecules and proteins yet biochemically and
therapeutically distinct from both (Lau and Dunn, 2018). It is estimated that between 15% and
40% of all protein-protein interactions in cells are mediated by these molecules (Angelova et al.,
2019).

Nowadays, thousands of naturally occurring peptides have been identified. These often have
crucial roles in human physiology, including actions such as hormones, neurotransmitters,
growth factors, ion channel ligands, or anti-infectives (Moreno-Camacho et al., 2019).
Compared to proteins, peptides are considered more versatile chemically because they can
be more easily modified. In addition, they induce low resistance with limited non-target activity,
making them good therapeutic agents (Lau and Dunn, 2018; Vinogradov et al., 2019).
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Since the synthesis of the first therapeutic peptide, insulin, in 1921,
remarkable achievements have been made. Peptide drug development
has thus become one of the hottest topics in pharmaceutical research
(Lau and Dunn, 2018). Previously, peptide pharmacological use was
discouraged by existing limitations such as the short half-life and their
low oral bioavailability. However, in recent years, new synthetic
approaches have allowed their greater use as drugs, circumventing
existing limitations (Wang et al., 2018; Pant et al., 2020). Currently,
there are around 80 peptide drugs on the global market, and research
for new peptide therapies continues at a steady pace, with over
150 peptides in clinical development and another 400–600 peptides
in preclinical studies (Wang et al., 2018).

Therefore, understanding the structure and recognition of
protein-peptide complexes can assist in designing new peptides and
peptide-based compounds for drug development or biotechnological
purposes. In this way, databases of protein-peptide complexes may
pave the way for the analysis and understanding of protein-peptide
recognition mechanisms (London et al., 2010; Das et al., 2013).

1.2 Propedia v.1.0

Previously, we proposed Propedia: a database of peptide-
proteins interactions (Martins et al., 2021). Propedia is a
comprehensive and up-to-date database with a web interface
that allows you to group, search, and visualize the peptide-
protein according to combinations. To provide a comprehensive
dataset of complex protein-peptide experiments, we organized its
first version into three types of clusters based on: (1) sequence
similarity, (2) structure interface, and (3) potential protein-peptide
binding site. These clustering strategies were suggested to analyze
structures from different perspectives, aiding in detecting peptides
for interaction with a target of interest. In the first version, the
Propedia presented 19,813 complexes peptide-protein. At that
time, Propedia was the filtered database with the most peptide
structures available. However, with the large increase in the
number of protein complex structures deposited in public
databases, such as the PDB—Protein Data Bank (Bernstein
et al., 1978; Berman et al., 2000), we realized the need to update
the Propedia database. To update Propedia, we collect data from
PDB and parser the 3D structures, separating complexes in
peptide-protein pairs. Thus, Propedia creates an entry for each
complex protein-peptide. For instance, if a complex has four chains
A, B, C, and D interacting (being A and B proteins, and C and D
peptides), Propedia generates four entries: A-C, A-D, B-C, and
B-D. For each entrance, Propedia calculates several pieces of
information that are not shown in PDB. For example, binding
area (�A2) of protein and peptide, percentual of hydrophobic amino
acids in the peptide, molecular weight, aromaticity, instability,
isoelectric point, and so on. We also show similar entrances
based on sequence comparisons between peptides, contact
patterns in protein-peptide complexes, and interface interactions.

Now we present Propedia v2.3, which counts with the update of
the number of complexes present in the database of 49,300, besides a
code restructuring that allowed better performance and an
improvement in the navigability of the web tool. From now on,
Propedia will adopt the release year for its versions, i.e., version
2.3 corresponds to the version released at the beginning of 2023,
with an expectation of significant updates released between 2 and

3 years. In addition to the new update policy, as justification for this
new publication, Propedia v2.3 presents a new representative
approach for peptides, developed using structural signatures based
on graphs.

1.3 Structural signatures

A graph-based structural signature is a numerical
representation of a macromolecule 3D structure used to detect
similarities and differences between different structures. In this
method, each atom is modelled as a graph node. Interactions
between atoms can be represented by edges that connect the
nodes. Additionally, edges can represent the relationship
between an atom pair in a specific cutoff distance. Several
studies have pointed out the advantage of using structural
signatures to extract characteristics of macromolecules (Pires
et al., 2011; Mariano et al., 2019; Rodrigues et al., 2022). For
instance, the aCSM approach creates a cumulative vector of
pairwise atoms from a cutoff range. This method presents two
main steps (Pires et al., 2013).

Step 1: A distance matrix is calculated for the three-dimensional
coordinates of every atom of a peptide against the other atoms.

Step 2: Then, it is calculated the number of atom pairs for a range
distance, considering eight types of atoms (for the aCSM-all
variation). These atom types can be acceptor, donor, aromatic,
hydrophobic, negative, neutral, positive, and sulfide. The range
distance is defined by two parameters: cutoff step and cutoff limit.
For example, for a cutoff step of 1Å and a cutoff limit of 5Å, the
signature counts the number of atom pairs at a distance from 0-1Å,
1-2Å, 2-3Å, 3-4Å, and 4-5Å. This results in a numerical vector
representing the molecule structure.

The application of this approach for the peptide structures results
in a signature vector dataset: a CSV (comma-separated values) file
with a set of features that can represent the peptide structure and can
be used, for example, in machine learning tasks. For instance, this new
dataset could be used for detecting new peptides with therapeutic
characteristics, predicting new functional peptide structures, or even
inferring new uses for peptides with structures already publicly
available.

2 Methods

In this section, we describe the strategies used for updating
PropediaDB as well as calculating the novel proposed peptide sub-
dataset based on structural signatures.

2.1 Data collection

Data was collected from Protein Data Bank on 15 November 2022.
The criteria used for retrieving PDB entries were: (i) structures with
2–50 amino acids residues length; (ii) the structure should have at least
two chains; and (iii) the structure should be solved using X-ray
crystallography (resolution >2.5 Å) or by NMR (Nuclear Magnetic
Resonance) spectroscopy.
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2.2 Structures pre-processing

Data pre-processing is performed for each PDB structure collected
using in-house Python scripts. For every PDB structure, lines

corresponding to atoms of pair of peptide-protein are collected and
stored in separated PDB files. Additionally, the contact interface is
calculated and stored in corresponding files. Finally, metadata for each
related complex is stored in a MySQL databank (these will be used to

FIGURE 1
Propedia’s peptide signature validation workflow. (A) Workflow overall. (B) Example of clusters representation for case study 1 (x- and y-axis represent
PCA1 and PCA2). Colours represent regions for classifying sequence clusters (generated using Orange Data Mining). (C) Infographic represents the case study
1 entrance. (D) Graph-based structural signature representation. Cutoffs are represented by blue circles. Figure generated using ChimeraX and Opensource
PyMOL.
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feed the search engine based on sequences, structures, and binding
sites).

2.3 Signatures dataset

We obtained the structural signature of each peptide structure
from Propedia v2.3 using the Signa molecular signatures toolkit (not
published yet). Signa was executed using parameters “signature
algorithm: acsm_all”, “cutoff_limit: 20Å”, and “cutoff_step: 0.2 Å”.
The aCSM-ALL algorithm generates signatures containing the
number of atoms at each distance cutoff in Å for each atom
category considered (hydrophobic, positive, negative, acceptor,
donor, aromatic, sulfur and neutral).

The final signature dataset is a CSV file in which each line contains
the peptide ID (composed of the PDB ID and the peptide chain),
followed by a structural signature vector of 3,600 representative
numbers. The explanation of these numbers was included in the
Supplementary Material.

2.4 Machine learning

We performed two case studies to evaluate the use of structural
signatures to classify peptide-proteins structures of Propedia: (1)
classifying based on sequence clusters (s0, s1, s112, s151, and s162);

and (2) classifying based on the six specific Propedia sub-datasets:
AntimicrobialDB, ViralDB, EnzymeDB, MembraneDB, HormoneDB,
and PlantDB. The first dataset was obtained from a case study based
on sequences similarities performed on the first Propedia version. On the
other hand, the second case study includes a dataset collected from PDB
metadata classifying based on the complexes’ characteristics (details will
be presented in the next section). To evaluate if the signatures proposed
were correctly describing the peptide groups, we proposed an analysis
based on machine learning using Orange Data Mining (https://
orangedatamining.com/).

Models were constructed using sevenmachine learning algorithms
in the Orange Data Mining tool (default parameters were used in all
case studies). First, SVMwas executed using: cost (c = 1.00), regression
loss epsilon of 0.10, linear kernel, numerical tolerance equal to 0.0010,
and interaction limit of 100. Next, KNN was executed using the
parameters: number of neighbours equal to 3, metric “Manhattan”,
and weight “Distance”. Third, the neural network algorithm was
performed using the parameters: Neurons in hidden layers equal to
“300”, activation “ReLu”, solver “Adam”, regularization α = 0.001, the
maximal number of iterations 200, and replicable training. Gradient
Boosting was performed using the method “Gradient Boosting (scikit-
learn)” and the number of trees equal to “100”, learning rate “0.100”,
replicable training, growth control for limit depth of individual trees of
“3” and “do not split subsets smaller than 2”, and the fraction of
training instances of “1.00”. Logistic Regression was performed using
the regularization type of “ridge (L2)” and strength c = 1. The decision

TABLE 1 Machine learning analysis results. The confusion matrices and ROC plots are available in the Supplementary Material.

Case study 1: classifying the sequence clusters Correctly predicted (by class)

Model AUC CA F1 Precision Recall S0 S1 S112 S151 S162

kNN 0.984 0.952 0.952 0.952 0.952 97.8% 99.4% 95,1% 89,1% 85,6%

Tree 0.984 0.954 0.954 0.955 0.954 98,7% 94,5% 97,2% 86,0% 91,9%

SVM 0.992 0.937 0.937 0.942 0.937 100% 100% 100% 64,3% 84,7%

Random Forest 0.996 0.968 0.968 0.969 0.968 99,3% 98,2% 100% 86,0% 93,8%

Neural Network 0.992 0.915 0.910 0.919 0.915 100% 100% 100% 85,3% 40,5%

Logistic Regression 0.996 0.974 0.974 0.974 0.974 99,8% 100% 100% 88,4% 91,0%

Gradient Boosting 0.998 0.983 0.983 0.983 0.983 99,8% 100% 100% 93,8% 92,8%

Case study 2: Propedia sub-datasets Correctly predicted (by class)

Model AUC CA F1 Precision Recall Antimicrobial Enzyme Hormone Membrane Plant Viral

kNN 0.872 0.924 0.921 0.920 0.924 55,6% 96,7% 69,8% 51,9% 88,7% 56,1%

Tree 0.772 0.896 0.891 0.887 0.896 0.0% 95,8% 58,3% 27.4% 76,6% 45,8%

SVM 0.594 0.306 0.409 0.780 0.306 33,3% 30,7% 12,5% 29,6% 42,9% 32,2%

Random Forest 0.917 0.926 0.918 0.921 0.926 44,4% 98,5% 62,5% 38,5% 85,3% 42,8%

Neural Network 0.861 0.909 0.898 0.897 0.909 22,2% 97,5% 63,5% 36,3% 79.2% 29,9%

Logistic Regression 0.878 0.909 0.901 0.898 0.909 11,1% 96,9% 66,1% 28,1% 86,1% 37,5%

Gradient Boosting 0.931 0.919 0.908 0.913 0.919 55,6% 98,4% 64,6% 33,3% 81,0% 34,5%

Notes:In this table, the first column indicates the machine-learning method used in the prediction for both case studies. The next five columns indicate the metrics used to assess the quality of the

models. The closer to 1, the better the model. The "Corrected predicted (by class)" column indicates the percentage values of correct answers within that category for both case studies. The first case

study has five categories: S0, S1, S122, S151, and S162. On the other hand, the second case study presents six categories: antimicrobial, enzyme, hormone, membrane, plant, and viral.
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tree algorithm was performed using the parameters “induced binary
tree”, the minimum number of instances in leaves equal to “2”, do not
split subsets smaller than “5”, maximal tree depth “100”, and
classification stops when majority reaches 95%. Lastly, the random
forest was performed using ten trees and the minimum length of
subsets equal to 5.

3 Analysis

In this section, we describe two case studies performed to validate
the new dataset. The steps used in this analysis are summarized in
Figure 1. First, we collected the data from PDB and updated
PropediaDB. Then, we collected the data corresponding to each
case study, detected the structural signatures, and ran machine
learning algorithms to see if the structural signatures were a good
method to detect clusters based on two different metrics: sequence
similarities (case study 1) and similarities in the peptide role and
function (case study 2). We expect that the machine learning methods
can classify each group correctly (as the example shown in Figure 1B).

In the first case study, we collected 1,111 peptide structures from
the five most populated sequence clusters: S0, S1, S112, S151, and
S162. Each one of these clusters contains 503, 183, 161, 142, and
122 peptides, respectively (as represented in Figure 1C). In the second
case study, we collected 6,238 peptides from six Propedia sub-datasets:
Antimicrobial, Enzyme, Hormone, Membrane, Plant, and Viral. These
classifications were obtained from text mining analysis of 3D-structure
files collected from Protein Data Bank.

For both case studies, we calculated the structural signatures. A
representation of the graph-based structural model can be seen in
Figure 1D. The blue rings represent the cutoff used in the aCSM
method to detect atoms at determined distances (note that this method
is applied for each atom of the peptide).

Then, we imported the signature vectors to the Orange Data
Mining tool and performed classification using seven supervising
machine learning algorithms: kNN, SVM, Neural Network,
Gradient Boosting, Logistic Regression, Decision Tree, and Random
Forest. Training and testing were performed using 70% and 30% of the
datasets, respectively. The experiments were performed in triplicate
(the results are the average of metrics obtained).

Table 1 summarizes the main results of our analyses. For AUC
(Area under the ROC Curve), CA (classification accuracy), F1
(Harmonic Precision-Recall Mean), precision, and recall, high
values can indicate good prediction results. The “correctly
predicted (by class)” column shows the percentual of hits for a
determined cluster (higher is better).

As we hypothesized, the structural signatures demonstrated to be a
good method for representing peptide structures. The predictions
based on sequence similarities obtained an accuracy of over 0.98 using
the Gradient Boosting algorithm. Additionally, the most errors
occurred for clusters S151 and S162, which have visually similar
structures as shown in Figure 1C (structures yellow and red at the
bottom). This could indicate that the structural signatures can detect
similarities with more details than sequence-based strategies.

Compared to the first case study, the second case study presented
lower values for AUC, CA, F1, precision, and recall. Although for
many algorithms, accuracy values were superior to 0.9, which is
considered a good predictor. For the results extracted by classes,
lower values for the percentual of corrected predicted were found

in several groups. This can significate that the peptides share few
structural similarities, the PDB classification was not good for
classification, or even that some peptides can share characteristics
of different groups, which could be a good indicator that they could be
used in different therapeutic goals. Another possibility is that dataset
imbalance impacted the final prediction, including a bias for correctly
classifying the cluster with more samples (enzyme). In this case, the
KNN algorithm could reduce the bias problem once it considers only
the three closer neighbour structures for classification (which we can
observe in Table 1).

Lastly, we tried to explain which characteristics are more
important to classification in each group. Our results indicate that
the presence of aromatic/acceptor atom interactions, as well as
disulfide bonds, can be responsible for this. Although more studies
would be necessary for more precise conclusions (details were
included in Supplementary Material).

4 Conclusion

Here, we presented Propedia v2.3, the first major update to the
Propedia database, with a 150% increase in the number of complexes,
in addition to a new dataset developed using graph-based structural
signatures. These improvements enable new use cases and applications
such as the ones presented as case studies in this work. As such, we
expect the database to become more useful to its current users as well
as to new users.

Additionally, we also turn available the Propedia source code into
an open-source project at https://github.com/LBS-UFMG/propedia.
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