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Extracellular vesicles are secreted by almost all cell types. EVs include a broader
component known as exosomes that participate in cell–cell and tissue–tissue
communication via carrying diverse biological signals from one cell type or tissue
to another. EVs play roles as communicationmessengers of the intercellular network
to mediate different physiological activities or pathological changes. In particular,
most EVs are natural carriers of functional cargo such as DNA, RNA, and proteins, and
thus they are relevant to advancing personalized targeted therapies in clinical
practice. For the application of EVs, novel bioinformatic models and methods
based on high-throughput technologies and multi-omics data are required to
provide a deeper understanding of their biological and biomedical characteristics.
These include qualitative and quantitative representation for identifying cargo
markers, local cellular communication inference for tracing the origin and
production of EVs, and distant organ communication reconstruction for targeting
the influential microenvironment and transferable activators. Thus, this perspective
paper introduces EVs in the context of multi-omics and provides an integrative
bioinformatic viewpoint of the state of current research on EVs and their applications.
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Introduction

Extracellular vesicles (EVs) are membranous nanoparticles secreted by almost all cell types.
With some similarity to circulating DNA (ctDNA) and circulating cancer cells (CTCs), EVs that
contain a molecular cargo can now be extracted from body fluids using sensitive devices and
platforms (Tellez-Gabriel et al., 2020). As a broad representative class of EVs (with diameters
ranging from 30 to 150 nm) delivered to the extracellular space, exosomes participate in
intercellular and intra-organ communication (Ghafourian et al., 2022). As such, they are
capable of carrying diverse biological signals from one cell type or tissue to another. The
exosomal cargo includes proteins, lipids, miRNAs, and other ncRNAs (Isaac et al., 2021).
Currently, there are many comprehensive bioinformatic databases available for understanding
EVs, for example, the EVAtlas containing the most comprehensive ncRNA expression in EVs
(Liu et al., 2022), and exoRBase identifying novel EVs and long RNA signatures from human
biofluids (Lai et al., 2022).

On the one hand, the most recent studies and developments indicate the possibility and
feasibility of adopting bioinformatic methods to study EVs. Many existing tools from
bioinformatics have been applied to identify key functional cargo in EV datasets. There are
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web-based resources for elucidating molecular mechanisms and
pathophysiology of EVs isolated from different disease conditions,
including ExoCarta, EVpedia, and Vesiclepedia (Keerthikumar et al.,
2017). The miRanda, PITA, and RNAhybrid programs can be used to
identify differentially expressed microRNAs derived from exosomes
and their potential target genes (Zeng et al., 2022). There are many
bioinformatics tools available for evaluating various parameters
relevant to EVs, and these analyses can help to identify the
functional ability of EVs by analyzing host-pathogen interactions,
toxicity, omics, and pathogenesis (Saravanakumar et al., 2022). On the
other hand, new omics technology and multi-omics methods are
required to translate basic biological information of EVs into
urgently needed clinical applications. Increasing numbers of studies
have revealed the contributions of EVs to carcinogenesis, metastasis,
and the immunological response (Papadakos et al., 2022). EVs are
involved inmany biological processes (Zhang et al., 2022), and they act

as communication messengers within the intercellular network,
mediating different physiological activities or pathological changes
(Zhao et al., 2022). In particular, EVs are natural carriers of functional
proteins, RNA, and DNA, and thus they could efficiently deliver key
molecules and drugs as cost-efficient therapeutic tools (Pang et al.,
2020). Indeed, EVs and related developments in various omics
analyses should be helpful for the early diagnosis of tumors
(Gongye et al., 2022) and the development of personalized targeted
therapies in clinical practice (Papadakos et al., 2022).

The next direction of EVs should be a deeper understanding of
their biological and biomedical characteristics via multi-omics
analysis (Poh et al., 2023). This will require the corresponding
support from bioinformatic modeling and methods using an
integrative viewpoint (Figure 1). i) EVs work as mediators, and
their cargo includes many kinds of biological molecules; therefore,
multi-omics data and representation should be keys to qualitatively

FIGURE 1
The integrative bioinformatic research ideas and the workflow of extracellular vesicles. EVs have many biological functions related to their specific roles
in physiological and pathological processes. On the one hand, EVs can participate in cell–cell communication, e.g., the EV production, cargo packaging, and
signal transduction among cells together can implement cell–cell communication that could be spatially characterized by vertical integration and provide a
series of novel biomarkers. On the other hand, the mediator role of EVs is a key component of tissue–tissue communication. For example, the EV
secretion, transfer, and regulation from the source tissue to the distant target tissue consist of a many-to-many communication network that could be
temporally traced by horizontal integration and thereby provide early warning biomarkers. Similarly, many EVs with a specific cargo (satisfactory EV
acceptance) may be transferred by specific agents (e.g., exosomes with a particular origin) that could further create a microenvironment in target tissues
comprising a mixture of different EVs. Given these characteristics of EVs, the integrative bioinformatic approach has great possibility and feasibility to reveal
the temporal-spatial patterns of EVs and associated biomarkers, a characteristic that is especially suitable for supporting a rapid response in clinical
applications, for example, in treating major respiratory infectious diseases.
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and quantitatively describing their functional roles. ii) EVs are
produced from biological information senders (i.e., source cells or
tissues), and their cross-talk within local cellular communication
networks could be clues by which to trace their origin and
production. iii) EVs also transfer and influence various biological
information receivers (target cells or tissues), and their cross-talk
within remote organ communication networks should be valuable for
activating the remote target microenvironment.

Thus, this paper aims to introduce EVs in a multi-omics context
and to provide a perspective on their current research status and
diverse clinical applications (e.g., prevention, diagnosis, and prognosis
for lung diseases) from the viewpoint of integrative bioinformatics.

Functional communication at the cell
level

The nanosized EVs can be secreted from almost all existing cell
types (Kucuk et al., 2021; Wang et al., 2022), and they participate in
cell–cell communication (Feng et al., 2021; van Niel et al., 2022). In a
study of the EVs spontaneously flowing between non-stem cancer cells
and cancer stem cells (CSC), tumors were shown to adapt and thrive
depending on a cellular collaboration network mediated by EVs
secreted from the CSC (Ruivo et al., 2022). Although a recent work
suggested that EV-borne miRNAs would be minor effectors of the
stability of the recipient cells’ transcriptome (Albanese et al., 2021), the
EV-capsuled factors can regulate cancer hallmarks during
tumorigenesis locally and also enter the circulation to distant
organs via the construction of a pre-metastatic niche and further
metastasis (Chang and Pauklin, 2021; Zhang et al., 2022).

Many kinds of molecular cargo in EVs should have respective roles
in the above biological or biomedical procedures and thus can be
comprehensively characterized and represented by multi-omics
datasets and bioinformatic methods. A series of bioinformatic
approaches have been applied to identify biomarkers in EVs with
possible immunological clinical value (Wang and Yu, 2020). These
include differential expression analysis for marker genes, prognostic
analysis by SurvExpress, transcription factor networks predicted by
NetworkAnalysis, a distinct association of immune cells between cells,
and EVs characterized by single-sample gene set enrichment analysis.
Biomarker candidates for disease can also be detected by combining
miRNA-mediated competitive regulation and differential expression
analysis, depending on the EVs’ specific ceRNA network inferred by
integrating the transcriptome data and lncRNA regulatory association
data (Fang et al., 2022). In addition, cell–cell communication has been
understood by combined proteomics, lipidomics, and metabolomics
of EVs from infected macrophages; this can help design therapeutic
agents/targets for fighting deadly mycosis (Zhang et al., 2021).

Therefore, integrative bioinformatic models and methods (Yu and
Zeng, 2018; Zhang et al., 2022; Tang et al., 2022; Yu et al., 2022) should
be suitable for inferring the integrative representation of EVs at the
molecular and cellular levels, and this in turn can aid in understanding
the intracellular journeys of EVs. As it is not limited to the
typical integration of genetic information for examining the
potential biological pathways in a cell, the new integrative
bioinformatic analysis of EVs can bridge the underlying regulatory
signal flow among cells by combining with other cutting-edge
biotechnology methods such as single-cell omics using a form of
vertical integration. Such integrative omics data analysis based on

high-throughput technology should provide new data resources to
artificial intelligence for bioscience and further advance the
development of novel BT&IT approaches for EVs (Zeng et al.,
2021) that can support a unified clinical research chain, including
the identification of diagnostic markers, recognition of therapeutic
targets, and designs for drug delivery.

Functional communication at the tissue
level

Many EVs have a membrane-enclosed structure, and they carry
diverse biological molecules, which can realize the intercellular
transfer of functional molecules (e.g., cross-talk between tumors
and normal neighboring or remote tissues). The functional
ncRNAs and proteins enriched in EVs secreted from tumor tissues
could serve as biomarkers for diverse complex diseases (Dong et al.,
2020) and possibly act as suitable vectors for drug delivery specific to
tumors rather than normal tissues (Liu et al., 2021). For example, the
proteins in EVs based on comprehensive EV proteomics are expected
to be more enriched in tissue-specific EVs, a factor that is especially
helpful for monitoring pre-disease or disease states when patient blood
is collected (Muraoka et al., 2022). The content of EVs in placental
tissue can also be diagnostic for many metabolic diseases (Szabo, 2021;
Jafari et al., 2022; Muraoka et al., 2022) such as gestational
hypertension, gestational diabetes mellitus, and preterm birth
during pregnancy (Apostolopoulou et al., 2021; Ghafourian et al.,
2022; Pavani et al., 2022). In particular, microbiota-released EVs have
been shown to play mediator roles in microbiota-host communication
and inter-bacterial and inter-kingdom signaling through intercellular
signaling mechanisms (Sultan et al., 2021).

Using present multiparametric extraction protocols, multiple
omics materials (e.g., DNA, RNA, and protein) can be
simultaneously extracted from the same limited starting tissue
material (Shaba et al., 2022), thereby guaranteeing the sensitivity
and specificity of EVs-based bioinformatic research for disease
detection and monitoring (Roy et al., 2021) and further enhancing
the diagnostic value of EVs (Chisholm et al., 2022). The
multidimensional cargo of EVs should reflect the underlying
pathophysiological process. Based on this, the implementation of
multi-omics can be used to study the molecular complexity of
highly purified EVs and recognize EVs’ specific functions and
potential as biomarkers (Dhondt et al., 2020). Notably, a multi-
omics study has shown its merit for identifying novel EV-
associated biomarkers, for example, Alzheimer’s disease signatures
detected by the integrated analysis of 1,000 proteins, 594 lipids, and
105 miRNAs from EVs derived from microglia tissue (Cohn et al.,
2021).

Thus, multi-omics analysis based on integrative bioinformatics
can strongly support analysis of the joint or multi-view representation
of EVs and can aid in understanding the intercellular journeys of EVs.
This information could be integrated temporally. The relationship
mediated by EVs between information senders and receivers (i.e., from
source tissue to target tissue) is generally many-to-many. In particular,
the EVs from tumor tissues would carry specific signal molecules that
tend to communicate with certain distant tissues/cells (Melo et al.,
2015; Becker et al., 2016). Thus, the integrative bioinformatic analysis
of EVs indeed can help reconstruct the cargo-specific communication
networks among the source and target tissues in addition to cell–cell
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communication networks. Such analyses can provide newmethods for
the early detection and treatment of complex diseases of the source
tissue to prevent uncontrolled disease deterioration in target tissues.

Perspectives on lung disease study

With the development and application of EVs, these biological
mediators have shown strong potential for battling various lung
diseases. First, EVs can help to construct a life cycle scheme to
fight against acute respiratory diseases. In plasma, SARS-CoV-
2 RNA-positive EVs may provide an alternative diagnostic
approach for patients without SARS-CoV-2 RNA detectable in the
respiratory tract (Lam et al., 2021; Ning et al., 2021). Second, EVs can
help identify convenient health control measures for managing
chronic respiratory diseases. Since EVs and their cargo have the
potential to modulate common pathological processes (e.g.,
inflammation, apoptosis, and fibrosis) in different chronic diseases,
they could provide new prognostic signatures and therapeutic targets
for patients with chronic obstructive pulmonary disease (COPD)
(Reid et al., 2021). Third, EVs can be used to implement
personalized prognosis and treatment for malignant respiratory
diseases. Taking liver metastasis of lung cancer as an example,
dysregulated miR-122-5p in non-small-cell lung cancer (NSCLC)
cells can promote lung cancer progression by creating a pre-
metastatic microenvironment in liver cells for hepatic metastasis
(Li et al., 2021).

Based on the above brief perspective concerning the importance of
EVs in lung diseases, bioinformatics and multi-omics studies have
been used in applications in investigating the biological roles and
clinical values of different kinds of EV cargo in lung disease diagnosis
and prognosis. Using plasma samples retrieved and analyzed from
lung cancer patients, differentially expressed microRNAs were
screened by bioinformatic analysis, and their target gene sets were
identified by the miRanda, PITA, and RNAhybrid programs and
evaluated by function and KEGG pathway enrichment analyses.
The results finally determined a promising plasma EVs-derived
miRNA target that had an impact on radiotherapy outcomes of
NSCLC patients through the Ras signaling pathway (Zeng et al.,
2022). Similarly, based on serum-derived Piwi-interacting RNA
(piRNA) of EVs from healthy and diseased individuals, a candidate
signature piRNA has been screened by differential expression analysis
and validated by quantitative real-time PCR, with an assessment by the
area under the curve value and associated analysis as to age and the
TNM stage of patients. This would be an effective and promising
biomarker for the early diagnosis of NSCLC (Li et al., 2022).
Meanwhile, an EV protein, fibronectin, can be detected by an
efficient bioinformatic analysis and validated by in silico
immunohistochemical and parallel reaction monitoring; this
method was assessed with satisfactory classification accuracy in an
independent NSCLC cohort (An et al., 2019). In addition, combined
with exosomes purified from lung cancer cells, untargeted metabolic
profiling, and metabolic pathways analysis, exosome-based
metabolism has demonstrated biomarker identification ability in
human biofluids (Choi et al., 2022). In particular, based on a
transcriptome and proteome atlas of tumor-derived exosomes,
integrative bioinformatic analysis has detected diverse exosomal-
enriched RNAs and proteins and their tumorigenesis-associated

regulatory mechanisms in mediating lung cancer development (Luo
et al., 2021).

Collectively, EVs have paved the way for the early detection and
treatment of complex diseases such as cancer (Crosby et al., 2022;
Fitzgerald et al., 2022). Along with the development of technologies
working with small messengers such as EVs, the cellular andmolecular
mechanisms governing many observed functions of EVs can be
resolved, meaning that EVs would be fully identified as disease
biomarkers, therapeutic agents, and drug delivery vehicles for
human health and complex diseases (van Niel et al., 2022).
Meanwhile, data-intensive scientific research (Zheng et al., 2021)
can provide an integrative bioinformatic analysis environment that
can capture a cross-domain functional representation of EVs based on
multi-omics data. These temporal-spatial informative outcomes can
help explain the origin, transfer, and delivery of diverse molecular
cargo in the context of biomedicine. This in turn can support a rapid
response in the clinical chain of prevention, diagnosis, prognosis, and
treatment of human maladies such as major respiratory infectious
diseases.
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