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1 Introduction

Technology has long been a driver of innovation and improvement in drug discovery
(Gershell and Atkins, 2003; Pina, et al., 2009). Advancements within fields such as chemical
engineering, high-throughput experimentation, and molecular biology have transformed the
process of drug hunting from serendipitous discovery within historic dye collections to
methodical science with empowered understanding of medicines’ impacts on human health.
Despite improvements in scope and cost-efficiency brought on by adopted technologies, our
industry follows “Eroom’s Law”, an observed exponential decay in FDA new drug approvals
per billion dollars of R&D investment (Scannell, et al., 2012), highlighting a key expectation-
reward gap between technological investments and payout in therapeutics.

Drug discovery is, in practice, a chain of challenging decisions across diverse disciplines.
In considering the journey of a therapeutic candidate from administration to in vivo target
engagement, a discovery teammust address numerous biological and chemical questions. No
single technology or dataset has emerged that is powerful enough to tackle all of these
questions in aggregate, and we must often drive decisions using surrogate or partial readouts
in the absence of ethical and/or practical measurements (Scannell and Bosley, 2016).

Artificial Intelligence (AI), a technology that has gained a lot of publicity and investment,
is unique in its promise to impact multiple challenges across the drug discovery pipeline
(Lounkine, et al., 2012; Vamathevan, et al., 2019; Bender and Cortés-Ciriano, 2021; Gupta
et al., 2021; Paul, et al., 2021; Renaud and Wang, 2021; Kumar et al., 2023). On one hand,
when appropriately applied, AI can help us leverage advances in laboratory techniques,
generated data, and computational algorithms to make the best decisions we can using the
often incomplete information that we have. On the other hand, AI has already had some
controversial and expensive failures in the industry, such as Watson AI for automated
disease diagnosis and the clinical trial failure of Exscientia’s DSP-1181, touted as the first AI-
designed drug (O’Leary, 2022; Raleigh, 2022). History teaches us that technology integration
happens in the context of the present-day and thus implementation is neither seamless nor
immediate. Knowing the strengths and weaknesses of AI can help ensure its correct
application and reduce the risks of both over- and underinvestment.

2 Machine learning (ML) and AI in drug discovery

The recent procurement of diverse biological and chemical data generated by ‘omics
technologies has fueled an AI revolution for biomedical sciences (Biswas and Chakrabarti,
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2020). The charge for data-hungry ML is to help us extract value
from these experiments: identifying patterns beyond human
recognition, distilling large and/or complex datasets, and
generating predictions to inform future experiments. The hope is

that resulting ML models built on biochemical data capture
underlying principles describing molecules and the behaviors of
living systems with implications for disease amelioration. Some of
these principles have direct translation to the drug discovery process,

FIGURE 1
(A) Tasks required and challenges encountered in ML applications for drug discovery. (B) A decision flowchart for applying ML in drug discovery.
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such as enabling the engineering of antibodies with improved target
affinity and reduced immunogenicity (Bachas, et al., 2022). Others
have less immediate applicability—for example, functional
understanding of AI-predicted RNA spliceoforms (Jaganathan,
et al., 2019) toward new targets may be limited by our
understanding of the nuanced contexts of disease, and ML-
informed protein structures (Jumper, et al., 2021; Lin, et al.,
2022) may not guarantee the identification of therapeutic
binders, due to limitations such as the synthesizable chemical
space of today’s screening libraries. Nevertheless, each advance
improves our ability to answer key scientific questions and make
informed decisions, with industry impact proportional to the target
and disease focus areas in which it can be applied.

The ability of AI to address diverse problems and data types is
enabled in part by the modularity of ML architectures. In practice,
observed success of an AI method for one task may lead to rapid
trialing, tailoring, or even direct transfer of encoded modules and
learnings for the next. However, domain-specific performance
boosts are often achieved using customized scoring functions or
connectivities and processing steps adapted to the input data. For
example, advanced algorithms like AlphaFold2 and ESMFold
illustrate how inputting amino acid sequence alignments together
with procedures for facilitating information flow between modules
and continuous refinement significantly improved prediction of
protein structure (Jumper, et al., 2021; Lin, et al., 2022).
Understanding input requirements of data and algorithms can
help ensure correct application of these kinds of ML approaches
to impact drug discovery.

3 Requirements and challenges for
using AI

The existence of challenges in drug discovery does not
guarantee AI as an immediate and practical solution. Required
ingredients of data, compute, expertise, business utility, and a
digital-savvy culture must first be assembled with conscious
investment to first ensure readiness and implementability
(Figure 1). Deficiencies in any of these elements limit the
value we can generate with AI.

As the input for ML algorithms, the shape, quality, scope, and
quantity of data matter. Data can be organized in many ways—for
example, time series or multidimensional measurements can be
stored within one wide or multiple narrow arrays—and conscious
data shaping can mitigate misinterpretation and downstream
reorganization. Meanwhile, quantity and type of input data can
dictate AI method selection. Data such as protein structures or
microscopy images often describe multi-dimensional
interactions concentrated within localized contexts, and
architectures best suited to learn from these data are often
different from those that best learn from categorical or single
point measurements. Augmenting limited data with new datasets
or experiments can increase ML power and scope, though caution
is required as diverse sources may introduce unique biases and
noise. Alternatively, algorithms can work to mitigate deficiencies
in data, such as inferring missing values, or over/under-sampling
to improve balance in learning (Chawla, et al., 2002; Hessler and
Baringhaus, 2021; Irwin, et al., 2021). Spending time

understanding the data can be helpful in assessing when a
problem is ready to be tackled with AI or when investment is
needed in collecting data that would better inform the task at
hand. Failure to assess and address data can decrease the
accuracy, confidence, reproducibility, and applicability of
downstream ML applications (United States Government
Accountability Office, 2019), sometimes propagating even
beyond to patient outcomes (Seyyed-Kalantari, et al., 2021).

Regardless of the format of input data, featurization, or the
description of entities/samples based on measured or inherent
properties, must be carefully performed to best complement the
intended ML application. For example, small molecules can be
featurized in many ways (David, et al., 2020): using SMILES, text-
based descriptors of 2D structures; using atom coordinates
describing 3D conformation; using calculated or measured
physicochemical descriptors such as LogD and pKa; or even
using methods such as extended-connectivity fingerprints
(Rogers and Hahn, 2010) that iteratively capture atom
connectivities. Choice of featurization affects result
interpretability and actionability—ML to inform QSAR
decisions for medicinal chemists might favor physicochemical
descriptors that highlight relevant property changes for synthetic
modifications, while ML for high-throughput screeners might
benefit from topological descriptors to learn diverse scaffold hits
within an experiment. Evaluating feature similarity is particularly
important for generative chemistry endeavors, where AI-
proposed molecules should be compared with training data to
evaluate novelty (Walters and Murcko, 2020; Wills, 2021).

One often under-addressed component of data quality is
metadata. Because biological systems are complex, drug
discovery experiments often possess conditional features
whose importance is realized only after subsequent
measurements. Capturing information such as a cell line,
associated genetic engineering, and time of measurements can
enable downstream AI-based detection of systematic
measurement biases, such as batch effects (Sprang et al.,
2022), and meta-analyses across experiments. Metadata can
also include interpretations of data—what were the hits in an
experiment and what criteria were employed in their selection?
This information is historically under-reported and difficult to
assemble retrospectively. As a core enabler of findable, accessible,
interoperable, and reusable (FAIR) data tenets (Wilkinson, et al.,
2016), metadata should also include source information,
especially when integrating external data. Because drug
discovery data are diverse and acquired across disciplines and
sources, (meta) data are rarely uniform. But, extra investment in
data assembly and an infrastructure to enable data storage and
sharing is often worth it, as failure to capture both data and
metadata in the present may impair utility of data assets in future
AI applications.

Compute, comprising algorithms and infrastructure, is the
second requirement for AI. Compute facilitates both the
execution of AI and interpretation of AI outputs.
Computational algorithms should be selected with careful
consideration of the data available and the problem at hand.
Metrics, such as accuracy and area under the receiver-operator
curve (AUROC) can facilitate quantitative evaluation of
algorithm performance and comparison of new methods to

Frontiers in Bioinformatics frontiersin.org03

Santa Maria et al. 10.3389/fbinf.2023.1121591

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1121591


the state of the art. Calculating these metrics requires definition
of ground truth, which is supported by upfront investment in
experimental design and inclusion of labeled control sample
inputs. Published benchmarking datasets and tasks, such as
GuacaMol (Brown, et al., 2019) and MoleculeNet (Wu, et al.,
2018) for small molecules, and TAPE (Rao, et al., 2019) for
protein structures, help standardize and contextualize these
assessments, but may not exist for specialized applications.

Some ML methods, especially deep learning, are data and
compute intensive, which may limit their implementability
within organizations. Nevertheless, sharing centralized
computational and data infrastructure across groups can help
reduce cost. Computing environments must also be secure to
protect proprietary data and sensitive patient data. Dedicated
support from IT experts and/or cloud platform CROs can better
ensure the timely and secure assembly of data, algorithm, and
computational infrastructure on demand; otherwise time spent
on this is time scientists spend away from solving the problems at
hand. This is a significantly underreported and critical issue, as
poor support delays insight delivery, and can decouple ML with
expected time frames of decision making in drug discovery
projects.

As a final key ingredient, organizational culture defines how
AI can be successfully deployed, informing its business use and
intended application. In most organizations, the generation of
required input data, execution of AI, and validation of its impact
can fall within separate groups. This requires machine learners to
establish functional relationships with these key stakeholders to
understand business needs and engineer AI solutions. Well-
maintained relationships ensure continuous vision of
actionability and mitigate both the risks of misapplication of
AI and mis-/over-interpretation of data and results.

As data consumers, AI/data scientists are often the translators
that convert data generated by laboratory scientists into viable
inputs for machine learning models. In return, data scientists
must ensure models and their results are continuously accessible
and shared back with benchtop scientists. The two groups must
work together to establish standards and practices for data/model
capture and utilization, ensuring today’s work informs smarter
experiments tomorrow. AI-assisted Design-Make-Test and
iterative screening cycles are great illustrations of how regular
communication of data and ML results between groups or
functions can accelerate hit identification and optimization (Pant,
et al., 2018). Data and model siloing, especially in large
organizations, impairs this communication and reduces
accessibility and utility.

MLmodels are only useful if their outputs are actionable—in
general, that they inform experiments or decision making
toward the business impacts of developing a drug. As an
example, for AI-generated compound hypotheses this can
mean ensuring molecules are synthetically feasible and thus
able to be tested. Business understanding also informs
performance and time requirements for AI—a model must
have higher specificity for hit identification if only a small
number of generated compounds can be tested versus a large
library. And, training a model for a week is infeasible if outputs
are needed on shorter timescales. A breakdown in business

understanding can lead to the problems of data scientists
building hammers with no nails, or for securing screws.

Establishing a data-aware and AI-supportive culture can
sometimes be a roadblock for AI utilization. This can manifest
as organizational inertia or politics when AI automation obviates
work that was previously performed with an established way of
working, or when employees are asked to allot already limited
time to new data initiatives. Hype and endorsements from
executive leadership can be helpful in motivating diverse
teams to support new AI endeavors, but can also lead to an
expectation-reward error, as incidences of overpromising and
under-delivering sever trust between computational and bench
scientists.

To summarize, without good data, compute, people, and
culture, including business utility, AI is not possible. Nor is AI
the panacea for the absence of one of these components.
Tapping into the true and sustainable impact of AI means
maintaining these dependencies while tackling challenges
that can arise.

4 Discussion—The future of AI in drug
discovery

The generation of new quantities and types of biomedical data,
together with continuous improvements in computation and lessons
learned from ML applications, have driven evolution of the pharma
AI landscape. There are key challenges ahead such as bringingML to
new data types and domains and in integrating diverse data to better
inform current implementations. Some initial barriers to entry have
fallen: democratization of data and algorithms with databases and
code repositories have enabled sharing both within an organization
and externally with the larger community. Even consortia, such as
MELLODDY, facilitate federated learning, preserving
confidentiality while pooling data across companies to improve
ML models (for some; Blackburn-Owkin, 2022). Similarly,
improvement of hardware and a growth in CROs providing
infrastructure and workflow solutions make computation more
accessible than ever. Nevertheless, the training of revolutionary
transformer-based large language models like GPT-3 can cost
tens of thousands or even millions in US$, requiring both big
data and “big compute” (Sharir et al., 2020). Companies and
institutions with the means to generate data at a scale beyond
what is available to the public and those who can afford the
compute requirements to train and deploy models at scale, will
have a significant advantage over others. Though many large models
are hosted openly for use, this also raises a reproducibility challenge
as only those with access to big data and big compute will be able to
validate them, compromising a key tenet of the scientific method.

The future of drug discovery will bring disruptive technologies
and data that are unimaginable to us today. While it is possible that
future AI will deliver a new generation of medicines, the belief that it
will do so independently belies the complexity of the drug discovery
process and undervalues the many scientific teams that contribute
required inputs. Employing frameworks of cultural and data
preparedness can ready us to tap into the data we have today
with sustainable, thoughtful application of AI, and improve our
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probability of success in impacting human health through
therapeutics.
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