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Introduction:Using the ACMG-AMP guidelines for the interpretation of sequence
variants, it remains difficult to meet the criterion associated with the protein
domain, PM1, which is assigned in only about 10% of cases, whereas the criteria
related to variant frequency, PM2/BA1/BS1, is reported in 50% of cases. To improve
the classification of human missense variants using protein domains information,
we developed the DOLPHIN system (https://dolphin.mmg-gbit.eu).

Methods: We used Pfam alignments of eukaryotes to define DOLPHIN scores to
identify protein domain residues and variants that have a significant impact. In
parallel, we enriched gnomAD variants frequencies for each domains’ residue.
These were validated using ClinVar data.

Results: We applied this method to all potential human transcripts’ variants,
resulting in 30.0% being assigned a PM1 label, whereas 33.2% were eligible for
a new benign support criterion, BP8. We also showed that DOLPHIN provides an
extrapolated frequency for 31.8% of the variants, compared to the original
frequency available in gnomAD for 7.6% of them.

Discussion: Overall, DOLPHIN allows a simplified use of the PM1 criterion, an
expanded application of the PM2/BS1 criteria and the creation of a new BP8
criterion. DOLPHIN could facilitate the classification of amino acid substitutions in
protein domains that cover nearly 40% of proteins and represent the sites of most
pathogenic variants.
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Introduction

With the availability of high-throughput sequencing technologies, thousands of variants are
identified in every patient analyzed. Up to 50% of coding variants correspond to non-synonymous
changes, the interpretation of which is now recognized as the most difficult part of the molecular
diagnostic procedure. To improve this process and ensure consistent data interpretation, various
guidelines have beenproposed (Gelb et al., 2018; Shinar et al., 2020; Baumgartner-Parzer et al., 2020)
that rely on the collection of pathogenicity evidence gathered from population data, computational
and predictive data, functional data, segregation data, and other levels, as illustrated in the ACMG-
AMP guidelines (Richards et al., 2008; Richards et al., 2015). Despite their simplicity, inconsistent
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classifications between laboratories have been reported (Yorczyk et al.,
2015; Kim et al., 2019) and are primarily related to the degrees of
subjectivity and uncertainty allowed by the ACMG-AMP guidelines.
They recommend using 28 criteria during the interpretation process to
distinguish: benign, probably benign, of unknown significance (VUS),
probably pathogenic and pathogenic variants. However, only a subset of
these criteria are available in clinical practice and access to an annotated
collection of variants is essential. To provide such a resource, various
initiatives have been developed, including ClinVar (Landrum et al., 2016),
ClinGen (Savatt et al., 2018), VarSome (Kopanos et al., 2019) and
InterVar (Li and Wang, 2017). These collect data from experts and
various resources and can provide an interpretation for unreported
variants. Nevertheless, this automated process can sometimes generate
inappropriate results and data should be viewed with caution.

If we focus on classification evidence, on the one hand, one of the
most challenging criteria is PM1 “Located in amutational hot spot and/or
critical and well-established functional domain (e.g., active site of an
enzyme) without benign variation”, which was used in about 10% of
reported cases (Amendola et al., 2016). To extract this information,
automated systems rely primarily on UniProt (The Uniprot Consortium.
2017) and “dbnsfp31a_interpro”, which is a database of domain
information from dbNSFP (Liu et al., 2011; Liu et al., 2016) and
InterPro (Mitchell et al., 2019) which incorporates information on
protein families, domains, and functional sites. Other initiatives have
been developed using the Conserved Domain Database (CDD)
(Marchler-Bauer et al., 2015), such as the subRVIS score (Gussow
et al., 2016), which aims to assess the intolerance of gene subregions
to variants. In general, the PM1 criterion is associatedwith a broad viewof
the functional regions where mutations cluster. However, it is difficult to
use because this clustering is poorly defined and understood, as illustrated
by its various interpretations in Vasome (Kopanos et al., 2019) and
InterVar (Li andWang, 2017). It can also be highly biased by the interest
of genes in humandiseases and thus to the number of variations classified.

On the other hand, the most used evidence is the PM2/BA1/BS1
“Variant absent in population databases or with an allele frequency too
high for the disease” reported in about 50% of cases (Amendola et al.,
2016). The assumption of this criterion is very simple: if a variant has been
reported with a high frequency in the general population, it cannot be a
rare pathogenic variant, otherwise the frequency of this disease would be
higher; if a variant has never been reported, or with a very low frequency,
then it can be a rare pathogenic variant. This information benefits greatly
from the large-scale genome/exome sequencing projects andmost people
collect this information from gnomAD (Koch, 2020) or population-
specific databases, such as theABraOM(Brazilian population) (Naslavsky
et al., 2017), TogoVar (Japanese population) (Mitsuhashi et al., 2022) or
Greater Middle East Variome (Middle East population) (Scott et al.,
2016). Nevertheless, human evolution has not allowed for genome
saturation of variants and some of them are very rare in the
population due to genetic drift (Bach, 2019). Indeed, the chance
appearance of a neutral variant not subject to a selection force will
most likely result in its disappearance after several generations if the
population is large enough, and only a few will be fixed in the population.
Thus, while it is recognized that 50 to 100 de novo variants appear each
generation in humans, most of these events have been lost during
evolution, explaining why not all neutral substitutions are present in
our genome. An alternative view is based on the simple assumption that
the 50 to 100 de novo variants in each of the 7.8 billion living humans
should have produced every nucleotide change compatible with life

(Shirts et al., 2016). Only the availability of all human genomes would
allow us to conclude whether either of these views is correct or whether
the truth lies somewhere in between.

How can the evidence for PM1 and PM2/BA1/BS1 be linked?
We expect this to be the case simply because the information
contained in the protein domains can be used to shed light on
both. We hypothesized that alignment of protein domains will
identify key residues involved in the structure or function of
these domains and identify variations that strongly affect these
properties, and that the frequency of substitutions at each
position in all homologous domains will enrich our
interpretation of the frequency of a variant in the population.

To extract such information from protein domains, we
developed the DOLPHIN “Domain Logo Protein for Human
Information” system and evaluated its benefits using ClinVar
variants of at least two-star quality as use cases. The data of all
human substitutions located in the protein domains are available on
the DOLPHIN website: https://dolphin.mmg-gbit.eu.

Material and methods

Substitution scores for specific domains
through positional score matrices

All protein domain information was extracted from the Pfam
database (Finn et al., 2016). We used the Pfam 33.1 version of May
2020, containing 18,259 entries. Among these domains, we used the
Pfam-A subset of 18,101 curated domains for further analysis
(Sonnhammer et al., 1997). Each alignment was filtered to remove
information from Archaea, bacteria, viruses, and other sequences to
retain only data from eukaryotes. Overall, they contain information
from 27,077,043 domains from 1,161 species. The human protein
domains were extracted from the canonical Uniprot transcripts used
in Pfam and represent 5,168,776 amino acids out of the
12,871,017 amino acids in human proteins (40.2%).

For each residue, we then calculated an amino acid value using the
following steps: creation of a count matrix, a corrected frequency matrix,
a corrected relative frequency matrix, and the position score matrix.

The counting matrix

First, we created a script to count the occurrence of each amino
acid at each position in the alignment and to transfer this data into a
count matrix: C (p, l). Let A be a multiple alignment of length L and ψ
a finite alphabet (single letter codes of amino acids). A count matrix
denoted C representative of the alignment A is a matrix L × |ψ | such
that for any letter l ∈ ψ and any position p ∈ {0 . . . L-1}, the index
element l and p of C denoted C (p, l) is defined by the number of
occurrences of the letter l in position p of the multiple alignment A.

The corrected frequency matrix

From the count matrix, we created a corrected frequency matrix.
The goal was to no longer observe a value equal to 0 by adding a
pseudo-count to the starting frequency. Let ψ be a finite alphabet
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(single letter codes of amino acids), C a count matrix, l a letter ∈ ψ, p
a position ∈ {0 . . . L-1}, c a pseudo-count and fl the expected
frequency of the letter l. The corrected frequency matrix is denoted
F′ and is defined by the following formula:

F′ p, l( ) � C p, l( ) + c × fl

∑l∈ψ C p, l( ) + c

We arbitrarily chose a pseudo-count “c” equal to 1, this value
being negligible compared to the values of the count matrices.
Regarding the expected frequency of the “fl” amino acids, we
used data from Uniprot/Swissprot (http://www.uniprot.org/
statistics/Swiss-Prot%202013_04).

The corrected relative frequency matrix

The purpose of this matrix was to re-contextualize the
frequencies. Let ψ be a finite alphabet (single letter codes of
amino acids), L a natural number, F′ a corrected frequency
matrix, l a letter ∈ ψ, p a position ∈ {0 . . . L-1} and fl the
expected frequency of the letter l with ∑l∈ψfl = 1. The corrected
relative frequency matrix is denoted F″ and is defined by the
following formula:

F″ p, l( ) � F′ p, l( )

fl

The score-position matrix

Finally, the corrected relative frequency matrix was modified
to obtain the score-position matrix. For this, the logarithm of the
corrected relative frequency was used. Let F″ be a corrected
relative frequency matrix, ψ a finite alphabet (single letter
codes of amino acids) and L be a natural number. A score-
position matrix denoted M is a matrix L × |ψ | such that for
any letter l ∈ ψ and any position p ∈ {0 . . . L-1}, the element of
indices l and p of M denoted M (p, l) is defined by the following
formula:

M p, l( ) � ln F″ p, l( )

This matrix allowed us to move from a multiplicative to an
additive model. Normally, this type of matrix determines when the
frequency of the motif is greater than the frequency of the context
(and vice versa). Here, we have slightly diverted this principle to
calculate a “Δ” score by subtracting the wild-type (wt) score from the
mutant (mut) amino acid using the formula:

Δ � M pmut, lmut( ) −M pwt, lwt( )

Frequency of a given substitution in a
specific protein domain

All substitution frequencies (52,774,671 protein missense
variants) were extracted from dbNSFP version 4.1a (16 June
2020), which provides information for all potential non-

synonymous SNVs (and splice-site SNVs) in the human genome
(Liu et al., 2020). We used the allele frequency column from
gnomAD v2.1.1 (Koch, 2020) containing data from
125,748 exomes. For each missense variation in a specific
domain, we selected the most frequent mutational event leading
to that substitution in all proteins containing that domain. For
example, the NP_000129.3:p.Thr2032Ser variant of the FBN1 gene
corresponds to the 135th residue of the Pfam “Calcium-binding EGF
protein” (PF07645) domain. The DOLPHIN frequency of this
specific residue was set to 2.41 × 10−5 extracted from the NP_
001989.2:p.Thr784Ser variant of the FBLN2 gene that impacts the
135th residue of this domain. Data were stored in a substitution
frequency table.

K-means clustering in R

To predict whether a substitution involves a key residue of a
functional domain using DOLPHIN “wt” and “Δ” scores, we used
a commonly unsupervised machine learning algorithm: k-means
clustering with R. The k-means clustering works by evaluating
the distance between a point and the center of a cluster. Points are
associated to the nearest k-center, then cluster centers of gravity
are computed and become new centers. These steps are repeated
over several iterations until stabilization is achieved. The optimal
number of clusters is determined by computing k-means
clustering using different k-clusters values and the WSS
(Within Sum of Square) is drawn based on the number of
clusters. The location of a kink in the plot indicates the
appropriate number of clusters.

This approach was used on ClinVar variations extracted from
the 28 July 2020 version of ClinVar (Landrum et al., 2016). All class
1, 2, 4 and 5 missense variants located in protein domains were
selected and only those with a quality of at least two stars were used
for further analysis. They contained 9,121 selected variants
(4,382 pathogenic or probably pathogenic variants and
4,739 benign or probably benign variants).

The DOLPHIN database and the website

The DOLPHIN database has been developed using PostgreSQL
version 11 (postgresql.org). The web interface was created with the
Laravel framework version 6 (“http://www.laravel.com”). The
alignment logos were obtained from the Skylign tool (Wheeler
et al., 2014). End users can query the system for a gene,
transcript, or protein and then select a specific variant. Intuitive
graphical displays and tables make it easy to retrieve HMM logos,
alignments, predictions, as well as frequencies for all variants in
protein domains (Supplementary Figure S1).

To allow rapid access to DOLPHIN data, an API is also
available. Il allows retrieval of the gene symbol, variation using
the HGVS p. nomenclature, the Pfam entry names, position of the
variation in a protein domain, reference and alternative amino
acids, DOLPHIN “wt”, “mutant” and Δ scores, PM1 and PM2/
BS1 predictions, as well as the domain symbol and name, from a
single protein substitution localized in the protein domains
(Supplementary Figure S2).
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Results

Determination of thresholds for substitution
classification using the DOLPHIN “wt” and
“Δ” scores

Using the “position score” matrices, we determined for each
ClinVar variant (Landrum et al., 2016) its “wt” and “Δ” scores, which
are representative of a key residue and a significant amino acid
change at that residue respectively (Figure 1). Combining these two
pieces of information allowed us to define whether a specific
substitution can be annotated with PM1 evidence representing a
missense variation that significantly alters a key residue of a protein
domain. A k-means clustering approach allowed us to distinguish
4 clusters, cluster A containing 92% of the pathogenic variants,
cluster B 80%, and cluster C 45%, while cluster D contains 81% of the
benign variants. These clusters were then individualized with
threshold lines (Supplementary Figure S3). Cluster C is an area
of overlapping pathogenic and benign variants, which does not allow
for effective discrimination. Therefore, the DOLPHIN system only
labels variants located in areas A and B as PM1.

Comparison of DOLPHIN PM1 evidence with
InterVar PM1 information

To assess the benefits of the new PM1 evidence provided by
DOLPHIN, we compared the results with the InterVar system,

which generates an automated classification of variant using
18 criteria including PM1 evidence (Li and Wang, 2017)
(Supplementary Table S1).

If we make the assumption that pathogenic variants contained in
protein domains have a high probability of impacting domain
structure and/or function, we expect them to be annotated with
PM1 evidence. As shown in Table 1, InterVar and DOLPHIN
provide statistically different PM1 annotations, with an accuracy
of 0.64 and 0.82, respectively. The main difference is in the rates of
false positive (2,654 vs. 461) and true positives (3,707 vs. 2,379).
InterVar false negatives correspond mainly to localized variations in
protein domains that contain at least one benign variant as
illustrated by the pathogenic variant NP_000426.2:p.Cys1061Tyr
(NOTCH3). In other situations, they correspond to protein domains
absent from Uniprot as illustrated by the pathogenic variant NP_
000536.6:p.Pro447Leu (HNF1A) that is localized in the Pfam
domain (PF04812) of HNF-1B that has no match in UniProt
(Table 2, Supplementary Figures S4A, B1). InterVar false
positives correspond to variants localized in protein domains
without benign variations when the variant itself does not involve
a key domain residue. This is illustrated by the benign variants NP_
000242.1:p.Thr564Ala (MSH2) and NP_000359.1:p.Phe285Val
(TSC1) (Table 2, Supplementary Figure S4C, D). DOLPHIN false
negatives (e.g., pathogenic variants NP_714915.3:p.Leu349Ser
(TMEM67) and NP_001186036.1:p.Arg242Cys (TBC1D24)) and
false positives (e.g., benign variants NP_000240.1:p.Glu600Gly
(MLH1) and NP_009225.1:p.Val1804Asp (BRCA1)) are all
located in the C DOLPHIN zone, the area where pathogenic and
benign variations overlap (Table 3, Supplementary Figure S5).

Since the ClinVar classification takes into account all ACMG
criteria, it is very likely that some missense variations classified as
pathogenic may indeed impact on splicing and thus appear as false
negatives when considering DOLPHIN scores. To evaluate this
hypothesis, we used the HSF Pro system from GenOmnis
(genomnis.com) (Desmet et al., 2009) on all false-negative
variants located in zones C and D. We found that among the
2,003 variants, 61 have an impact on splicing (out of a total of
100 in the entire dataset), 314 have a potential impact, 820 probably

FIGURE 1
Distribution of the 9,121 ClinVar variationswith a quality of at least
two stars located in protein domains. X-axis = DOLPHIN “wt” scores;
Y-axis = DOLPHIN “Δ” scores. Red triangles = ClinVar Class 4 &
5 variations (n = 4,382). Green dots = ClinVar Class 1 &
2 variations (n = 4,739). Horizontal and vertical bands on X and Y-axis
represent the corresponding “wt” and “Δ” values of each variation
according to their type: red for pathogenic variations (class 4 & 5) and
green for neutral variations (class 1 & 2).

TABLE 1 PM1 classification of ClinVar variants localized in protein domains.
TP = True Positives; TN = True Negatives; FP = False Positives; FN = False
Negatives; SPE = Specificity; SEN = Sensibility; ACC = Accuracy; MCC =
Matthews Correlation Coefficient.

INTERVAR DOLPHIN

NA 4 2,993

TP 3,707 2,379

TN 2,083 2,638

FP 2,654 461

FN 673 650

SPE 0.44 0.85

SEN 0.85 0.79

ACC 0.64 0.82

MCC 0.31 0.64
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have no impact and finally 808 have no impact (Supplementary
Figure S6).

Frequency of reported variations in protein
domains

The 18,101 unique domains extracted from the Pfam-A subset
contain information from 105,178 domains from the human
genome (6,533 unique domains). In total, these domains contain
5,168,776 amino acids out of the 12,871,017, which represents
appoximately 40.2% of the human proteins when considering the
UniProt entry name used by Pfam. Of the 52,774,671 potential
substitutions extracted from dbNSFP 4.1a (Liu et al., 2016) in
protein domains, 3,990,680 are annotated in gnomAD (Koch,
2020) (7.6%). DOLPHIN provides extrapolated frequency
information for 16,764,498 amino acid substitutions (31.8%).

Among the DOLPHIN annotations, we extracted two groups of
variants: A) those with a frequency ≥5% and, B) those with
frequency between 1% and 5% that are highly relevant as

annotated as BA1 or BS1 ACMG classification evidence. We
found 398,443 and 228,844 of these variants, respectively.
386,934 (97.1%) and 221,073 (96.6%) respectively were reported
with lower gnomAD frequencies, as shown in Figure 2.

Of group A, 647 were previously reported in ClinVar (0.16%).
Six hundred thirty-seven were annotated as Benign or Likely
Benign (98.5%). Of these, 614 were previously reported in
gnomAD with a MAF ≥0.05, whereas 22 were reported with an
average frequency of 0.57% ± 1% (1.5 10−2–4.8%). Three of the
remaining 4 variants were reported in ClinVar as Likely
Pathogenic or Pathogenic (1.1%). Of group B, 489 were
previously reported in ClinVar (0.21%), of which 481 were
reported as benign or likely benign (98.4%).

Protein domain information from DOLPHIN
in relation to protein conservation

Many in silico pathogenicity prediction tools use protein
conservation information extracted from the conservation of

TABLE 2 False negatives and false positives of the InterVar PM1 annotation based on InterVar, DOLPHIN and Varsome. AA = Amino Acid.

Variants Clinvar classification Systems PM1 Details Supp.figure Area

NOTCH3 NP_000426.2:
p.Cys1061Tyr

Pathogenic/Likely
pathogenic

DOLPHIN Yes Domain: EGF (PF00008) AA #1051 to 1080, wt = 4.3,
Δ = -10.8

4A A

InterVar No —

VarSome No Uniprot protein “EGF-like 27” has 6 non-VUS
missense/in-frame/non-synonymous variants
(5 pathogenic and 1 benign) = 83.3%, which is more
than threshold 50.0%

HNF1A NP_000536.6:
p.Pro447Leu

Pathogenic DOLPHIN Yes Domain: HNF-1B (PF04812) 4B C

AA #282 to 540, wt = 2.9, Δ = -9.3

InterVar No —

VarSome No No domain in Uniprot

Hotspot of length 17 amino-acids has only
1 pathogenic missense/in-frame variants, which is less
than minimum of 6

MSH2 NP_000242.1:
p.Thr564Ala

Benign DOLPHIN No Domain: MutS_IV (PF05190) 4C D

AA #473 to 569, wt = 0.03, Δ = -0.4

InterVar Yes —

VarSome No No domain in Uniprot

Hotspot of length 17 amino-acids has 4 pathogenic
missense/in-frame variants, which is less than
minimum of 6

TSC1 NP_000359.1:p.Phe285Val Benign/Likely benign DOLPHIN No Domain: Hamartin (PF04388) 4D D

AA #7 to 719, wt = 1.3, Δ = -2.3

InterVar Yes —

VarSome No No domain in Uniprot

Hotspot of length 17 amino-acids has 0 pathogenic
missense/in-frame variants, which is less than
minimum of 6
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100 species published by UCSC using phyloP (Pollard et al.,
2009) and phastCons (Siepel et al., 2005) based on the
“multiz100way” multiple sequence alignment (MSA) generated
by Multiz software (Blanchette et al., 2004). To assess whether
amino acid conservation of a given protein in different species
provides distinct information about the conservation of these
amino acids in protein domains, we used the 9,121 ClinVar
variants. As shown in Supplementary Figure S7, using the
Spearman rank correlation coefficient, we obtained a moderate
positive correlation (ρ = 0.50). This difference is illustrated by the
uneven distribution of conservation, with 54% of residues
showing very high conservation between species (>85%) versus
only 3.6% showing very high conservation within domains.

This difference can be illustrated by the example of the
37th (Supplementary Figure S8A) and 10th (Supplementary
Figure S8B) repeated “calcium binding EGF-like domain”
(PF07645) of the fibrillin-1 protein, which contains 37 such
domains in Pfam.

Discussion

The evolution of the gene-coding portion of eukaryotic genomes
has resulted in multiple proteins, many of which share protein
domains (Bagowski et al., 2010). By definition, these domains are
characterized as conserved, functionally independent protein
sequences that bind or process ligands using a central structural
motif (Bagowski et al., 2010). Each domain shares common functions
and structures within various proteins and species. Throughout
evolution, variations have affected these elements and have been
subject to genetic drift or selection. Studying domains from
multiple species provides a new layer of information that can be
used to facilitate the classification of human variants. It takes
advantage of the variety of variation rates that exist in different
organisms due to their population number, generation turnover,
dissimilar metabolisms, interaction with the environment, and
reproductive strategies, allowing conclusion to be drawn about the
evolution of protein domain over much longer periods of time than

TABLE 3 False negatives and false positives of the DOLPHIN PM1 annotation based on DOLPHIN, InterVar and Varsome. AA = Amino Acid; UK = Unknown.

Variants ClinVar
classification

System PM1 Details Supp. figure Area

TMEM67 NP_714915.3:
p.Leu349Ser

Pathogenic/Likely
pathogenic

DOLPHIN UK Domain: Meckelin (PF09773) 5A C

AA #167 to 995, wt = 1.2, Δ = -2.4

InterVar Yes —

VarSome No No domain in Uniprot

Hotspot of length 17 amino-acids has only
1 pathogenic missense/in-frame variants, which is
less than minimum of 6

TBC1D24 NP_001186036.1:
p.Arg242Cys

Pathogenic/Likely
pathogenic

DOLPHIN UK Domain: RabGAP-TBC (PF00566) 5B C

AA #48 to 255, wt = 1.5, Δ = -0.7

InterVar Yes —

VarSome Yes UniProt protein TBC24_HUMAN domain “Rab-
GAP TBC” has 15 non-VUS missense/in-frame/non-
synonymous variants (14 pathogenic and 1 benign),
pathogenicity = 93.3% which is more than
threshold 50.0%

MLH1 NP_000240.1:p.Glu600Gly Benign DOLPHIN UK Domain: Mlh1_C (PF16413) 5C C

AA #502 to 756, wt = 1.4, Δ = -2.8

InterVar No —

VarSome Yes UniProt protein MLH1_HUMAN region of interest
‘Interaction with EXO1’ has 66 non-VUS missense/
in-frame/non-synonymous variants (50 pathogenic
and 16 benign), pathogenicity = 75.8% which is more
than threshold 50.0%

BRCA1 NP_009225.1:
p.Val1804Asp

Benign DOLPHIN UK Domain: BRCT (PF00533) 5D C

AA #1756 to 1842, wt = 1.3, Δ = -4.6

InterVar No —

VarSome Yes UniProt protein BRCA1_HUMAN domain “BRCT
2"has 64 non-VUS missense/in-frame/non-
synonymous variants (37 pathogenic and 27 benign),
pathogenicity = 57.8% which is more than
threshold 50.0%
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just human evolution. We therefore built the DOLPHIN system not
only to annotate residues in key protein domains but also to refine
substitution frequencies in the human population. Both of these are
essential to the ACMG-AMP guidelines for classification of variants in
research and diagnostics of rare human genetic diseases or cancers
(Richards et al., 2008; Richards et al., 2015) through the PM1 and
PM2/BS1 criteria.

Various resources have been developed to use protein domain
information for variant classification, such as the MetaDome (Wiel
et al., 2017; Wiel et al., 2019) or the Prot2HG systems (Stanek et al.,
2020). Both use only human variations and do not benefit from all
information available in eukaryotes like DOLPHIN. The importance of
protein domain information has also been explored for classifying
somatic mutations through the “domain-centric” approach used in
OncoDomain (Peterson et al., 2017) that takes into account somatic
variants from The Cancer Genome Atlas (TCGA). We believe that the
selection pressure is different when considering somatic events in
cancer cells versus germline events and their impact on the whole
organism. DOLPHIN and OncoDomain are therefore complementary.

Today, automatic classifiers, such as InterVar and VarSome, do
not assign the PM1 criterion in the same way, even though they both
use data from the same reference databases (e.g., InterPro). Thus,
InterVar excludes all protein domains containing variants annotated as
benign or common (allele frequency >5%) and does not consider
hotspots. VarSome considers protein domains that contain at least one
annotated pathogenic variant if the ratio of pathogenic variants versus
non-pathogenic and VUS variants is above 50%. In addition, both
approaches rely on manual annotation of variants, which introduces a
bias because only a minority of the observed variants are currently
classified. In comparison, DOLPHIN, using only residues conservation
in eukaryotes, is free from annotation of variants and the presence/
absence of benign variants. To do so, it uses “wt” and “Δ” scores for
each variant located in a protein domain. Based on the variants in the
ClinVar database located in protein domains and a k-means clustering

approach, we demonstrated that DOLPHIN could efficiently assign a
PM1 label. This was extended to all potential variants in human
transcripts, resulting in 15,841,959 variants (30.0%) being assigned the
PM1 label. We therefore propose to restrict the PM1 criterion to this
subset of variants that was determined by a standardized approach
provided byDOLPHIN, consistent with the harmonization goals of the
ACMG-AMP recommendations.

We believe that the information associated with mutational
hotspots should be treated separately. Indeed, these elements are,
on the one hand, independent of the protein domains and, on the
other hand, provide only indirect information on the variant by
answering the question: is it located in a small region where many
pathogenic variants are present? This information could then be
proposed with a lower weight (“support”)?

In addition to using DOLPHIN scores to label a PM1 variant, this
data can also be used to label a variant as having no significant impact on
a protein residue. We therefore propose to create a BP8 criterion
“Located in a functional domain without affecting a key residue”.
This new label could be assigned to 17,523,715 variants (33.2%)
using the same standardized approach via DOLPHIN. In total,
DOLPHIN will provide a PM1 or BP8 label to 63.2% of variations
localized in protein domains. Arguably, BP8 is a computational criterion
that can overlap the BP4 criterion provided by in silico tools. We believe
that BP8 should not be considered as computational evidence but rather
as observational evidence.

Concomitantly, as Amendola et al. (2016) report, the most widely
used criteria for variant classification are PM2/BA1/BS1 “variant absent
in population databases or with an allele frequency too high for the
disease”. As more and more genomes are sequenced and their data
shared in central databases as gnomAD (Koch, 2020), their variant
frequency content is directly linked to human evolution in relation to
genetic drift and selection pressure. Thus, even if tens of millions of
samples were available, these evolutionary forces could limit this
information. One way to circumvent this limitation is to access

FIGURE 2
Variations localized in protein domains with a DOLPHIN frequency greater then 5% and reported in gnomAD. X-axis (logarithmic scale) = gnomAD
frequency; Y-axis = DOLPHIN Frequency. Note that only a minority of variations (2.4%) have the same frequency in both datasets.
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another layer of information that is provided by the protein domains.
Because these domains are present inmultiple proteins, they represent a
much longer evolutionary period for a larger population and provide
much more information. Comparing of the gnomAD and DOLPHIN
data reveals that the former provides information for 3,990,680 (7.6%)
residues out of the 52,774,671 potential protein domains substitutions,
while the latter provides frequencies for 16,764,498 amino acid
substitutions (31.8%).

We are fully aware that the frequency information in DOLPHIN
does not give the exact frequency of a given amino acid substitution at a
given protein residue, unlike gnomAD, but rather the highest frequency
of that specific substitution among all corresponding protein domains
in any human protein. To demonstrate that this new information is
valuable, we selected all substitutions whose frequency in DOLPHIN is
greater than 5% (398,443 variations), theoretically corresponding to
“BA1 evidence” ACMG/AMP and those whose frequency is between
1% and 5% (386,934) corresponding to “BS1 evidence”. Respectively,
98.5% and 98.4% of those reported in ClinVar were classified as benign
or probably benign, demonstrating that DOLPHIN frequencies above
1% are strongly associate with benign variations.

Because the DOLPHIN frequency is an extrapolation of the true
frequency of a variant, we propose that this information, when it is
greater than or equal to 1%, be used as a BS1 criterion. When it is
null (a variant has never been observed in any of the corresponding
protein domains), it could then be annotated with the PM2 criterion.
This annotation has, according to us, a higher specificity than
gnomAD since only 63.2% of the variants contained in
DOLPHIN have this label versus 92.4% with GnomAD.

Despite the standardized approach used in DOLPHIN, some
limitations remain. For example, it is not possible to annotate as
PM1 or BP8 the ambiguous variants located in the C-zone.
Futhermore, like most systems using protein-level information,
DOLPHIN may incorrectly label substitutions that impact the
mRNA level. This led us to propose to classify as BS1 only variants
with a high DOLPHIN frequency (>5%) that should theoretically be
classified as BA1. Indeed, this “protein” frequency can be derived from
a different nucleotide context than the original variant.

In conclusion, we developed a new system called DOLPHIN to
extract information from protein domains. These data are freely
available from the DOLPHIN website at https://dolphin.mmg-gbit.
eu, in accordance with Open Science recommendations (https://en.
unesco.org/science-sustainable-future/open-science/
recommendation). We were able to demonstrate that this system
allows a re-evaluation of the PM1 and PM2/BS1 criteria and the
creation of a new BP8 classification criterion by a standardized
approach in agreement with the objectives of harmonization of the
ACMG-AMP recommendations. We believe that it allows an easier
classification of amino acid substitutions in protein domains that
represent nearly 40.2% of proteins and constitute the sites of most
pathogenic mutations (Iqbal et al., 2020).
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