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Drug development is costly and time-consuming, and developing novel practical strategies
for creating more effective treatments is imperative. One possible solution is to prescribe
drugs in combination. Synergistic drug combinations could allow lower doses of each
constituent drug, reducing adverse reactions and drug resistance. However, it is not
feasible to sufficiently test every combination of drugs for a given illness to determine
promising synergistic combinations. Since there is a finite amount of time and resources
available for finding synergistic combinations, a model that can identify synergistic
combinations from a limited subset of all available combinations could accelerate
development of therapeutics. By applying recommender algorithms, such as the low-
rank matrix completion algorithm Probabilistic Matrix Factorization (PMF), it may be
possible to identify synergistic combinations from partial information of the drug
interactions. Here, we use PMF to predict the efficacy of two-drug combinations using
the NCI ALMANAC, a robust collection of pairwise drug combinations of 104 FDA-
approved anticancer drugs against 60 common cancer cell lines. We find that PMF is able
predict drug combination efficacy with high accuracy from a limited set of combinations
and is robust to changes in the individual training data. Moreover, we propose a new PMF-
guided experimental design to detect all synergistic combinations without testing every
combination.
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INTRODUCTION

Complex diseases are increasingly recognized as emerging not from single molecules, but from
systemic dysfunction of biological processes. From a systems view, pharmacologically treating
complex disease requires engaging multiple components of the dysregulated pathways through
polypharmacology or combination therapies. Already combination therapies represent the standard
of care for an array of diseases, including cancer (Mokhtari et al., 2017) bacterial infection (Mulani
et al., 2019), HIV (Ghosn et al., 2018), neurological and behavior disorders (Ortiz-Orendain et al.,
2017). They are also the focus of increasing attention in the search for therapeutics to treat other
complex diseases, such as AD (Cummings et al., 2019) and NAFLD (Singh et al., 2017).
Unfortunately, discovering effective combination therapies requires either serendipitous
discovery in the clinic or laborious searches in pre-clinical models.

Phenotypic approaches have been more successful than target-based approaches in bringing new
first-in-class drugs to the clinic (Swinney 2013, 2014), and next-generation in vitro disease models
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promise to boost the power of phenotypic screens by enhancing
their clinical relevance. Screening in patient-derived 3D
organoids (Lou and Leung, 2018; Takahashi, 2019) and
biomimetic tissue chips that contain multiple interacting cell
types in physiological geometries (Mittal et al., 2019; Gough et al.,
2021), has proven useful for personalizing therapies for cancer
and other complex diseases. Inter-organ side effects have been
studied in vitro using multiple linked tissue chips (Skardal et al.,
2017), paving the way for complete human-on-a-chip disease
models. The price of this biological fidelity is a loss of throughput.
Although sophisticated disease models more closely resemble
their clinical counterparts than do their 2D monoculture
predecessors, they are far more expensive to develop and
maintain. Large-scale screens and even moderate combination
screens are not yet feasible in these systems.

An addressable bottleneck in the phenotypic discovery pipeline
is the low hit rate of screens. The overwhelming majority of
compounds tested in traditional phenotypic screens are inactive,
and the problem is exacerbated in combination screens, where the
number of possible combinations scales exponentially with the size
of the compound library. Fortunately, the availability of large
screening data sets in human cell lines has spurred
computational methods for predicting drug efficacies and
synergies for complex diseases (Menden et al., 2019; Adam
et al., 2020). Deep learning models using Graph Convolutional
Networks are a powerful and well explored approach for relating
complex relationships between inputs and targets, and many
successful models have been developed for predicting values in
the drug-interaction network (Sun et al., 2020). Other successful
approaches include those that incorporate information on
transcriptomic or proteomic profiling (Dawson and Carragher,
2014; Huang et al., 2019; Diaz et al., 2020), compound chemical
structures (Sidorov et al., 2019), or drug targets (Yang et al., 2020;
Rao et al., 2019; Iwata et al., 2015). Network-based approaches have
been applied to create robust methods of identifying
therapeutically effective drug combinations (Cheng, Kovács, and
Barabási 2019).

Combination screens are amenable to statistical prediction
methods that use screening data without supplementing it with
details about chemical structures, targets, or OMICS profiles. One
particularly powerful approach employs a higher-order
factorization machine to predict dose-response surfaces for
unique drug combinations using only data from the same
screen (Julkunen et al., 2020). The advantages of such
methods are that they guard against bias introduced from
orthogonal databases, they can be used with unannotated
compound libraries, and their predictions are consistent with
the data generated in the screen of interest. For methods like this
to be effective, the computational and experimental components
of the screen must be properly synchronized, so that each informs
the other (Stern et al., 2016). A number of studies have addressed
the right way to mix computational and experimental work to
find effective combination therapies (Calzolari et al., 2008; Gerlee
et al., 2013; Kashif et al., 2015; Weiss et al., 2015; Silva et al., 2016;
Matlock et al., 2017; Ianevski et al., 2019).

Here we introduce a method for predicting the effects of drug
combinations using as input only the effects of other drug

combinations. Mathematically, the problem is identical to
filling in the missing values of a symmetric matrix containing
the effects of drug combinations. Each row and each column of
the matrix corresponds to a drug, and the matrix elements are the
effects of the drug combinations. If only a subset of the matrix
elements are known, the rest can be inferred by decomposing and
reconstructing the partial matrix under certain assumptions
(Lezon et al., 2006; Lezon and Bahar, 2010). For the current
application, we use Probabilistic Matrix Factorization (PMF)
(Salakhutdinov and Mnih, 2007), a collaborative filtering
algorithm that has proven successful in other problems of the
same class (for an introduction to collaborative filtering
algorithms, see Aggarwal, 2016).

The PMF algorithm was first developed to recommend movies
to Netflix users based on the movies viewed by other users. The
core assumption of PMF is that attitudes or preferences that lead
to each user’s score for a movie are shared by other users with
similar taste. PMF recommends that viewers watch movies that
similar viewers enjoyed. The method has since been applied to
predict values from other large, sparse and imbalanced data sets.
Biomedical applications of PMF include predicting diseases
associated with transcription patterns (Ha et al., 2020; Mao,
Wang, and Zhang 2019), recommending novel indications for
drug repurposing (Meng et al., 2021; Yang et al., 2014), and
predicting novel targets from drugs (Cobanoglu et al., 2013;
Cobanoglu et al., 2015; Li et al., 2020). In the present context,
PMF is used to “recommend” drug combinations based on the
known effects of similar combinations. We train our model on
phenotypic screening data from the NCI ALMANAC (Holbeck
et al., 2017), a robust collection of pairwise drug combinations of
104 FDA approved anticancer drugs against 60 common cancer
cell lines. We find that knowing the effects of only 50% of drug
combinations allows us to classify the effects of the missing
combinations as efficacious with 95% accuracy, and we
demonstrate how our method can be incorporated into
optimal experimental design.

METHODS

NCI ALMANAC
The NCI ALMANAC is a novel, easy-to-use resource created to
help researchers identify new combination therapies. The NCI
ALMANAC database (Holbeck et al., 2017) is a collection of
pairwise combinations of 104 FDA approved anticancer drugs
against the NCI-60, a set of 60 common human tumor cancer cell
lines collected by the National Cancer Institute. A total of
5,232 drug-drug pairs were evaluated in each of the cell lines;
304,549 experiments were performed to test each drug at either 9
or 15 combination dose points, for a total of 2,809,671 dose
combinations. At each dose combination, the percent cell growth
after 2 days was measured and recorded, and the efficacy of the
combination calculated as the percent of growth inhibition. A
combination that has no effect on cell growth compared to
control has zero efficacy; a combination that completely halts
cell growth has efficacy 100. See the NCI ALMANAC (Holbeck
et al., 2017) for details. For each cell line, the combination
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efficacies are arranged into a symmetric matrix, M104x104, where
each row and column represent a drug, and each element
represents the efficacy of a unique drug-drug combination on
that cell line. For purposes of PMF (see below), diagonal elements
are ignored. The data is then normalized to mean-zero and unit
variance for input into the PMF algorithm.

The synergy of each combination is reported by the NCI
ALMANAC as a “ComboScore” that measures the difference
between the recorded growth rate after testing and the growth
rate expected by Bliss Independence (Bliss, 1939). A positive
ComboScore indicates a synergistic combination, whereas a
negative ComboScore indicates an antagonistic combination.
When applying PMF to predict synergies instead of efficacies,
we populate the input matrix M with ComboScores and
normalize as described above.

PMF
Probabilistic Matrix Factorization (PMF) is a collaborative
filtering algorithm that factors the low-rank input matrix
Mn×m into the product of two low-rank matrices, An×d and
Bm×d such that Mij � AiBT

j . Thus, PMF reduces to estimating
the two matrices A and B. The core assumptions of this are that
the values ofM are independent, normally distributed and share a
common variance σ2. Thus, the conditional probability of entries
of M can be expressed as

p(M|A,B, σ2) � ∏n

i�1∏
m

j�1N(Mij|AiB
T
j , σ

2)
Iij

where Iij is the indicator function equal to 1 ifMij is known and 0
otherwise (Salakhutdinov and Mnih, 2007).

To solve for thematricesA andB, we place a zero-mean spherical
Gaussian prior on each, such that p(A|σA) � ∏N

i�1 N(Ai|0, σ2AI)
and p(B|σB) � ∏N

i�1 N(Bi|0, σ2BI). We can then derive the full
posterior distribution of A and B as p(A,B|M, σ2, σ2A, σ

2
B)

∝ p(M|A,B, σ2)p(A∣∣∣∣σ2A)p(B
∣∣∣∣σ2B). Maximizing the log-posterior is

equivalent to minimizing the sum-of-squared-errors objective
function: L(A,B) � 1

2 ∑
N
i�1 ∑

M
i�1 Iij(Mij − AiBT

j )
2+ λ

2 ∑
N
i�1

∣∣∣∣
∣∣∣∣Ai
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2
Fro +

λ
2 ∑

M
j�1

∣∣∣∣
∣∣∣∣Bj

∣∣∣∣
∣∣∣∣
2
Fro, where λ is the regularization rate hyperparameter.We

then construct a stochastic gradient descent update scheme by
differentiating the loss function in terms of A and B, such that

z

zAi
L(A,B) � ∑M

j�1Iij(Mij − AiB
T
j )Bj + λAi

z

zBj
L(A,B) � ∑N

j�1Iij(Mij − AiB
T
j )Ai + λBi

Algorithmically, we randomly initialize A and B from
Gaussian distributions and iteratively update them by
descending along these gradients until a minimum of
L(A,B) is reached. Applying these rules simultaneously to
both A and B guarantees convergence of the algorithm to a
local minimum. However, the stochastic nature of the initial
conditions implies that each run of PMF may not necessarily
converge to the global minimum, or even the same local
minimum. This requires that PMF be run multiple times on
different random initializations and then select the most
accurate factorization. While this increases the overall
computational cost, this is offset by PMF’s computational

cost scaling linearly with input size and using lightweight
low-rank approximations.

Stochastic gradient descent methods are a critical component
of machine learning, and methods incorporating momentum and
acceleration play an important role when used in conjunction
with stochastic gradients (Assran and Rabbat, 2020). Momentum
methods help accelerate stochastic gradient descent in the
relevant direction and dampen oscillations as a minimum is
approached by incorporating the momentum constant c. The
update step with respect to the parameters θ can be expressed as
vt � cvt−1 + η∇θJ(θ), θ � θ − vt . However, simple momentum
methods can be insufficient for complex surfaces. The
Nesterov Accelerated Gradient (NAG) (Assran and Rabbat,
2020) improves on this method by “looking ahead” to where
the parameters will be to calculate the gradient and is formalized
as follows: vt � cvt−1 + η∇θJ(θ − cvt−1), θ � θ − vt . Rather than
computing the gradient at parameters θ, NAG looks ahead at a
rough approximation of where the parameters will be, computing
the gradient at θ − cvt−1. This anticipatory update greatly
increases optimization and performance of PMF as it
approaches a minimum.

RESULTS

PMF Accurately Recovers Drug Synergies
From Partial Data
We first investigated the ability of PMF to recover hidden
elements in the drug combination efficacy matrix. For each
cell line, we randomly hid a fraction of the combination
efficacy matrix, creating non-overlapping “training” and
“validation” sets. Then, we used PMF to predict the hidden
values and complete the matrix. To guarantee a solution, we
included only cases where all drugs were present in a single
connected component; that is, where a path could be made from
any drug to any other drug using common combination partners.
PMF recovered training data to arbitrary precision (Figure 1A)
and recovered test data well, provided a sufficiently large training
set (i.e., small fraction of data hidden). Using empirically
determined hyperparameters for the regularization rate (λ),
learning rate (η), and momentum constant (γ), we found that
knowing only 30–50% of the drug-drug interactions was
sufficient to recover the remaining values in the matrix to
within 10% (Figures 1B,C). When selecting combinations
with efficacies above a given threshold, PMF performance did
not vary strongly with the threshold value (Figure 2); that is, the
method can predict whether a combination has an effect over
0.9 nearly as well as it can predict whether a combination has an
effect over 0.2.

PMFPerformance Is Largely Independent of
Individual Drug Efficacies
Assuming compounds act independently (i.e., Bliss
independence), the most efficacious compound combinations
will be combinations of the independently most efficacious
compounds. Reasoning that efficacious drugs are more likely

Frontiers in Bioinformatics | www.frontiersin.org August 2021 | Volume 1 | Article 7088153

Nafshi and Lezon PMF for Drug Combinations

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


FIGURE 1 | PMF recovers the values of hidden elements of the drug efficacy matrix from only a fraction of interactions. The mean-squared error of PMF in
recovering values of (A) known, (B) hidden, and (C) all elements is plotted against the fraction of hidden data. In all panels, the shaded area represents the standard
deviation of the mean-squared error over 25 trials across all cell lines.

FIGURE 2 | The area under the ROC curve (AUROC) of PMF is shown as the fraction hidden and efficacy cutoff vary on the 786-0 cell line, which is representative of
all cell lines. The efficacy cutoff describes the efficacy at which a drug-drug combination is considered active, with combination efficacy defined as 100 minus the percent
growth as described in the standard NCI-60 testing protocol (Holbeck et al., 2017). As the fraction hidden decreases, the performance of the model remains high until it
drops sharply at 70% hidden and performs with similar accuracy regardless of the efficacy cutoff, decaying to random guesses when the full matrix is hidden. The
smooth surface indicates PMF reproduces all elements with equal accuracy and is not heavily affected by outliers.
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to influence pathologically relevant mechanisms, we next
investigated whether PMF performed better when trained on
combinations involving highly efficacious drugs. For each cell
line, we rank-ordered the compounds by efficacy and then
divided the drug efficacy matrix into halves and quarters to
assess if PMF is more accurate when only provided singularly
efficacious drugs.

On aggregate we find the differences in accuracy were small,
and PMF performance was largely independent of the individual
efficacies of the starting set outside of this edge case
(Supplementary Figures 1A,B). More generally, we found that
the most efficacious compounds neither led to the most
efficacious combinations, nor were they the best at predicting
the values of missing efficacies (Supplementary Figure 1C). In
fact, individual drug identities did not greatly affect the accuracy
of the prediction. We generated an occupancy matrix by
randomly selecting 10% of the elements in the combination
efficacy matrix. We then randomly shuffled the identities of
the drugs while keeping the occupancy matrix static.
Repeating this 1,000 times for 1,000 different occupancy
matrices, we found PMF predicted the missing values of each
matrix with a mean squared error of 0.938 ± 0.0145, and thus
performed equally well regardless of the individual drug identities
for a given occupancy matrix.

Graph Topology’s Influence on PMF
Performance
Viewing the problem though a graph lens, the combination
efficacy matrix describes an undirected graph in which the N
drugs are nodes and known two-drug combinations represent
weighted edges (for a primer on network science, see Barabási,
2016). The challenge of PMF is to reconstruct a fully connected
graph from a seed network. By using different algorithms for
selecting drug combinations for the training set, we investigated
how seed network topology influences prediction accuracy. The
method described above, where seed drug combinations are
selected randomly and independently, is known as an Erdős-
Réyni graph (Rényi and Erdős, 1959) that has a Poisson degree
distribution (Barabási and Pósfai 2016).

An extension of the Erdős-Réyni graph is the Watts-Strogatz
model (Watts and Strogatz, 1998). This method is motivated by
the observation that often in real networks, almost any node can
be reached by a short number of steps, known as the Small-World
Property (Milgram, 1967). TheWatts-Strogatz graph is generated
by attaching each node to its nearest k neighbors, resulting in a
regular lattice structure. Each edge is then randomly reassigned
with probability β. When β is 0, no changes are accepted, and the
method preserves the original lattice. As β increases, more links
will be randomly assigned, and as β approaches 1, all links will be
randomly reassigned, resulting in a completely random Erdős-
Réyni network. Intermediate values of β result in small-world
networks of low diameter (Barabási and Pósfai 2016).

When training data was arranged in a Watts-Strogatz model
topology, the performance of PMF increased with β (Figure 3A).
We attribute the poor performance near β � 0 to the difficulty of
predicting combination effects of drugs that are separated by large

distances on the seed network. The adjacency matrix for a regular
lattice is banded, with the unknown values comprising a
contiguous block. Performance improves for values of β near
½, where the small-world property emerges, and peaks at β � 1,
the Erdős-Réyni network. Whereas the small-world Watts-
Strogatz graph provides a short path between any pair of
nodes, the Erdős-Réyni graph contains multiple paths, each
carrying evidence for the value of the inferred combination
efficacy.

Many real-world networks do not follow a binomial or Poisson
degree distribution, and instead follow a power law or scale-free
distribution. In a scale-free network, the probability that a node
has k edges is proportional to k−γ, where γ is a scaling exponent
between 2 and 3. We explored whether a scale-free distribution in
the input data influences the accuracy of the prediction. Using the
hidden parameter model (Caldarelli et al., 2002; Söderberg, 2002;
Boguñá and Pastor-Satorras, 2003), we generated scale-free seed
networks for training PMF. The method performed equally well
for scale-free distributions for all values of γ, and predicted
unknown values with accuracy comparable to the Watts-
Strogatz method (Figure 3B).

Designing a combination screen using the above-described
graph topologies may not be experimentally convenient; instead,
screeners are more likely to select a few well-known compounds
and test them in combination with other compounds in a large
library. The adjacency matrix of the seed graph in this approach
has several rows/columns in which every value is known, while
the large majority of have few or no known values (Figure 3C).
The corresponding graph has several fully connected hubs, with
the remaining nodes having very few connections.

We explored the accuracy of PMF by using a hub method
construction defined as follows: First, we ensured that every node
had exactly one connection. Then, we selected nodes at random
to be hubs, and ensured that each hub was fully connected.
Finally, the remaining edges were randomly assigned in an Erdős-
Réyni random fashion. We found the PMF performed stronger
on hub method topologies than random Erdős-Réyni topologies
when more than 80% of the network was hidden and the graph
was sparse. Moreover, when training data was arranged in a hub
model topology, the performance of PMF increased as the
number of hubs increased (Figure 3C).

Thus, we found that the specific seed topology of the training
data did not greatly affect the accuracy of the prediction in
identifying synergistic drugs if the topology was a random
Erdős-Réyni graph or had a binomial degree distribution, such
as the Watts-Strogatz for large β. However, PMF did perform
worse when edges were evenly distributed following the Watts-
Strogatz model for small values of β or when edges were
distributed following a scale-free distribution. Moreover, we
found that PMF was more accurate under hub topologies
mirroring real drug combination assays when more than 80%
of the network was hidden, which is exactly the region of interest
if we want to test as few combinations as possible.

PMF Predicts Efficacy, But Not Synergy
The desired output of most phenotypic combination screens is an
efficacious and non-toxic combination; however, de novo
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development of combination therapeutics will benefit from
identifying synergistic drug combinations, whether or not they
are efficacious. For example, two drugs that individually have no
efficacy may have a moderate effect in combination. Although
such a combination may not be clinically useful, it carries
structure and pathway information that may serve as the
starting point for rational development of combination
therapeutics.

PMF was able to recover missing values much less accurately
when predicting synergy rather than efficacy. Just as with
efficacies (Figure 1), PMF recovered training data to
arbitrary precision (Figure 4A), but it did not recover test
data well, unless it had a sufficiently large training set
(i.e., small fraction of data hidden) (Figures 4B,C). While
the accuracy of PMF on predicting synergy was much weaker
than PMF predicting efficacy, we still found that the model is
robust and performed well in cases where 50–70% of the total
matrix was known.

This stark decrease in accuracy and predictive power may
result from the lopsided definition of synergy. The ComboScore
of each drug combination represents the difference between the
observed effect of the combination and the expected effect

assuming each drug acts independently. Because the upper
bound on efficacy is the same for individual drugs and
combinations, a combination of highly efficacious drugs
cannot have a high ComboScore, even if it has optimal
efficacy. Similarly, combinations with identical efficacies may
have different ComboScores, depending on the efficacies of the
individual drugs used in the combinations. Thus, a low
ComboScore reveals nothing about the efficacy of the
combination, but a high ComboScore indicates the
combination’s component drugs individually have low efficacy
(Supplementary Figure 2). As ComboScores are calculated from
individual and combination efficacies, one can still use PMF to
predict combination efficacies, and use these to calculate
ComboScores.

PMF as a Tool to Guide Combination
Screening
In vitro phenotypic-based screens have several benefits for drug
discovery, such as not needing to know the molecular target of
a disease and being less restricted by hypotheses (Zheng et al.,
2013). However, throughput can be low in such assays, and

FIGURE 3 | The AUROC of PMF in identifying efficacious combinations as the fraction of the data hidden increases is measured for (A)Watts-Strogatz graphs, (B)
Barabási-Albert scale-free graphs, and (C) graphs generated by the Hub Method. Included in each plot is a sample of the adjacency matrix and topology of each
network. Error bars represent standard deviation over 25 repeated trials at the same value of β. (A)Watts-Strogatz graphs with varying β. When β is near zero, each drug
has k connections with its nearest neighbors in a lattice structure, and the model performs worse than reproducing from an Erdős-Réyni distribution of equivalent
size. As β approaches 1 and the degree distribution of the graph converges to a similar Poisson Distribution of an Erdős-Réyni graph, the accuracy of the predictions
begins to approach the level of accuracy seen with purely random topologies. (B) Scale-free seed networks perform similarly, regardless of scaling exponent. On
aggregate, scale-free graphs perform similarly for all values of γ, and slightly underperform compared to Erdős-Réyni topologies. (C) Graphs generated using the hub
method with random hubs produce more accurate predictions than other graph types. When most data are hidden, error and standard deviation of the prediction
decrease as the number of hubs increases.
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increasing the number of compounds to be screened causes
experimental effort and cost to rise exponentially. PMF may
help combat this issue by guiding combination screens
through iterative prediction and testing in an active
learning scheme.

We simulated PMF being used in an active learning
experimental design as follows. First, we created a random
Erdős-Réyni graph topology with 10% of the total
combinations known. Then, we used PMF to reproduce the
entire combination efficacy matrix and identified the top 5%
greatest efficacies as predicted by PMF. We then “tested” these
identified efficacious combinations by adding the actual values of
the efficacies to the list of known combinations, and then repeated
the procedure to discover the next 5%, until the entire matrix is
recovered.

PMF-guided screens identified efficacious combinations
much more efficiently than naïve random tests (Figure 5).
In our simulated experiment, PMF identified efficacious
combinations at three times the rate of random choice and
identified as much as 95% of all highly efficacious
combinations while only testing 50% of all available
combinations. This finding was consistent across cell lines
and was not sensitive to the details of the starting point. Our
results suggest that screeners may be able to test a small
number of relevant combinations of direct interest and
obtain the remaining synergistic combinations following a
PMF-guided design. Future studies could fruitfully explore
this issue further by optimizing PMF-guided screens as well as
investigating its accuracy applied in a physical assay
experiment.

Throughout the simulated experiment, we monitored the
performance of PMF as measured by AUROC (Figure 5). The
dip in AUROC observed around the fourth step of the simulated
experiment may be due to bias introduced by the active learning.
Efficacious combinations are not uniformly distributed across
all drugs, and indeed a small subset of drugs is likely to
contribute to many of the efficacious combinations. As the
experiment progresses, PMF preferentially selects
combinations from an efficacious minority of the nodes,
mirroring the construction of a scale-free graph. PMF
performs worse on scale-free graphs compared to Erdős-
Réyni graphs (Figure 3), causing the accuracy to decrease as
nodes are preferentially tested, and then increase as these nodes
are saturated and the rest of the matrix is tested. Future studies
might investigate ways to counteract this drop in error by using
a more complex method than simply testing the top 5% most
efficacious combinations as predicted by PMF.

TheMethod’s Performance Is Not Unique to
Cancer
To test the performance of our method in diseases other than
cancer, we applied it to data from a small combination screen for
Huntington’s disease (HD), an autosomal dominant
neurodegenerative disease caused by an abnormally long
polyglutamine stretch in the huntingin protein (Zuccato et al.,
2010). The clinical progression of HD starts with general loss of
motor control around the third decade of life. This is followed by
mood and personality changes, and eventual dementia and death.
To date, there are no drug-like molecules that can prevent or slow

FIGURE 4 | Similar to Figure 1, the mean-squared error of PMF in recovering combination synergy of (A) known, (B) hidden, and (C) all elements are plotted
against the fraction of hidden data. In all panels, the shaded area represents the standard deviation of the mean-squared error over 25 trials across all cell lines. Once
again, PMF recovers all known data to arbitrary precision. PMF performs with much less accuracy when predicting ComboScores rather than efficacies (Figure 1). Error
is much greater and more uncertain overall in hidden indices and thus across all indices.
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HD, and the pleiotropic nature of huntingtin makes it difficult to
target directly.

Pei and coworkers reported results from a combination
screen in a murine cell-based model of HD (Pei et al., 2017).
Briefly, their assay used serum deprivation to induce stress in
neuronal progenitor cells derived from the STHdhQ111 murine
cell line model of HD, which has an abnormally long glutamine
stretch in its huntingtin protein. The phenotypic response of
the cells was then compared to that in serum-deprived cells of
their isogenic wild type STHdhQ7; overall, serum deprivation
killed about half of the HD cells and about 5% of the wild type
cells. The group evaluated 268 two-compound combinations
of 32 compounds for their ability to protect against cell death.
As a metric, they used “Percent Recovery,” which captures the
percent of HD cells that were rescued from cell death by a
treatment (Pei et al., 2017).

Applying the same simulated experimental design to the HD
data as we applied to the ALMANAC data, we found that PMF-
guided screens identified combinations with the highest Percent
Recovery much more efficiently than the rate of random chance:
Over 90% of combinations with Percent Recovery over 70 were
identified by testing only 70% of all available combinations
(Figure 6A). Moreover, we found that PMF performed with
nearly the same accuracy on the HD dataset as it did on similarly
sized subsets of the ALMANAC data (Figure 6B, Supplementary
Figure 1B). While the guided screen is more efficient than naïve
guessing, the results are much weaker than on the much larger
ALMANAC dataset. Starting with 10% of the 32 compound
combinations known, PMF may only know a handful of
combinations, and struggles until around 30% of all
combinations are known.

DISCUSSION

Our results show that it is possible to use information on the
effects of drug combinations to predict the effects of novel
combinations. A strength of our approach is that does not
require any outside knowledge of chemical structures, target
profiles, or OMICS data. This lack of reliance on outside data
contributes to the method’s robust performance between data
sets of similar sizes. Indeed, freedom from additional
information augments our method’s stability and flexibility:
Rather than predicting the effects of combinations of drugs,
it could be used for combinations of unknown substances,
natural extracts, or even combinations of combinations. As
such, our method may contribute to identifying mechanisms
of action for novel compounds. Since PMF is lightweight and is
not informed by structure or other data, it may provide a
benchmark against which more complicated methods can be
tested.

There are many constrained low-rank matrix
approximation algorithms that could have been used other
than PMF. Within this general framework, some powerful
techniques include singular value decomposition (SVD)
(Golub and Reinsch, 1971), principal component analysis
(PCA) (Wold et al., 1987), non-negative matrix
factorization (NMF) (Lee and Sebastian Seung, 1999),
entropy maximization (Lezon et al., 2006; Lezon and Bahar,
2010), and deep matrix factorization (MF) (Pierre and Siebert,
2020). SVD’s matrix factorization is unique and orthogonal
unlike PMF. However, SVD’s matrix reconstruction is a
superposition of the orthogonal components with arbitrary
signs, losing strong correlations that may exist and the

FIGURE 5 | The performance of PMF in a proposed experimental design to predict drug combinations with efficacy greater than 70 is plotted in orange and is
compared against random choice plotted in black. Both the AUC of PMF’s predictions in blue as well as the percentage of known efficacious drugs with efficacy
greater than 70 are plotted against the known fraction of the drug-drug efficacy matrix. The experiment following random choice takes a random sample of the
graph, resulting in a linear relationship between the amount of the drug-synergy matrix known and the amount of known synergistic drugs. As the procedure
described above is repeated, PMF identifies more than 95% of the most efficacious combinations while only knowing 50% of the full drug efficacy matrix, much
greater than random choice.
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interpretability of the latent factor representation of PMF.
Moreover, SVD has been shown to be less accurate than PMF
(Salakhutdinov and Mnih, 2007), and is vulnerable to
overfitting. PCA’s orthogonal decomposition suffers from
similar weaknesses. The parts-based decomposition of NMF
has provided powerful, interpretable methods for matrix
factorization in a variety of applications from text mining
to gene expression. However, NMF is poorly suited to drug
discovery due to its non-negativity constraint. Methods
relaxing this constraint (Wang et al., 2015) may be able to
provide similar results with a parts-based matrix
representation as opposed to PMF’s latent factor
representation. Unlike PMF, which factors into only two
matrices and captures a single layer of features, deep matrix
factorization, inspired by the success of deep learning, aims to
extract several features in a hierarchical way (Pierre and
Siebert, 2020). Although many algorithms have been
introduced for deep MF, it is still an emerging topic and
questions of convergence, identifiability, and loss functions
have not been fully explored. PMF on the contrary is well-
explored algorithm with strong theoretical ground that has
found success in a variety of matrix completion and
collaborative filtering settings.

One limitation of PMF is that it suffers from the cold-start
problem and is unable to predict the efficacy for compounds
with no known values. Thus, any guided PMF assay must test
at least one combination for every drug. It is also unknown
how well PMF will scale to drug libraries larger than the
ALMANAC. While our simulated experiment was more
successful on the larger ALMANCAC data than the smaller
Huntington’s disease data, PMF’s performance on larger
drug libraries remains to be seen. We additionally note that
both the ALMANAC and HD data sets employed
combinations of compounds that were individually effective
as monotherapies. To fully evaluate our method’s utility in

guiding combination screens, we will need to apply it to
screens in which not all compounds are individually
efficacious. That is, the proper test of the method is its
application to a new screen, which is beyond the scope of
this work.

CONCLUSION

We have shown that PMF can accurately impute missing values
into the drug combination efficacy matrix for a screen, and that
the performance of PMF does not depend on the efficacies of the
drugs being tested. We further showed that PMF performs best
when the input drug combination network has an Erdős-Réyni
topology. Finally, we used simulated experiments to demonstrate
that alternating PMF inference with experiments can efficiently
identify the most efficacious two-drug combinations in a
phenotypic screen.

There have been many other attempts at predicting the
effects of drug combinations, and those that perform best
include additional data, such as chemical structures, target
profiles, or OMICS data (Wang et al., 2013; Huang et al., 2019;
Menden et al., 2019). PMF has the advantage that its
computation time scales linearly, and it can make accurate
predictions for sparse and imbalanced data sets. Moreover,
PMF is an unsupervised algorithm and by nature is easily
interpretable as matrix factorizations easily provide a lens to
determine relations, giving it several advantages over large
deep learning networks. Our method is simpler by
comparison, but it provides a baseline of performance
against which more complicated prediction methods may be
assessed. Indeed, not relying on additional information
endows our method with flexibility: Instead of predicting
the effects of combinations of drugs, it can be used to
predict the effects of combinations of combinations, and we

FIGURE 6 | (A) The performance of a simulated PMF guided drug screen in HD identifies all drug combinations with Percent Recovery greater than 70. Both the
AUC of PMF’s predictions (in blue) as well as the percentage of known efficacious drugs with efficacy greater than 70 (orange and black) are plotted against the known
fraction of the drug-drug efficacy matrix. Once again, PMF guided screens outperform the rate of chance, with PMF identifying more than 90% of the most efficacious
combinations while only knowing 70% of the full drug efficacy matrix. (B) The error of PMF in predicting all elements is plotted against the fraction hidden. PMF does
as well on the smaller HD dataset as it does on smaller subsets of the ALMANAC data (Supplementary Figure 1B).
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have no reason to believe that it will perform worse on
unannotated compounds. On the contrary, our method may
contribute to identifying mechanisms of action for novel
compounds. The very ability of PMF to predict efficacies of
combinations points to hidden mechanistic similarities within
the set of compounds. By interpreting the PMF in terms of
underlying biochemistry, we may gain insight into the nature
of disease.
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