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Flux balance analysis (FBA) is a crucial method to analyze large-scale constraint-based
metabolic networks and computing design strategies for strain production in metabolic
engineering. However, as it is often non-straightforward to obtain such design strategies to
produce valuable metabolites, many tools have been proposed based on FBA. Among
them, GridProd, which divides the solution space into small squares by focusing on the cell
growth rate and the target metabolite production rate to efficiently find the reaction deletion
strategies, was extended to CubeProd, which divides the solution space into small cubes.
However, as GridProd and CubeProd naively divide the solution space into equal sizes,
even places where solutions are unlikely to exist are examined. To address this issue, we
introduce dynamic solution space division methods based on CubeProd for faster
computing by avoiding searching in places where the solutions do not exist. We
applied the proposed method DynCubeProd to iJO1366, which is a genome-scale
constraint-based model of Escherichia coli. Compared with CubeProd, DynCubeProd
significantly accelerated the calculation of the reaction deletion strategy for each target
metabolite production. In addition, under the anaerobic condition of iJO1366,
DynCubeProd could obtain the reaction deletion strategies for almost 40% of the
target metabolites that the elementary flux vector-based method, which is one of the
most effective methods in existence, could not. The developed software is available on
https://github.com/Ma-Yier/DynCubeProd.
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1 INTRODUCTION

Metabolic engineering is a DNA recombination-based technology proposed in 1991 to improve the
designated substance production and the cell properties by manipulating and introducing specific
biochemical reactions (Bailey, 1991; Stephanopoulos et al., 1998). In many cases, current metabolic
engineering technology focuses on the utilization of microorganisms. In metabolic engineering
analysis, metabolic pathways in organisms are often represented by metabolic networks, in which
nodes represent metabolite molecules and biochemical reactions. Any two metabolites (biochemical
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reactions) cannot be directly connected, and a metabolite must be
connected to at least two biochemical reactions. The biochemical
reactions can be irreversible or reversible. Nodes of external
metabolites form the input and output nodes of the entire
network.

Constraint-based modeling is a mathematical method to
identify the best solution within a set of possible choices
subject to pre-specified constraints (Maranas and Zomorrodi,
2016). Constraint-based modeling methods, such as linear
programming (LP) and mixed integer linear programming, are
widely used effective optimization techniques. Flux balance
analysis (FBA) is one such widely used constraint-based
modeling method with stoichiometric-based modeling of
metabolism for the analysis of genome-scale metabolic models
(GSMM) (Maranas and Zomorrodi, 2016).

In the constraint-based models of metabolic networks, the cell
growth reaction and the target metabolite production reactions are
of particular interest. The cell growth reaction has been virtually
designed to simulate the efficient conversion of uptake resources
into cellular energy and chemical components, which support cell
growth in response to selection pressure to construct the system in
the most plausible physiological state (Maranas and Zomorrodi,
2016). The target metabolite production reaction produces a
chemical of interest. We define growth rate (GR) as cell growth
reaction speed and production rate (PR) as the target metabolite
production reaction speed.

Growth coupling is a fundamental design principle in
metabolic engineering and computational strain design. The
purpose of growth coupling is to make the target metabolite a
mandatory by-product of the cell growth reaction. We say that
growth coupling is achieved if the target metabolite is produced
when cell growth is maximized as shown in Figure 1A.

In this study, the core and basic problems are to find a growth
coupling method for the target metabolite production through
reaction deletions. The method should produce as much target
metabolite as possible by modifying the metabolic network when
GR is maximized as the objective function. The relationship
between the original network and the designed network is
shown in Figure 1B. We can delete reactions by setting their
speeds as zero in the network modification strategies. Based on
the most basic problem above, the following sub-problems are
derived. The first is to find knockout strategies for as many
different target metabolites as possible. The second is to find
knockout strategies for the networks under different input
conditions such as aerobic or anaerobic conditions.

The most basic and pioneer algorithm for this purpose is
OptKnock, which is a bilevel optimization-based method that
identifies knockout strategies that result in the maximum PR
when GR is maximized. The inner optimization performs the flux
(reaction speed) allocation with regard to the optimization of
cellular objectives (e.g., maximization of biomass yield and
MOMA) (Burgard et al., 2003). The outer optimization
maximizes the bioengineering objective (e.g., chemical
production) (Burgard et al., 2003). However, because the
computation time of OptKnock is proportional to an
exponential function of the network size, in many cases, its
computation is not completed within a realistic timeframe for
GSMMs (Tamura, 2021b). Therefore, many algorithms have been
proposed to speed up the process for the efficient computation of
the reaction deletion strategies.

Considering that finding the optimal strategy is NP-hard, it is
reasonable to only find out the strategy that meets the expected
requirements. For example, the elementary flux vector (EFV)-
based method determines reaction deletion strategies in which

FIGURE 1 | (A) In the problem setting of this study, it is required that the original network is converted into the designed network that achieves growth coupling,
where cell growth and target metabolite production are simultaneously achieved. (B) The designed network should be obtained from the original network through
reaction deletions. The black blocks are nutrient uptake reactions, the cell growth reaction, or the target metabolite production reaction. The speed of the cell growth
reaction and target metabolite production reaction are represented by GR and PR, respectively. Light gray and dark gray represent the designed network and the
original network, respectively.
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cell growth forces the production of the target metabolite, and the
success ratio of this method was very high under both anaerobic
and aerobic conditions for several microbial models (von Kamp
and Klamt, 2017). GridProd efficiently computes the design of
minimum metabolic networks by using bilevel optimization
approach with picking two-dimensional limits and gridding
the constraint space (Tamura, 2018). CubeProd divides the
entire constraint space into small cubes and gave good results
for GSMM with extreme constraints (e.g., anaerobic condition)
(Tamura, 2021a). The EFV-based method, GridProd, and
CubeProd enable the calculation of reaction deletion strategies
for many target metabolites that cannot be calculated using the
previously developed methods. However, for Escherichia coli
under anaerobic conditions, the reaction deletion strategies
could not be obtained for many target compounds. In
particular, for GridProd and CubeProd, the bottleneck was the
computing speed. Therefore, it was expected to extend GridProd
or CubeProd to shorten the computation time.

In this study, we developed DynCubeProd that improves the
computation speed of CubeProd. DynCubeProd employs a
dynamic strategy for the cube sizes to obtain the same results
as CubeProd; however its computation speed is much faster. The
reaction deletion strategies obtained by DynCubeProd also
supplement those of the EFV-based method under certain
conditions. Under anaerobic conditions, we obtained the
reaction deletion strategies for close to 40% of the target
metabolites for which the EFV-based method could not
determine strategies.

2 MATERIALS AND METHODS

2.1 Problem Definition
The general formalization of constraint-based modeling is as
follows (Maranas and Zomorrodi, 2016):

minimize (or maximize):
f (x)

subject to:
h(x) � 0
g(x)≤ 0
x ∈ S

x is an n-dimensional variable. f (x) is the objective function to
minimize or maximize. S is the set from which the variable vector
x ranges. h(x) and g(x) are the constraints that must be satisfied
as equalities or one-side inequalities, respectively.

The general form of the FBA is as follow:

maximize
f (x)

subject to:
Sx � 0
LB≤ x ≤UB

x ∈ Rn is an n-dimensional variable. f (x) is the objective
function, which in many cases is GR. S ∈ Rm×n is the
stoichiometric matrix corresponding to m metabolites and n
reactions in the constraint-based models. LB and UB impose

the lower and upper bounds of each x ∈ x. For example, a flux for
irreversible reactions xi is constrained as xi ≥ 0.

Our goal was to find reaction deletion strategies for growth
coupling of target metabolite production. Let K � {vj|vj ∈ V} be a
set of reactions to be knocked out, where V is a set of n reactions.
Then, the definition of the main problem of this study arises.

Given
S, LB,UB, vgrowth, vtarget , xmin

growth, x
threshold
target

Find
K
such That

xgrowth ≥ xmin
growth and xtarget ≥ xthresholdtarget

maximize
f (x) (�xgrowth)

subject to:
Sx � 0

x � 0 if , x ∈ K
LB≤ x ≤UB, otherwise.

{
When xgrowth ≥ xmin

growth and xtarget ≥ xthresholdtarget is satisfied, we
consider K achieves growth coupling, where GR � xgrowth for
vgrowth ∈ V and PR � xtarget for vtarget ∈ V hold.

2.2 Example for Problem Definition
A toy example of the constraint-based model with 11 nodes is
shown in Figure 2A to illustrate the problem definition explained
above. The rectangular nodes {R1,R2, . . . ,R7} are chemical
reactions. R7 is the target metabolite production reaction and
R6 is the cell growth reaction. The substrates and products of the
reactions are shown on the right side of Figure 2A. The gray
rectangular nodes are external reactions which play roles of input
and output of the entire network and the white rectangular nodes
are internal reactions, each of which connect at least two
metabolite nodes with different directions. The intervals next
to the rectangular nodes are the lower and upper bounds of
reaction speeds. The circular nodes are internal metabolites that
connect rectangular nodes.

Suppose that vmin
growth � vthresholdtarget � 1 is given. When a reaction

deletion strategy is given andGR � x6 is maximized, ifGR≥ 1 and
PR � x7 ≥ 1 hold, then we consider that growth coupling is
achieved. Because this example is very simple, such a reaction
deletion strategy can be easily determined through brute force
enumeration. Deleting R3 is the optimal solution for this toy
example.

Figure 2B shows the results of each knockout strategy applied
to this toy example. Because deleting R4 is practically equivalent
to deleting R2, deleting R4 is omitted in the table. When none of
the reactions are deleted, that is, K � ϕ, GR � 3 will be obtained
but PR will be 0. When K � {R2} or K � {R5}, the same result will
be obtained. According to the definition of the problem above,
such knockout strategies are not acceptable. When K � {R3,R5},
PR � 3 is obtained, but GR will be 0. When K � {R3}, both GR �
1≥ 1 and PR � 2≥ 1 are obtained. Therefore, K � {R3} is a
feasible solution because it achieves growth coupling.
However, such a brute force method cannot be applied to
GSSMs owing to combinatorial explosion.
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3 RESULTS

We developed an algorithm DynCubeProd for calculating
reaction deletion strategies that achieve growth coupling of
designated target metabolite production in constraint-based
models of metabolic networks.

Because DynCubeProd is a method obtained by improving
CubeProd (Tamura, 2021a), in this section, we provide an
overview of CubeProd and then explain the difference between
DynCubeProd and CubeProd. The algorithm behavior of
DynCubeProd is also illustrated using examples. The
relationship between DynCubeProd and other methods is
discussed in Section 4.

3.1 DynCubeProd
Idea: CubeProd considers the three-dimensional solution space
whose axes represent GR, PR and sum of absolute values of fluxes
(SF). Let TMGR, TMPR, and TMSF be the theoretical maximum
values of the above, respectively. Then the whole constraint space
is a rectangle formed by [0, TMGR], [0, TMPR], and [0,TMSF]1.
According to the designated value of P, each of [0, TMGR], [0,
TMPR], and [0,TMSF] are divided into P pieces. Therefore,
finally, CubeProd considers P3 constraint sub-spaces.

The value of P closely affects the trade-off between the ease of
finding a solution and the computation time. The larger the value
of P, the easier it is to find a solution, but the slower the
computation time. Therefore, if CubeProd uses a certain value
of P and cannot find a solution, a larger value of P should be

applied, but the computation time will be more. However, it may
be the case that some of the small solution spaces generated by a
larger P are already proved by a smaller P to contain no solutions.

DynCubeProd starts with p � 1 and doubles P if no solution is
found. When applying a larger P, it refers to the result of applying
the smaller P and avoids searching for places where there is no
solution.

Because the intervals on each of the three axes are equally
subdivided into P sub-intervals, the entire constraint space is
divided into P3 sub-spaces, and

(i − 1) × TMGR
P

≤ xgrowth ≤
i × TMGR

P
,

(j − 1) × TMPR
P

≤ xtarget ≤
j × TMPR

P
,

(k − 1) × TMSF
P

≤ ∑ |x|≤ k × TMSF
P

are added as constraints and the sum of the absolute values of
fluxes is minimized for every 1≤ i, j, k≤ P, where i, j, k are
integers.

In each of those P3 sub-spaces, 1) LP is employed with the
above three constraints, 2) if the LP is feasible, reactions whose
flux is less than 10−5 are collected as K , 3)the minimum value of
PR is calculated with deletions of K under the condition that GR
is maximized without the above three constraints, and 4) if GR
and PR exceed the minimum required values, the output K is
considered as the solution.

The number of sub-spaces to be computed is P3 and it increases
dramatically as P increases, which will lead to a power-of-three
increase in computation time. However, the larger the value of P,
the smaller is the range of the subspace and the easier it is to approach
the point of the optimal solution or local optimal solution.

FIGURE 2 | (A) A toy example of the constraint-based models. Rectangular nodes R1 to R7 are reactions, and the attached intervals represent lower and upper
bounds of their reaction speeds. R1 is the nutrient uptake reaction. R6 is the cell growth reaction. R7 is the target metabolite production reaction. Circular nodes C1 to C4
are internal metabolites. (B) Reaction deletion strategies and the resulting flux (reaction speed) distributions.

1Because it is difficult to determine TMSF in polynomial time, we approximate
TMSF by SF when PR is maximized, and [0,2·TMSF] was used instead of [0,TMSF]
in the computational experiments and examples.
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A dynamic strategy is adopted by DynCubeProd to save time.
Starting with i � 1 for P � 2i, DynCubeProd increases i one by
one, and stops once an acceptable knockout strategy is obtained.
Suppose that Q is a sub-space corresponding to P � m and
{Q1, . . . ,Qk} are sub-spaces of Q for P � n with m< n. If the
candidate knockout strategy computed from Q is not acceptable
when P � m, all the sub-spaces {Q1, . . . ,Qk} will be skipped
during the calculation when P � n.

Example: Table 1A represents the whole solution space by
DynCubeProd with P � 1 of the toy network of Figure 2A
whereas Table 1B represents all sub-spaces for P � 2. For each
sub-space, LPs are performed twice; first, to calculate the possible
candidate knockout strategy and second, to verify that the
candidate is acceptable. The results of two LPs are represented
for each (sub)space in Tables 1A,B.

As shown in Table 1A, when P � 1, the number of sub-spaces
is one; this implies that the sub-space is equivalent to the entire
original constraint space. As TMGR, TMPR, and TMSF are 3, 3,
13, respectively, Three constraints 0≤GR≤ 3, 0≤ PR≤ 3 and
0≤ SF ≤ 2 · 13 are added and the sum of absolute values of
fluxes is minimized in the first LP. Then R1 � R3 � R6 � 3
and R2 � R4 � R5 � R7 � 0 are obtained. Therefore, K �
{R2,R4,R5} is obtained as a reaction deletion strategy
candidate because the target metabolite production reaction
R7 is not allowed to be deleted. K is validated by the second
LP, however, GR � 3 and PR � 0 are obtained. Therefore, the
deletion strategy K � {R2,R4,R5} is not acceptable because PR
does satisfy the minimum required value xthresholdtarget � 1.

Therefore, DynCubeProd with p � 2 is applied. The results are
summarized in Table 1B. Because the number of axes in

DynCubeProd is three, eight sub-spaces are created when
P � 2. For the sub-space IDs 2, 4, 6, and 8 in Table 1B, there
is no feasible solution in the first LP. Therefore, the computing
in P � 4 will be skipped for all sub-spaces of the sub-spaces
whose IDs are 2, 4, 6, and 8 in P � 2. This process of skipping
computing the sub-spaces that do not contain solutions makes
DynCubeProd computation faster than CubeProd.
DynCubeProd will end the computing and return results
either when P reaches the designated maximum value or when
an acceptable solution is obtained.

Lemma 1: For a positive integer k, the solution obtained by
DynCubeProd for P � 2k is also a solution for P � k, and the
constraint sub-spaces skipped by DynCubeProd do not include a
solution.

Proof: Define S as the constraint space of an LP problem. Let
S1∪S2∪/∪Sn � S hold. Suppose there exists a solution x in the
sub-space Sk, x ∈ Sk. Then, x must be in the space of S, x ∈ S,
because Sk ⊂ S. If there is no solution x in S, that is, x ∉ S, then
such x must not exist in any sub-space of S.

3.2 Pseudo Code of DynCubeProd
The pseudo code of DynCubeProd is as follow:

Algorithm 1: DynCubeProd

[K , PR,GR] �DynCubeProd (S, LB,UB,GUR,OUR,NGAM,
vgrowth, vtarget , xmin

growth, x
threshold
target , nmax)

TMGR � max xgrowth
s.t. ∑ Si,jxj � 0

LBj ≤ xj ≤UBj

xglc_uptake ≥ − GUR

TABLE 1 | DynCubeProd applies CubeProd beginning with p � 1 and increments one by one and quits when a desired reaction deletion strategy is obtained. (A) and (B)
represent the results of DynCubeProd applied to the network of Figure 2A with p � 1 and p � 2, respectively.

(A) CubeProd (p = 1)

PR GR SF R1 R2 R3 R4 R5 R6 R7
[0, 3] [0,3] [0, 26] 3 0 3 0 0 3 0

3 0 3 0 0 3 0

(B) CubeProd (p = 2)

Sub-space ID PR GR SF R1 R2 R3 R4 R5 R6 R7

1 [0, 1.5] [0, 1.5] [0, 13] 3 1.5 1.5 1.5 0 1.5 1.5
3 0 3 0 0 3 0

2 [0, 1.5] [0, 1.5] [13, 26] null null null null null null null

3 [0, 1.5] [1.5, 3] [0, 13] 3 0 3 0 0 3 0
3 0 3 0 0 3 0

4 [0, 1.5] [1.5, 3] [13, 26] null null null null null null null

5 [1.5, 3] [0, 1.5] [0, 13] 3 1.5 1.5 1.5 0 1.5 1.5
3 0 3 0 0 3 0

6 [1.5, 3] [0, 1.5] [13, 26] null null null null null null null

7 [1.5, 3] [1.5, 3] [0, 13] 3 1.5 1.5 1.5 0 1.5 1.5
3 0 3 0 0 3 0

8 [1.5, 3] [1.5, 3] [13, 26] null null null null null null null
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xo2_uptake ≥ − OUR
xatp_main ≥NGAM

TMPR � max xtarget
s.t. ∑ Si,jxj � 0

LBj ≤ xj ≤UBj

xglc_uptake ≥ − GUR
xo2_uptake ≥ − OUR
xatp_main ≥NGAM
xgrowth ≥ xmin

growth

TMSF � ∑ |xj|
c(1, 1, 1) � 1
n � 1
while true do

P � 2n

d � zeros(P, P, P)
for i � 1 to P/2 do

for j � 1 to P/2 do
for k � 1 to P/2 do

d(2i, 2j, 2k) � c(i, j, k)
d(2i, 2j, 2k − 1) � c(i, j, k)
d(2i, 2j − 1, 2k) � c(i, j, k)
d(2i, 2j − 1, 2k − 1) � c(i, j, k)
d(2i − 1, 2j, 2k) � c(i, j, k)
d(2i − 1, 2j, 2k − 1) � c(i, j, k)
d(2i − 1, 2j − 1, 2k) � c(i, j, k)
d(2i − 1, 2j − 1, 2k − 1) � c(i, j, k)

end for
end for

end for
for i � 1 to P do

biomassLB � TMGR × P × (i − 1)
biomassUB � TMGR × P × i>
for j � 1 to P do
targetLB � TMPR × P × (j − 1)
targetUB � TMPR × P × j
for k � 1 to P do

sumfluxLB � 2 × TMSF × P × (k − 1)
sunfluxUB � 2 × TMSF × P × k
if d(i, j, k) � 0 then

continue
else

min ∑ |xb|
s.t. ∑ Sa,bxb � 0

LBb ≤ xb ≤UBb

xglc_uptake ≥ − GUR
xo2_uptake ≥ − OUR
xatp_main ≥NGAM
biomassLU ≤ xgrowth ≤ biomassUB
targetLB≤ xtarget ≤ targetUB
sumfluxLB≤ ∑ |xb|≤ sumfluxUB
K � {vb|xb < 10−5}

If the first LP is infeasible then
K � ϕ
PR(i, j, k) � 0
c(i, j, k) � 0

else

max xgrowth
s.t. ∑ Sa,bxb � 0

LBb ≤ vb ≤UBb if vb ∉ K
xb � 0 if vb ∉ K
xglc_uptake ≥ − GUR
xo2_uptake ≥ − OUR
xatp_main ≥NGAM

c(i, j, k) � 1
if xtarget ≥ xthresholdtarget and xgrowth ≥ xmin

growth then
return K , xtarget , xgrowth

end if
end if

end if
end for

end for
end for
if n � maxn then

break
end if
n � n + 1

end while

3.3 Computational Experiments
The dataset used in the computational experiments was iJO1366,
which is a GSMM of Escherichia coli K-12 MG1655 from the
BiGG database with 1805 metabolites and 2583 reactions (Orth
et al., 2011; King et al., 2016). All procedures of DynCubeProd
were implemented based on Gurobi, COBRA Toolbox and
MATLAB on a Windows machine with Intel(R) Core(TM) i5-
8500 CPU 3.00 GHz 6-core processor and 32.0 GB RAM.

If the target metabolite is not connected to an external
reaction, then, an auxiliary external reaction is added, and the
growth coupling is evaluated by GR and the outgoing flux from
the additional external reaction, which is also called PR.

Figure 3A shows the computing time of DynCubeProd and
CubeProd when applied to iJO1366 under aerobic conditions at
different values of P. It also shows the ratio of the number of
success cases to the number of target metabolites. For P ≥ 16, the
reaction deletion strategies were obtained for more than 95% of
the target metabolites. It should be noted that the success ratio of
DynCubeProd and CubeProd is always the same for the same P.
The computing time for DynCubeProd with p � 32 was only
approximately quarter of the computing time of CubeProd with
p � 16. Figure 3B visually compares the computing time increase
by P between DynCubeProd and CubeProd.

Furthermore, under anaerobic conditions of iJO1366,
DynCubeProd succeeded in computing the reaction deletion
strategies for 76 of the 211 target metabolites for which the
EFV-based method (von Kamp and Klamt, 2017), which is one of
the best methods, could not.

4 DISCUSSION

To date, numerous algorithms have been proposed using constraint-
based models to compute reaction deletion strategies for growth
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coupling in GSMM. In particular, the EFV-based method is one of
the most efficient methods to determine reaction deletion strategies
that achieve growth coupling of target metabolites. The success
ratios of the EFV-based method for iJO1366 under aerobic and
anaerobic conditions were 99.4 and 77.4%, respectively (von Kamp
and Klamt, 2017). Because the success ratio of DynCubeProd for
iJO1366 under aerobic conditions was 95.99% for p � 32, the EFV-
basedmethod is more efficient under aerobic conditions and there is
almost no room for improvement.

However, for iJO1366 under anaerobic conditions, the success
ratio of the EFV-based method is 77.4%. An effective method for
target metabolites for which reaction deletion strategies could not
be calculated by the EFV-based method must be developed.
Because DynCubeProd succeeded in determining the reaction
deletion strategies for 76 of such 211 target metabolites as
described in Section 3, we can conclude that DynCubeProd
can play a complementary role to the EFV-based method in
the calculation of reaction deletion strategies for growth coupling.

The success ratio of DynCubeProd and CubeProd is always the
same if P is the same. However, since DynCubeProd is faster than
CubeProd, DynCubeProd can reach a larger P in realistic
computation time. Therefore, if the allowable computation

time is the same, DynCubeProd is more capable of computing
reaction deletion strategies than CubeProd. The speed-up of the
computation is achieved by not examining the constraint space
where no solution exists, and by stopping the algorithm as soon as
a solution satisfying the requirements is obtained. Additionally,
CubeProd is a method developed by (Tamura, 2021a); however in
this study, the definition of TMSF is slightly modified to be the
absolute sum of reaction rates at PR maximization.

If the computation is conducted for very large P � 2i, the
computation time of DynCubeProd becomes too long. Therefore,
values up to P � 2i � 32 were used in the computational
experiments in this study. Even if the computation is
conducted for all P � 2, 4, 8, 16, and 32, the total number of
cubes can be regarded as not too large to conduct several LPs for
each cube and as an ignorable constant when estimating the
computational complexity of DynCubeProd. It is known that an
LP can be solved in a time proportional to the polynomial
function of the number of variables (Arora and Barak, 2009).
Because DynCubeProd solves several LPs for the entire problem
and for each cube, the computational complexity of the algorithm
is proportional to the polynomial function of the problem size
because P can be regarded as a constant.

FIGURE 3 | (A)Computation time and success ratio when DynCubeProd and CubeProd were applied to iJO1366 under aerobic conditions for different values ofP.
(B) Visual comparison of the computation time of DynCubeProd and CubeProd of (A).
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4.1 Comparison With GridProd and
CubeProd
DynCubeProd was developed as an extension of CubeProd that
was developed as an extension of GridProd. Therefore, a problem
example that can be solved with CubeProd, but not with
GridProd, may help understand for DynCubeProd. Such an
example is illustrated below.

GridProd picks two-dimensional limits and grids the
constraint space to solve the problem by using bilevel
optimization approach (Tamura, 2018). Table 2A shows
example results of GridProd applied on the toy network. GR
and PR are selected as the two-dimensional limits of GirdPord,
the gridding of the GridProd will be performed on the axes of
these two constraints, and the size of the gridding depends on the
designated value of P. In Table 2A, the second and third rows
show results of the bilevel optimization approach of a grid with
p � 4, that is, GR ∈ [1.5, 2.25] and PR ∈ [0.75, 1.5]. The grid
becomes a point when P is infinite. The fourth and fifth rows
represent the results in the point of optimal solution when P is
infinite. The fifth row shows that the acceptable solution cannot
be obtained even when P is under infinity.

CubeProd, which is an extension of GridProd, divides the
entire constraint space into small cubes (Tamura, 2021a).
Table 2B depicts a sample result of applying CubeProd to the
toy network. The second to fifth rows show the results of bilevel
optimization for cubes containing the optimal solution for
different values of P. Since GR � 3 and PR � 0 are obtained,
CubeProd cannot obtain the reaction deletion strategy for growth
coupling for PR∈[1.5,2.25], GR∈[0.75,1.5], and SF∈[12,14].
However, since GR � 1 and PR � 2 are obtained, CubeProd
can obtain the reaction deletion strategy for growth coupling for
PR∈[2,2], GR∈[1,1], and SF∈[13,13]. As shown in this example,
the larger the value of P and smaller the cube sizes, the easier it is
to find a solution.

4.2 Other Methods
For the problem of calculating reaction-deletion strategies for
growth coupling of the constraint-based models, there are

various methods other than those introduced so far.
OptGene is a computational method that uses bio-inspired
algorithms to optimize gene deletion sets (Patil et al., 2005).
Genetic Design through Local Search (GDLS) was developed
to use global optimal search to find genetic design, and
compared with heuristic search based on evolutionary
algorithm and simulated annealing, GDLS performs well
(Lun et al., 2009). EMILiO uses iterative linear programs
(Yang et al., 2011). FastPros evaluates the potential of
specific reaction knockout to produce specific metabolites
by shadow pricing the constraints in FBA,
thereby generating a screening score to obtain candidate
knockout sets (Ohno et al., 2014). IdealKnock can
effectively evaluate the production potential of different
biochemical products in the system, just by knocking out
some pathways and combining with the OptKnock or
OptGene framework (Gu et al., 2016). Parsimonious
enzyme usage FBA (pFBA) not only used the metabolic
network, but also used proteomics and transcriptomics data
to confirm that almost all path dosages predicted by the FBA
optimization method were consistent (Lewis et al., 2010).
IdealKnock utilizes the concept of ideal-type flux
distribution (Gu et al., 2016). PSOMCS also uses the
perspective of EFM, combined with particle swarm
optimization algorithms, to obtain an optimal design that
meets multiple goals (Nair et al., 2017).

For the performance evaluation of DynCubeProd, it is
reasonable to compare it with GridProd and CubeProd for
the evaluation of computation time reduction and algorithm
behavior comparison, and it is reasonable to compare it with the
EFV-based method, a method with the best success rate among
existing methods, for the evaluation of success rate.
Furthermore, neither OptKnock nor GDLS, one of the most
standard and popular methods, could determine reaction
deletion strategies for any target metabolite within 1 hour.
Therefore, although there are many other existing methods
as mentioned above, it is reasonable to narrow down the
comparison targets of DynCubeProd to GridProd, CubeProd,
and EFV methods.

TABLE 2 | (A) GridProd cannot find reaction deletion strategies that achieve growth coupling for the toy example of Figure 2A even when P is infinity. (B) However,
CubeProd can find reaction deletion strategies for the same problem

(A)

PR GR R1 R2 R3 R4 R5 R6 R7

[1.5, 2.25] [0.75, 1.5] 1st LP 3 1.5 1.5 1.5 0 1.5 1.5
2nd LP 3 0 3 0 0 3 0

[2, 2] [1, 1] 1st LP 3 2 1 2 0 1 2
2nd LP 3 0 3 0 0 3 0

(B)

PR GR SF R1 R2 R3 R4 R5 R6 R7

[1.5, 2.25] [0.75, 1.5] [12, 14] 3 2.25 0.75 2.25 0.75 1.5 1.5
3 0 3 0 0 3 0

[2, 2] [1, 1] [13, 13] 3 3 0 3 1 1 2
3 3 0 3 1 1 2
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4.3 Conclusion
DynCubeProd is an improved version of CubeProd, which is
an existing algorithm based on solution space decomposition.
The improvements in DynCubeProd are as follows. 1) While
CubeProd divides the solution space based on pre-specified
parameters, DynCubeProd gradually divides the solution
space into smaller and smaller pieces. 2) CubeProd
mechanically explores even the subspace where no solution
is expected to exist, while DynCubeProd stops dividing the
solution space when no solution exists. 3) While CubeProd
searches the entire solution space, DynCubeProd stops as
soon as it finds a solution that meets the conditions.
The results of computer experiments using iJO1366
confirmed that DynCubeProd reduces the computation time
more than 10 times than CubeProd. The reduction in
computation time enabled finer solution space partitioning,
and reaction deletion strategies could be calculated for
about 40% of the target metabolites for which reaction
deletion strategies could not be obtained by the EFV-based
method. In this study, we developed DynCubeProd, by
improving the computation speed of CubeProd, which
enabled us to calculate reaction deletion strategies in
anaerobic conditions for many target compounds that could
not be calculated before.
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