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Diffuse gliomas are the most common malignant primary brain tumors. Identification of
isocitrate dehydrogenase 1 (IDH1) mutations aids the diagnostic classification of these
tumors and the prediction of their clinical outcomes.While histology continues to play a key
role in frozen section diagnosis, as a diagnostic reference and as a method for monitoring
disease progression, recent research has demonstrated the ability of multi-parametric
magnetic resonance imaging (MRI) sequences for predicting IDH genotypes. In this paper,
we aim to improve the prediction accuracy of IDH1 genotypes by integrating multi-modal
imaging information from digitized histopathological data derived from routine histological
slide scans and the MRI sequences including T1-contrast (T1) and Fluid-attenuated
inversion recovery imaging (T2-FLAIR). In this research, we have established an
automated framework to process, analyze and integrate the histopathological and
radiological information from high-resolution pathology slides and multi-sequence MRI
scans. Our machine-learning framework comprehensively computed multi-level
information including molecular level, cellular level, and texture level information to
reflect predictive IDH genotypes. Firstly, an automated pre-processing was developed
to select the regions of interest (ROIs) from pathology slides. Secondly, to interactively fuse
the multimodal complementary information, comprehensive feature information was
extracted from the pathology ROIs and segmented tumor regions (enhanced tumor,
edema and non-enhanced tumor) from MRI sequences. Thirdly, a Random Forest (RF)-
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based algorithm was employed to identify and quantitatively characterize histopathological
and radiological imaging origins, respectively. Finally, we integrated multi-modal imaging
features with a machine-learning algorithm and tested the performance of the framework
for IDH1 genotyping, we also provided visual and statistical explanation to support the
understanding on prediction outcomes. The training and testing experiments on 217
pathologically verified IDH1 genotyped glioma cases frommulti-resource validated that our
fully automated machine-learning model predicted IDH1 genotypes with greater accuracy
and reliability than models that were based on radiological imaging data only. The accuracy
of IDH1 genotype prediction was 0.90 compared to 0.82 for radiomic result. Thus, the
integration of multi-parametric imaging features for automated analysis of cross-modal
biomedical data improved the prediction accuracy of glioma IDH1 genotypes.

Keywords: digital histological slides, isocitrate dehydrogenase 1mutations, machine-learning, magnetic resonance
imaging, multimodal integration, imaging information analysis

INTRODUCTION

The current WHO classification of CNS tumors not only
considers histopathological phenotypes but also molecular
genetic parameters, e.g., DNA methylome profiling (Louis et
al., 2021; Lopes 2017; Chang et al., 2018; Lee et al., 2019).
IDH mutations in glioma have been found to be associated
with better outcomes and are therefore of great relevance in
the clinical assessment of glioma patients (Louis et al., 2016b).
Recently, some attempts have been made to use radiological
images for the pre-surgical prediction of IDH1 genotypes
(Gillies et al., 2015; Kesler et al., 2019; Lee et al., 2019;
Tatekawa et al., 2021).

Pathological and radiological imaging results are increasingly
available in digitized format (Nance et al., 2013; Farahani and
Pantanowitz 2015; Griffin and Treanor 2017). It has become
apparent that fully utilizing the data of digital radiology and
pathology images through machine-learning can facilitate the
identification of biomarkers that reflect information on the basic
biology and physiology of various malignancies (Deo 2015; Gillies
et al., 2016). Although tumor diagnoses increasingly consider
molecular genetics markers, histology continues to play a key role
in frozen section diagnosis, as a diagnostic reference and as a
method for monitoring disease progression. In addition,
compared to the indirect visualization of disease phenotypes
by means of imaging, histology provides direct information at
high resolution (Kinjo et al., 2008; Missbach-Guentner et al.,
2018; Vågberg et al., 2018; Rathore et al., 2020). Competing with
the computer-aid image technique used in radiology and
pathology, clinical practice demands professional knowledge
and long-term training to obtain useful information from the
image with the naked eye for diagnosis and evaluation (Harezlak
and Kasprowski 2018).

Computerized image analysis can reduce subjective inter-
observer bias that is known to limit all human observation
including in histopathology (Emblem et al., 2014; Zhang et al.,
2016; Choi et al., 2019). Machine-learning algorithms are already
widely used in glioma research, and most are based on the
analysis of features extracted from MRIs (Ellingson et al.,

2011; Zacharaki et al., 2012; Emblem et al., 2014; Macyszyn
et al., 2015). Zhou et al. (2017) have recently demonstrated
the ability to predict IDH genotypes in cases of primary grade
II and III glioma using clinical and pathological variables and
textual features extracted from regions of interest (ROI) in four
sequences of MRI, including T1W, T2W, T1CE and T2-FLAIR,
achieving an accuracy of 0.86. Compared to the results obtained
by Zhou and colleagues, Eichinger et al. (2017) were able to
increase the accuracy of IDH genotyping to 92% by designing an
algorithm based on feature extraction of local binary pattern,
which represent texture features extracted from multimodal MRI
data. In addition to traditional machine-learning techniques, the
method employed by Xing et al. (2017) classifies IDH mutations
and IDH wild type (IDH-wt) using conventional machine-
learning algorithms in order to extract deep features from four
sequences of MRI (T1W, T2W, T1CE, T2-FLAIR). Zhang et al.
(2016) aimed to distinguish the presence of an IDHmutation and
IDH-wt in primary grade III and IV gliomas by means of
additional features (intensity, texture and shape features)
extracted from multimodality MRIs (T1, T1CE, T2, T2-FLAIR
and DWI), achieving an accuracy of 0.883 using the Random
Forest algorithm.

Recently, the improvements in deep learning is capable to
overcome the previous challenges by learning high-dimensional
representations of imaging data. Novel, fully automated
postprocessing analyses of standard and advanced MR images
are clearly rapidly approaching. These fully automated analyses
are especially appealing because they provide unbiased
evaluations independent of operator, training or experience.
Fully automated postprocessing with deep learning analyses of
standard and advanced MR images have achieved high accuracy
even at 92.8% accuracy, 93.1% specificity, and 92.6% sensitivity
(Choi et al., 2019). Although they can be very powerful for the
prediction of IDH for glioma, deep CNNmodels are vulnerable to
overfitting to their given training dataset and inherent difficult for
interpretation which is the most crucial for decision support
system. Comprehensive understanding of the mechanism of deep
and machine-learning is necessary, however, to best develop and
then apply these algorithms to clinical practice we need to avoid
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their potential pitfalls. It is unlikely to replace tissue sampling for
now; therefore, the continued improvement in model
performance and consistency across diverse imaging modality
brings us closer to the precise molecular diagnosis (Gutman and
Young 2021).

In this study, we introduce an improved approach to IDH
prediction, which integrates radiological and histopathological
data analyses in a single combined framework. Radiological data
analysis in this context refers to the extraction and analysis of
high-throughput features from tomographic images (MR images)
whereas histopathological data analysis refers to the features
extraction and analysis from whole slide images. We
envision that this model could set a pathway for the non-
invasive evaluation of IDH mutation in gliomas and may
provide a quantitative result analysis for the researchers.
Compared with deep learning-based method, we aim to
provide doctors with an intuitive, interpretable, and cost-
effective mechanism through machine-learning based
method to support the decision on IDH status prediction.

MATERIALS AND METHODS

Patient Enrolment
The imaging data of 217 subjects that had been diagnosed with
glioma were collected from two different sources. 126 cases were
from Shandong Provincial Hospital that is affiliated with
Shandong University, comprising 41 histological grade III
cases and 85 histological grade IV cases. The remaining 91
cases were retrieved from The Cancer Imaging Archive
(TCIA), comprising 25 histological grade III cases and 66
histological grade IV cases (Table 1). The criteria for image
acquisition in this study are as follows: I) available histology,
age at diagnosis, sex, and IDH status; II) MR imaging data,
including post-contrast T1-weighted images (T1CE), and T2-
FLAIR, and III) histopathological images.

Dataset
Histopathological Images
Shandong provincial hospital’s cohort: cases were diagnosed
according to WHO criteria (Louis et al., 2021). Paraffin-
embedded tissue samples were cut into 3 μm thick slides and
stained with H&E stain for all patients in this cohort. All H&E
stained images were scanned on a Leica SCN400 slide scanner
(Leica Biosystems, Nussloch, Germany) with multi-resolution
varying from 20× to 40× for analysis.

Genomic DNA was isolated from formalin-fixed paraffin-
embedded glioma tissues. DNA was extracted using the
QIAamp DNA Micro kit (Qiagen GmbH, Hilden, Germany)
as previously described (Perizzolo et al., 2012).

Expression of IDH-R132H mutant was firstly analyzed by
IHC as previously described (Reyes-Botero et al., 2014). For
IDH R132H–negative tumors, multiple-gene Sanger
sequencing was performed to identify alternative IDH
mutations (Sanson et al., 2009). IDH status was defined
according to the absence of IDH-R132H immunopositivity
and/or mutations in IDH1 and IDH2 genes identified by
sequencing.

The Cancer Genome Atlas (TCGA) cohort: Digital pathology
slides of diagnosed diffuse gliomas were downloaded from TCGA
Data Portal (http://cancergenome.nih.gov.) including
information on IDH status, and the corresponding MRI
images were acquired from the Cancer Imaging Archive
(TCIA) Data Portal (https://www.cancerimagingarchive.net).

Multimodal MR Images
All patients were imaged in the supine position with a 3.0-T MRI
machine (Magnetom, Skyra; Siemens Healthcare, Erlangen,
Germany) using a transmit/receive quadrature 20-channel head-
and-neck coil. The imaging protocol was the same for all patients.

T1-contrast: TR, 1820 ms; TE, 13 ms; slice number, 19; FOV,
230 mm; slice thickness, 5 mm; distance factor, 30%; FA, 150 deg;
inversion time (TI), 825 ms; voxel size, 0.4 × 0.4 × 5.0 mm;
accelerate factor, 2; bandwidth, 260 Hz/Px; echo spacing, 13 ms.

Fluid-attenuated inversion recovery imaging (T2-FLAIR): TR,
8,000 ms, TE: 81 ms, slice number: 19, FOV, 220 mm; slice
thickness, 5 mm; distance factor, 30%; FA, 150 deg; inversion
time (TI), 2,370 ms; voxel size, 0.7 mm × 0.7 mm × 5.0 mm;
accelerate factor, 2; bandwidth, 289 Hz/Px; echo spacing, 9.02 ms.

All MRI sequences of each patient from our own datasets and
from TCIA have the same imaging scale, position, slice anatomy
and slice thickness.

COMPUTER ANALYSIS

An automated framework was designed to predict IDH genotype,
consisting of the following steps, which were carried out in
sequence: I) automated image pre-processing to select the
regions of interest (ROIs), II) feature extraction, III) feature
selection, and IV) automated IDH genotype prediction and
results interpretation (Figure 1).

TABLE 1 | Patient characterizes.

Shandong Provincial Hospital TCGAa

Grade III (n; %) 41 25
IDH-mutated in Grade III (n; % column) 20, 48.9% 17, 68%
Grade IV (n; %) 85 66
IDH-mutated in Grade IV (n; % column) 20; 23.5% 12, 18.2%
Age (years; mean; range) 49; [5, 79] 53; [18, 81]
Sex (n male; % column) 55; 43.7% 55; 60.4%

aTCGA, The Cancer Genome Atlas.
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FIGURE 1 | Machine-learning framework for automated prediction of IDH glioblastoma genotypes. Histopathology and multimodal MR images are used as input
(left column). Representative regions of interest (ROIs) are extracted (middle column) followed by histopathological and radiomics feature selection (right column).
Subsequently, a Random Forest model-based Recursive Feature Elimination (RF-RFE)-algorithm is applied to select relevant while reducing redundant features.
Following 10-fold cross-validation, the automated machine-learning model for glioma IDH genotype prediction is established. Abbreviations: GCLM, Grey Level
Co-occurrence Matrix features; GLRLM, Grey Level Length Matrix features; GLSZM, Grey Level Size Zone Matrix features; NGTDM, Neighboring Gray Tone Difference
Matrix features; GLDM, Grey level Dependence Matrix features, mass of features, which may have redundant information, then selected and processed to improve the
predictive power of the machine-learning model.
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Automatic Extraction of Region of Interest
Our computational algorithm used for the analysis of histological
images approaches the region of interest at two different levels.
First, one tile with the highest cell density (5,120 * 5,120) (Sertel
et al., 2009; Mobadersany et al., 2018) is extracted employing the
watershed nuclei detection algorithm (Al-Kofahi et al., 2010;
Kumar et al., 2017; Wang et al., 2018). Then, based on Hue,
Saturation, and Value of Brightness (HSV channel), five tiles
representing the whole image (Al-Kofahi et al., 2010; Kumar et al.,
2017) at 40X resolution are identified. Third, based on the HSV
channel, five tiles representing the entire image at 4X resolution
are identified.

For the analysis of radiological images, we have segmented
edema and non-enhanced tumors from T2-FLAIR image. In
addition, T1CE images were used for enhancing tumor volume
segmentation. The lesions were separated into three parts,
enhancing tumor, tumor necrosis and peritumoral edema. The
process of tumor segmentation was performed manually using
the ITK-SNAP software (version 3.6.0; www.itksnap.org). First,
all MRI sequences were retrieved from the Picture Archiving and
Communication System (PACS). Then we applied N4 bias field
correction to remove the presence of low frequency intensity non-
uniformity. Inter-modality co-registration with different 2DMRI
sequences was achieved by means of ITK-SNAP. Using this
method, ROIs of enhancing tumor were delineated on post-
contrast T1WI images by a semi-automatic method, in which
only the enhancing area was selected. Tumor necrosis was defined
as the non-enhancing area within enhancing area on post-
contrast T1WI. ROIs of peritumoral edema were delineated on
T2-FLAIR, which was defined as the high-signal region beyond
the enhancing area. The process was performed by a consultant
neuro-radiologist. Finally, the ROIs were registered on each slice
of each 2D MRI sequence.

Feature Extraction
In this step, we extracted quantitative features from
histopathology images and MRIs. In case of the histopathology
images, we extracted two types, visual features and sub-visual
features, at two different resolutions. The visual features
quantitatively describe the morphology of nuclei such as the
mean area occupied and the pattern of staining. Sub-visual
features are derived from a high-throughput intensity and
texture matrix, which reflects the intensity distribution at the
single pixel level.

In the case of MRIs, we obtained shape features from the
volume of interest (VOI) reflecting tumor area and volume.
Subsequently, we extracted first-order, second-order and high
order features from the ROIs. The shape-based features describe
the three-dimensional (3D) properties of the tumor, such as
tumor volume, sphericity, and 3D diameter. First-order
statistical features reflect the distribution of voxel intensities
within the tumor area, including energy and entropy. Second-
order statistical features were obtained from the relationships
between adjacent voxels (Balagurunathan et al., 2014) to
describe the second-order joint probability function of the
tumor region as a gray-level co-occurrence matrix (GLCM)
and Gray-level run-length matrix (GLRLM), respectively, which

reflect intra-tumoral heterogeneity. High-order features were
calculated with the help of different filters such as the wavelet
transform.

Feature Selection
Although a large number of image features can be used to
construct a model that fully reflects the characteristics of
gliomas, removing redundant information can improve the
efficacy of the model for glioma genotyping (Guyon and
Elisseeff 2003). In order to reduce the amount of redundant
information inherent to quantitative features, we built a
Random Forest algorithm enhanced by a recursive feature
elimination (RF-RFE) procedure in order to identify the
relevant and important characteristics before
implementation in a classification model all (Saeys et al.,
2007). As shown in Figure 1, the feature with the lowest
importance for classification calculated by the algorithm
will be eliminated.

Modeling and Validation
We are proposing a binary classification model to differentiate
patients with an IDH mutation from wild type high-grade
gliomas (HGGs) based on clinical features (age and sex),
digital histopathological image features and MRI Radiomics
features.

The Random Forest algorithm employed in this study is widely
used in medical imaging analysis. The corresponding model is
able to accommodate a very large set of features. All machine-
learning methods were implemented with the Statistics and
Machine-Learning package on Python 3.6.

As discussed by Guyon and Elisseeff (2003), although a large
number of image features can be used to construct a model to
better reflects the characteristics of gliomas, the model may face
over-fitting problems, and therefore redundant information
needs to be carefully removed to improve the efficacy of the
model for genotyping gliomas. In order to ensure the stability and
efficiency of the selected features, the 10-Fold cross-validation is
nested with the RF training model to select a valuable feature set.
The random forest algorithm enhanced by the recursive feature
elimination (RF-RFE) process is used to identify relevant and
important features before all implementations in the classification
model (Saeys et al., 2007).

RESULTS

Feature Extraction and Selection
We extracted a total of 22 morphological features, which were
identified in the glioma cases studied (SupplementaryMaterial I.
Extraction of histopathologic features), including nuclear shape
and staining intensity (Figure 1). In addition, we extracted
171 sub-visual features (Wang et al., 2018) from the high
resolution digital histopathology images, including intensity
features and GLCM features.

As for results of IDH status prediction for HGGs, the
histopathological features extracted from histopathology
images, which reached an accuracy of 0.81 ± 0.03 with 10-fold
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cross validation. Regarding multimodal MRIs (Supplementary
Material II. Radiomics Features Extraction), 1,132 features were
extracted from the individual patients’ different MR image
sequences, including 234 first order features, 14 shape-based
features, 286 grey level co-occurrence matrix features, 208 grey
level run length matrix features, 208 grey level size zone matrix
features, and 182 grey level dependence matrix features
(Figure 1). The area under the curve (AUC) for features
extracted from different histopathological grade of tumors was
0.90 ± 0.09.

Comparison of Performances When Using
Different Modalities and Feature Types
In order to assess the differential relevance of the modalities
tested (T1CE, FLAIR and digital pathology images) in the
prediction of IDH genotype, a Random Forest machine-
learning model with 10-fold cross-validation was
established. In general, scans of histopathological images
yielded more accurate results in the IDH genotype
prediction than other image types (Figure 2C). Considering
quantitative features obtained from the different modalities,
our morphologically defined visual features also showed high

accuracy and stability (Figure 2B). With the multiparameter
imaging features minded from different modalities images, our
quantitative and objective analysis platform achieved high
diagnostic accuracy (0.90 ± 0.05). On the other hand, the
mined multiparametric features were achieved different
accuracy in corresponding image modality, including 0.86
(±0.03) in the Digital Histopathological Images, 0.73
(±0.06) in T1CE (edema and non-enhanced tumor), 0.72
(±0.04) in T1CE (enhanced tumor), 0.68 (±0.05) in T2-
FLAIR (edema and non-enhanced tumor) and 0.78 (±0.04)
in T2-FLAIR (enhanced tumor).

For IDH genotype prediction, optimal features were selected
from the different modalities of medical images, including seven
features from the digital histopathological images, four features
form the T1CE images and five from the T2-FLAIR images. As
shown in Figure 2B, GLRLM, Shape-based and GLCM features
had the greatest power in predicting glioma IDH status. Age,
counts of nuclei and first-order features were the most important
factors that contributed to this result. Top-performers within
different groups of image features contributed to IDH status
prediction as summarized in Table 2.

The accuracy of IDH status prediction was as high as 0.88 ±
0.03 when multi-parametric features were extracted from

FIGURE 2 |Random forest classifier scores for IDH genotype prediction. (A) Prediction results based onClinical data (age and gender); (B) Prediction results based
on different feature types; (C) Prediction results based on different image modalities; (D) Receiver Operating Characteristic (ROC) for IDH genotype prediction across
multi-parametric medical images.
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different histopathological and radiomics images through our
implementation of the Random Forest algorithm. Table 3 shows
the features that play important roles in our classification model.

Quantitative Isocitrate Dehydrogenase
Status Prediction and Results Interpretation
LIME (Local Interpretable Model-agnostic Explanations) is a tool
for facilitating local model interpretability. The technique
perturbs the input data to understand how the predictions are
affected. Figures 3, 4 illustrate two representative cases from
visual analysis and the machine-learning model. The first case is
an IDH-wt patient (Figure 3), who is 43 years old (age at
diagnosis), female with a histopathological grade IV glioma.
The second one is a patient with an IDH mutation (Figure 4),

who is 22 years old (age at diagnosis), male with histopathological
grade III glioma.

Machine-learning models taking into account the extracted
features’ different contributions, then quantitatively predict the
results by combining these different features according to their
corresponding contributions. During model training, the LIME
model can generate weighted coefficients to illustrate the
contributions made by different features. The predictive
ability of LIME algorithm made the most important
contribution to achieve a higher weight value. Positive
weights reflect the increase in the corresponding features
may make a positive contribution to the IDH status
prediction. In contrast, negative weights would have negative
predictive power. As shown in Figures 3, 4, the feature
contribution for IDH genotyping for two representative cases
have been listed, which are derived from the LIME model to
obtain the linear combination of feature values and weights.

DISCUSSION AND CONCLUSION

Discussion
Determination of IDH status has become a standard for glioma
diagnosis as it helps to guide clinical decision-making. In this
study, we have developed a Random Forest algorithm-based

TABLE 2 | TOP-performing features in IDH status prediction by means of univariate analysis.

Types Mask Feature name Feature description Accuracy

Clinical N/A Age Age at diagnose 0.74
Intensity T1C-edema Uniformity Formula 0.69

Fu � ∑
Ng

i�1 p(i)2
Where p(i) refers to the features calculated form Ng discrete pixel levels
Measuring the sum of the square of image VOI pixel value

Shape FLAIR-
edema

Flatness Formula 0.67

Fflatness � λleast
λmajor

Where λmajor and λleast refer to the length of the maximum and minimum principal component axes,
respectively
Measuring the relationship between the largest and smallest principal components in the VOI shape

Texture T1C-tumor Wavelet-
LLL_glrlm_LRLGLE

Formula 0.72

FL � ∑
Ng
i�1 ∑

Nr
j�1

P(i,j|θ)j2
i2

Nr(θ)
WhereNg refers to the gray level distribution within the VOI,Nr refers to the maximal length within the
VOI, P(i, j|θ) refers to the run length matrix for an arbitrary direction θ, Nr(θ) is the number of runs in
the image along θ

This feature quantitative describes the joint distribution of long-run lengths with lower gray level
values after a wavelet filter

Wavelet T1C-tumor wavelet-HHH-glcm-MP Formula 0.69
FMP � max(p(i, j))
Where p(i, j) is the normalized co-occurrence matrix
Quantify the occurrences of the most predominant pair of neighboring intensity values through a
Gray Level Co-occurrence Matrix after an image filter by a high-frequency wavelet.

LoG FLAIR-
tumor

Log-glszm- SALGLE Formula 0.65

FSALGLE � ∑
Ng
i�1 ∑

Ns
j�1

P(i,j)
i2 j2

Nz

Where Ng refers to the distribution values within the VOI, Ns refers to the zone sizes quantity within
the VOI., Nz refers to refers to the zones quantity within the VOI, and P(i, j) is the size zone matrix
Quantify the proportion in the mask of VOI by quantify the Gray Level Size Zone joint distribution of
smaller size zones with lower gray level values after the LoG filter

Morphology Tile Cell counts Quantitative describes the cell intensity in the ROI. 0.78

MP, Maximum Probability; SALGLE, Small Area Low Gray Level Emphasis; LRLGLE, Long Run Low Gray Level Emphasis; HHH, high, high and high frequency.

TABLE 3 | Prediction of IDH genotype based on high grade gliomas.

Image modalities Accuracy

Digital Histopathological Images 0.86 (± 0.03)
T1CE (edema and non-enhanced tumor) 0.73 (± 0.06)
T1CE (enhanced tumor) 0.72 (± 0.04)
T2-FLAIR (edema and non-enhanced tumor) 0.68 (± 0.05)
T2-FLAIR (enhanced tumor) 0.78 (± 0.04)
Multi-modal Image Data 0.90 (± 0.05)
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genotype classifier that allows the prediction of IDH mutation
status in glioma patients from pre-surgical MRI scans (Zhang
et al., 2016) with improved accuracy. The Random Forest
algorithm-based genotype classifier aims to employ the
machine-learning algorithm to do the IDH genotype and a
stable and efficient prediction result of IDH genotype. In this
situation, the Random Forest machine-learning model with
10-fold cross-validation was implement into this experiment.
To be more specific, we apply the RF algorithm into the
experiment due to the following advantages: I) in specific
experiments, training can be highly parallelized and run
efficiently on large data sets; II) since the partition features
of decision tree nodes can be selected randomly, which leads to
the input samples with high-dimensional features can be
processed without dimensionality reduction; III) the
algorithm is able to calculate the importance of each
feature to the prediction result and IV) due to the adoption
of random sampling and random feature selection, the model
has small variance at the training location and strong
induction ability. We adopt the RF into the experiment,
due to the advantages the model have which match the
height of our datasets.

In order to improve the accuracy of IDH phenotype prediction,
visual and sub-visual features extracted from digital
histopathological images and quantitative radiomics feature
extracted from different multimodality MRIs were implemented

into our Random-Forest-Recursive Feature Elimination (RF-RFE)
feature selection model to identify optimal criteria for further
analysis. In this task, the “visual features” refer to not only the
basic features including the color and appearance of nuclear staining,
but also non-basic features including different directions. On the
other hand, the “sub-visual features” allude to the computerized
high-throughput first-order and second-order features, which
includes intensity and texture information. In this experiment,
features were extracted from different conduits of the H&E
images, which aims to improve the prediction accuracy of the
IDH phenotype.

Our novel integrated approach, which combined multi-
parametric biomedical imaging features, was found to be a
more accurate predictor of IDH genotype than either
radiomics or histopathological feature recognition alone.
Multi-parametric biomedical imaging characterizes tumor
properties at different biological levels, it meets the need to
understand correlations between image features, genomics, and
clinical outcomes.

Specifically, the IDH predictive performance of
histopathological images was found to be superior to T2-
FLAIR and T1CE (0.86 vs. 0.71, 0.75). Among the leading
histomorphometrical features, the mean cell area and the
mean cell axis were most significant. These top identified
features mirror the fact that gliomas with an IDH mutation
have a more coherent nuclear architecture, i.e., they are

FIGURE 3 | IDH status prediction result explanation of a representative case with the LIME algorithm for the RF model (IDH-Wild type case).
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morphologically less atypical than IDH wild type, which is
associated with a higher risk of recurrence.

Our IDH genotype prediction achieved high accuracy for
mainly two reasons: First, we integrated MRIs, digital
histopathological images and clinical information for IDH
prediction. Second, we used the selected features to
significantly reduce the number of parameters in the model
to avoid overfitting while making our model more robust. To the
best of our knowledge, this is the first study to integrate MRI and
digital pathology images in a computerized model for predicting
IDH genotype. It is worth noting that T1CE and T2-FLAIR
images conferred a higher predictive value than other MR
sequences.

Conclusion
In conclusion, our work is a step towards a more effective use
of radiomic and histopathological data. It should be
particularly helpful for retrospective studies on gliomas
where imaging results are available but also to point of care
that do not have timely access to a molecular genetics
laboratory. To sum up, our results i) demonstrate that
machine-learning is capable of indirectly identifying genetic
information within structural MR images and
histopathological datasets, ii) suggest a complementary
method for the IDH genotyping of gliomas suitable for
patient screening, and iii) demonstrate the potential for

algorithmic tools to support clinical decision-making. Taken
together, it is expected that the integration of multimodal
biomedical data analysis will become more popular in
oncology research and practice as technology evolves, with
significant potential for the future clinical management of
brain tumor patients.
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