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Protein assembly is a highly dynamic process and proteins can interact in different ways
and stoichiometries within a complex. The importance of maintaining protein stoichiometry
for complex function and avoiding aggregation of orphan subunits has been
demonstrated. However, how exactly the organization of proteins into complexes
constrains differential protein abundance in extreme cellular conditions like cancer,
where a lot of protein abundance changes occur, has not been systematically
investigated. To study this, we collected proteomic data made available by the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) to quantify proteomic changes during
carcinogenesis and systematically tested five interaction types in complexes to investigate
which of these features impact on protein abundance correlation patterns in cancer. We
found that higher than expected fraction of protein complex subunits does not show
changes in their abundances compared to those in the normal samples. Furthermore, we
found that the way proteins interact in complexes indeed constrains their co-abundance
patterns. Our results highlight the role of the interactions between the proteins and the
need of cancer cells to deal with aberrant changes in protein abundance.
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INTRODUCTION

Cancer is a system that is characterized by a large number of somatic molecular alterations. Many of
these alterations appear on the level of the transcriptome and proteome of tumor cells. Among other
factors, copy number alterations (CNAs), gain or losses in DNA copies, can cause these imbalances in
mRNA expression and protein abundances (Mitelman et al., 2007; Beroukhim et al., 2010). However,
CNAs are not linearly translated into transcriptome and proteome levels (Liu et al., 2016). Indeed,
multi-omics studies estimated that nearly 40% genes are under compensatory post-transcriptional
control in response to CNAs (Sousa et al., 2019). Interestingly, those buffered proteins are
significantly enriched in protein complexes (Stingele et al., 2012; Gonçalves et al., 2017; Ishikawa
et al., 2017; Ryan et al., 2017). Furthermore, it has been shown that members of the same complex
have strong co-regulation in protein abundances (Dephoure et al., 2014; Kustatscher et al., 2017;
Sousa et al., 2019). Together these results suggest that protein-protein interactions (PPIs) and their
organization into complexes limit the dysregulation of protein abundance; however, to which degree
complex organization is important and how this buffering is achieved is poorly understood.

Proteins are interacting with each other as complexes to govern cellular functions. Protein
complexes are not static units but assemble and disassemble dynamically. This process relies on
cellular abundances and localization of proteins, and binding affinities between proteins (Nooren
and Thornton, 2003a). For example, quantitative proteomics analysis on different cell lines has
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shown that stable (core) complex subunits of the anaphase
promoting complex/cyclosome (APC/C) are associated with
higher cellular abundances and unique stoichiometries while
the KIAA1430 subunit, transient interactor of the APC/C, can
bind with different stoichiometric ratios (Hein et al., 2015).
Furthermore, it has been demonstrated that protein
stoichiometries vary depending on the environment such as
different tissues and cell types (Ori et al., 2016; Nusinow et al.,
2020), which highlights the dynamic organization of proteins in a
context-specific manner. Since the pioneering work of Jones and
Thornton (Jones and Thornton, 1996), many studies have
focused on formalizing PPIs based on binding affinity,
composition and stability of the complex, resulting in three
main classes; homo- and hetero-oligomeric interactions, non-
obligate and obligate interactions, and transient and permanent
interactions (Mintseris and Weng, 2003; Nooren and Thornton,
2003a; Acuner Ozbabacan et al., 2011). Moreover, some studies
have focused on indirect classification in which functional
associations, co-expression, and genetic interactions are
considered rather than physical interactions (Eisenberg et al.,
2000; Chatr-Aryamontri et al., 2013; Franceschini et al., 2013).
However, we still lack a consistent formalization of these partly
redundant definitions of interaction types within complexes.

Here, we performed two related tasks: 1) developing a
definition and systematic characterization of protein
interaction types in complexes; 2) asking how those different
interaction types result in (co-)abundance rules between the
complex subunits in particular in cellular conditions like
cancer that are characterized by dysregulation of gene
expression. To answer these questions, we first systematically
categorized protein interactions by using structural data,
proteomics measurements in different cellular conditions,
interaction data, and literature information and then, with the
integration of cancer proteomics data, tested how each category
impacts on protein abundance correlation patterns in cancer. The
outcomes emphasize the role of the interactions between the
proteins and their role in complexes in constraining differential
protein abundances in cancer.

MATERIALS AND METHODS

Code for data analysis is provided as part of the PPIs_Data-Code
repository and can be found at https://github.com/SengerG/
PPIs_Data-Code.

Data Processing
Proteomics data used in this publication were generated by the
Clinical Proteomic Tumor Analysis Consortium (NCI/NIH).
TMT-based log-transformed proteomics data for the following
CPTAC cohorts (for which proteomic profiling was done for
tumor and normal adjacent tissue samples and processed data is
available) were obtained: Colon (COAD) from Vasaikar et al.
(2019) (8,067 proteins for 96 tumor and 96 matched normal
samples), HBV-related hepatocellular carcinoma (HCC) from
Gao et al. (2019) (6,478 proteins for 159 tumor and 159 matched
normal samples) and lung (LUAD) from Gillette et al. (2020)

(10,699 proteins for 110 tumors and 101 matched normal
samples). For the ones for which the confirmatory or
discovery study is available, only the representative study was
considered. For the COAD cohort, proteomics data were further
filtered by excluding proteins that were quantified in less than
50% of the samples, leaving a total number of 6,554 proteins. For
the LUAD cohort, proteins mapped to the same gene symbol
were merged by taking the mean of the log-transformed TMT
values, leaving a total number of 10,316 proteins.

Proteomics data for the available The Cancer Genome Atlas
(TCGA) projects were directly obtained from the CPTAC
consortium, comprising 3 cohorts, spectral counts for
colorectal (COREAD) (Cancer Genome Atlas Network, 2012a;
Zhang et al., 2014), and relative abundances for ovarian (OV)
(Cancer Genome Atlas Network, 2011; Zhang et al., 2016), and
breast (BRCA) (Cancer Genome Atlas Network, 2012b; Mertins
et al., 2016). Spectral counts for TCGA COREAD tumor samples
were normalized by quantile normalization followed by log-
transformation. For the replicated samples, the mean value
was considered. This left us 5,561 proteins and 90 samples for
COREAD, 7,169 proteins and 174 samples for OV, and 10,625
proteins and 105 samples for BRCA.

Statistical Analysis
Differential protein abundance analysis was performed by using
Wilcoxon test to detect abundance changes between the tumor
and matched normal samples and then p-values were subjected to
multiple testing correction by using the Bonferroni correction.
Log2 fold change (log2FC) for proteins was calculated as the
median difference of log2 transformed TMT-values between
tumor and normal samples. Proteins with absolute log2FC
greater than 1 and adjusted p-value less than or equal to 0.05
were considered differentially abundant. Associations between
the differentially abundant proteins and protein complex
subunits, obtained from the CORUM database (Giurgiu et al.,
2019), were tested by chi-square test. To create an abundance-
matched background set of the same size, we binned proteins
based on their abundance and replaced each complex subunit
with a non-complex protein from the same bin. Standard
deviations in protein abundances were calculated across tumor
and normal samples separately and then compared by using t-
test.

Protein abundance correlations, for all possible protein pairs
among proteins covered by proteomics data, were calculated
across tumor samples by using the Spearman method
separately for all 6 CPTAC cohorts (COAD, HCC, LUAD,
COREAD, OV, and BRCA). The difference between the
distributions of correlations between members of the same
complex and members of different complexes was tested by
Wilcoxon test. To this end, correlations from different cohorts
for each protein pair were pooled.

Calculation of Stoichiometric Ratio
Stoichiometry information for proteins was retrieved from the
structural data available in the Protein Data Bank (PDB) (for
9,840 PDB entries) (Berman et al., 2000) in March 2020. Uniprot
IDs were then converted to gene names and only the human
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complexes were considered for further analysis, which left us with
8,388 protein complexes comprising 3,075 proteins. For proteins
within the same complex, the stoichiometric ratio was calculated
as the number of chains of proteins relative to each other. Then,
protein pairs were grouped as the ones involved in complexes
with even (e.g., 1:1, 2:2, 4:4) and with uneven (e.g., 2:1, 1:2, 3:1)
stoichiometric ratio (Supplementary Table S1). Protein pairs
that participate in complexes sometimes with even and
sometimes with uneven ratio were not included for further
analyses.

Calculation of Co-occurrence Frequency
The known human protein complexes (n � 2,916) and their
subunits (n � 3,664 unique proteins) were obtained from the
CORUM database (Giurgiu et al., 2019) (Corum 3.0 current
release, September 2018). For each protein pair found together
in at least one protein complex, we first counted the number of
complexes in which the two proteins were found together. To
address a possible bias due to different tendencies of proteins
to participate in complexes, we calculated the Jaccard index as
a representative of the co-occurrence frequencies by dividing
the number of complexes a protein pair is found together by
the number of complexes in which at least one of them
is found.

Defining Context-Specific and General
Interactions
167,374 protein interactions were obtained from BioPlex
Interactome (Huttlin et al., 2021) for the 293T and HCT116
human cell lines. Protein interactions that were detected by the
baits targeted in both cell lines were considered, leaving a total
number of 33,739 interactions detected in both cell lines
(general interactions), and 89,330 interactions detected
either in 293T or in HCT116 cell lines (context-specific
interactions).

Defining Competitive and Cooperative
Interactions
Protein interaction interface information was extracted from
Interactome INSIDER (where interface residues are defined as
the ones with a decrease in solvent-accessible surface area equal to
or larger than 1.0 Å2 upon binding) (Meyer et al., 2018) covering
121,575 experimentally determined human binary interactions
among 14,380 proteins. Uniprot IDs were converted to gene
names. The binary interactions that have binding site information
only for one protein were filtered out, which left us with 70,355
binary protein interactions. To determine if two proteins bind to
their common partner in a competitive or cooperative manner,
we calculated the Jaccard index (Eq. 1) as a measure of binding
similarity between their corresponding interaction sites on the
common partner. For the protein pairs that have more than one
common partner, the one with the highest Jaccard index was
considered for further analyses. Two proteins are classified as
competitive if the Jaccard index is equal to or higher than 0.1 and
cooperative otherwise.

Jaccard Index � Number of residues in A∩B
Number of residues in A∪B

(1)

where A and B represent the corresponding interaction sites on
the common partner for protein A and B.

Transient and Permanent Interactions
Transient and permanent PPIs were obtained from Block et al.
(2006) (147 permanent and 198 transient interactions among 340
PDB complexes) and from Mintseris and Weng (2003) (209
transient interactions among 207 PDB complexes). After
selecting for heterodimers and human complexes and
removing the duplicated interactions predicted by both
studies, 58 transient and 9 permanent interactions were left.

Statistical Analysis on Protein-Protein
Interaction Types
For each comparison between groups in each class of PPIs,
Wilcoxon test was applied.

For each protein pair covered by the structural data obtained
from the PDB (Berman et al., 2000), we tested the relationship
between proteins by using a linear regression model. In the
model, the dependent variable was the protein abundances of
the protein with smaller copy number across tumor samples. For
the protein pairs with even stoichiometric ratio, the first protein
was considered as the dependent variable. Only the relationships
where the coefficient of the dependent variable was significantly
different from zero (p-value < 0.05, linear regression model) were
considered for the comparison of slopes between protein pairs
with even and uneven stoichiometric ratio. Wilcoxon test was
used for the comparison.

RESULTS

Complex Members Are to a Certain Degree
Protected From Abundance Changes
To catalog a representative set of protein abundance changes
during carcinogenesis, we obtained proteome quantification data
for tumor and normal adjacent tissue samples from the CPTAC
consortium, comprising three cohorts; COAD (Vasaikar et al.,
2019), HCC (Gao et al., 2019) and LUAD (Gillette et al., 2020)
(Figure 1A). Then, differentially abundant proteins were detected
between tumor and normal samples. We found a variation in the
fraction of quantified proteins that showed significant abundant
changes (adjusted p-value ≤ 0.05, Wilcoxon test, and absolute
log2FC > 1); 457 out of 6,554 proteins, 481 out of 6,478 proteins
and 3,971 out of 10,316 proteins for COAD, HCC, and LUAD,
respectively. The majority of those differentially abundant
proteins were down-regulated in tumor samples (∼90% for
COAD and HCC, 60% for LUAD) (Supplementary Figure S1A).

We next aimed to understand if complex subunits are to a
lower degree affected by differential abundance changes when
comparing tumors with healthy tissue. To do this, we performed
an association test between the differentially abundant proteins,
with up- and down-regulated proteins pooled, and protein
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complex subunits obtained from the CORUM database (Giurgiu
et al., 2019). We observed a significant depletion of differentially
abundant proteins in protein complex subunits for COAD and
HCC (p < 0.0001, chi-square test) (Figure 1B). In order to avoid a
potential bias due to the abundance differences between complex
and non-complex proteins, we repeated the association test by
using a size- and abundance-matched non-complex subunits as
background. We could reproduce our previous result in COAD
and HCC cohorts where we observed significant association. We
hypothesize that complex subunits are protected from abundance
changes as stoichiometric imbalances in protein complexes cause
proteotoxicity and prevent proper functioning of complexes.
Similar observations have been previously described for
abundance changes triggered by focal genomic copy number
alterations (Gonçalves et al., 2017).

For the LUAD cohort, we observed in relative terms a higher
proportion of up-regulated proteins when compared to
abundance changes in COAD and HCC, where around 90% of

the differentially abundant proteins were down-regulated
(Supplementary Figure S1A). A chi-square test was
performed for up- and down-regulated proteins separately in
the LUAD cohort where this comparison was feasible to assess
differences in their overlap with the complex subunits. We
observed that up-regulated proteins were significantly enriched
in complex subunits (p � 6.28e-17, chi-square test) while a
significant depletion was observed (consistent with the other
cohorts) in the overlap between the down-regulated proteins
and complex subunits (p � 8.42e-19, chi-square test)
(Supplementary Figure S1B). The overall strong depletion of
complex members among downregulated proteins suggests that
complexes are protected from downregulation of their
components as the lack of subunits will prevent the proper
functioning of complexes, which might be more detrimental
for the tumor than upregulation of components.

In summary, we observed that protein complex membership
protects proteins from downregulation in cancer to a certain

FIGURE 1 | Protein abundance changes in cancer. (A) The total number of quantified proteins in each CPTAC cohort after filtering (LUAD, COAD, HCC, BRCA, OV,
and COREAD). (B) The expected and observed number of differentially abundant proteins in complex subunits. Chi-square test was used to determine if the difference
between expected and observed values is statistically significant (n.s: no statistical significance; ****: p < 0.0001). (C) The difference between the distribution of standard
deviations of protein abundances in tumor and matched normal samples. Statistical significance was tested by t-test. (D) Spearman correlation coefficients of
protein pairs across tumor samples. Pairwise correlations were calculated across tumor samples, separately in each cohort (LUAD, COAD, HCC, BRCA, OV, and
COREAD) and then pooled. Wilcoxon test was used to test if two distributions are significantly different.
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degree. Still, many protein abundance changes happen in cancer
(Guang et al., 2019). Indeed, we observed a higher variation in
protein abundances across tumor samples as compared to the
matched normal samples in all of the 3 cohorts (p < 0.0001, t-test)
(Figure 1C). We therefore decided to test if protein abundance
correlation differs between complex partners vs. non-partners. To
this end, we additionally included the CPTAC proteome data for
the available TCGA projects (for which no matched normal
samples were available and, hence, had been excluded from
the differential abundance analysis): COREAD (including both
colon and rectal tumors differently from the COAD cohort) (The
Cancer Genome Atlas Network, 2012a; Zhang et al., 2014), OV
(The Cancer Genome Atlas Network, 2011; Zhang et al., 2016)
and BRCA (The Cancer Genome Atlas Network, 2012b; Mertins
et al., 2016) cohorts. For all six cohorts (COAD, HCC, LUAD,
COREAD, OV, and BRCA), we calculated protein level Spearman
correlations for all possible pairs of proteins covered by CORUM
complexes across tumor samples. We found that proteins
involved in the same complex have significantly stronger
protein abundance correlations (p < 2.2e-16, Wilcoxon test)
(Figure 1D).

Together these observations suggest that protein complex
organization constrains protein abundance changes in cancer,
which is characterized by dysregulation of proteins, and has an
impact on the strength of co-abundance patterns.

Protein-Protein Interaction Classifications
To further understand how the dynamics of protein complex
formation and the interaction between their components affect
co-regulation of abundance changes of complex subunits, we first
systematically categorized interaction types in complexes into five
classes based on protein structure, proteomics measurements in
different cellular conditions, biochemical properties of the
binding interfaces, and literature information: i) stoichiometric
ratio between proteins; ii) co-occurrence frequency of proteins;
iii) context-specific vs. general interactions; iv) competitive vs.
cooperative interactions; and v) transient vs. permanent
interactions (Table 1). Next, we tested which of the complex
interaction types contributes to the strength of abundance

correlations between co-complex members in cancer. To do
this, we calculated protein level Spearman correlations for all
possible pairs of quantified proteins across tumor samples
separately for each cohort included in this study (COAD,
HCC, LUAD, COREAD, OV, and BRCA).

Proteins interact with each other in varying stoichiometric
ratios in protein complexes (Taggart et al., 2020). To test whether
the stoichiometric ratio between co-complex members constrains
abundance changes within a complex, we used structural data
obtained from the PDB (Berman et al., 2000) for the available
human heteromeric protein complexes (n � 8,388) and calculated
the stoichiometric ratio between the proteins within the same
complex. Then we grouped protein pairs as the ones with even
stoichiometric ratio (e.g., 1:1, 2:2, 4:4) and those with uneven
stoichiometric ratio (e.g., 2:1, 1:2, 3:1) and compared protein level
correlations between these two groups in each cohort. We
observed that protein pairs involved in complexes in an even
stoichiometric ratio have significantly stronger correlations than
other protein pairs (p-value < 0.0001, Wilcoxon test) in all
cohorts (Figure 2A; Supplementary Figure S2A). We next
tested if the stoichiometric ratio would have an impact on the
steepness of the regression curve. We found, considering only the
significant relationships (where coefficients are different from
zero; p-value < 0.05, linear regression model), that positively
correlated protein pairs with even stoichiometric ratio are
associated with higher slopes (significant for 4 cohorts out of
6; p-value < 0.0001, Wilcoxon test) while their negatively
correlated counterparts are associated with lower slopes
(significant for 2 cohorts out of 6; p-value < 0.05, Wilcoxon
test) (Supplementary Figure S3). These observations make sense
as when a protein is upregulated its co-complex members that
participate with a higher number of copies in the complex need to
be upregulated to an even higher degree to fulfil the
stoichiometric constraints.

Some protein pairs are found together in many complexes while
others co-occur only in a few complexes. Thus, we asked if the
frequency of the co-occurence of protein pairs in complexes has an
effect on co-abundance changes in cancer. To do this, for each
protein pair among CORUM protein complex subunits, we

TABLE 1 | Categories of PPIs. Five interaction types between proteins, their definition and the source from which the interaction information is obtained. The illustrations for
each defined interaction type are in Figure 2.

Class Definition Source

Stoichiometric ratio between
proteins

Copy numbers of proteins within a complex relative to each other PDB Berman et al. (2000)

Co-occurrence frequency of
proteins

The number of complexes two proteins are found together CORUM database Giurgiu et al. (2019)

Context-specific vs. general
interactions

PPIs are classified into two groups based on their detection in different human cell lines
(HEK293T and HCT116)

BioPlex Interactome Huttlin et al.
(2021)

Competitive vs. cooperative
interactions

The terms, “competitive” and “cooperative,” are used to define the relationships between two
proteins that bind to the same protein

Interactome Insider Meyer et al. (2018)

Transient vs. permanent
interactions

Based on the stability of a complex and physicochemical characteristics of protein interfaces,
protein-protein interaction can be grouped as transient, formed temporarily, and permanent
interactions, naturally formed (Nooren and Thornton, 2003a; Nooren and Thornton, 2003b)

Block et al. (2006), Mintseris and
Weng (2003)
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computed co-occurrence frequencies in complexes. Comparison of
the co-occurrence frequencies between positively and negatively
correlated proteins showed that positively correlated protein pairs
tend to occurmore often in the same complexes, consistently in each
cohort (p-value < 0.0001, Wilcoxon test) (Figure 2B;
Supplementary Figure S2B). This observation matches our
expectation as frequent co-membership in complexes means a
larger number of complexes will depend on the proper
abundance ratios between the two proteins and this will increase
the need for coregulation of the protein pair.

We further tested context-specific vs. general interactions. As a
proxy for the interaction specificity, we included experimentally
determined cell-line specific PPIs (Huttlin et al., 2021) and classified
them as context-specific interactions if they were detected in only
one of the two cell lines, and general interactions if present in both
cell lines.We found that proteins interacting independently from the
context are associated with stronger correlations than those
interacting in a context-dependent manner in all cohorts (p-value
< 0.0001, Wilcoxon test) (Figure 2C; Supplementary Figure S2C).
The result makes sense as general interactions, by definition, are less
prone to be affected by different cellular environments, and thus
their co-abundance changes are expected to be more correlated.

While some proteins bind to few partners, some have multiple
partners binding at similar (overlapping) interaction sites (Keskin
and Nussinov, 2007). To assess whether competing for binding
affects co-abundance changes in cancer, we first identified
competitive and cooperative interactions, and then compared
protein level correlations between them. To this end, we used
experimentally determined human binary interactions curated
from Interactome INSIDER (Meyer et al., 2018) and grouped
them as competitive and cooperative interactions based on the
similarity of their corresponding interaction sites on their shared
partners. We observed that competitively interacting proteins
have significantly higher correlations than cooperatively
interacting proteins, consistently for 5 cohorts out of 6
(p-value < 0.05, Wilcoxon test) (Figure 2D; Supplementary
Figure S2D). This can be robustly reproduced when
comparative and cooperative interactions were grouped based
on different binding similarity scores (Supplementary Figure
S4). This observation surprised us as we expected weaker or
negative correlations between competitively interacting proteins
as those, by definition, should not participate in the same complex
at the same time and hence an opposing expression pattern would
be expected.

FIGURE 2 | Protein-protein interaction types and protein level correlations between proteins across tumor samples in HCC. (A) Stoichiometric ratio between
proteins. (B)Co-occurrence frequency of proteins. (C)Context-specific vs. general interactions. (D)Competitive vs. cooperative interactions. (E)Permanent vs. transient
interactions. Wilcoxon test was performed to compare correlations between two groups in each class of PPIs.
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Based on stability, PPIs are classified as permanent and transient
interactions. We obtained permanent and transient interactions
estimated by machine learning algorithms based on
physicochemical properties of PPIs from Minteris and Weng
(2003) and Block et al. (2006), and then compared protein level
correlations between those two groups. While not significant in each
single cohort, we observed consistent trends: permanent interactions
correspond to stronger correlations while relatively weaker, transient
interactions were observed between proteins whose abundances are
less dependent on each other, and this trend is statistically significant
in COREAD, COAD, and HCC cohorts (p-value < 0.05, Wilcoxon
test) (Figure 2E; Supplementary Figure S2E). This is expected as the
transient interactions are more flexible for a change in binding
partners during the assembly of complexes (Nooren and
Thornton, 2003a).

DISCUSSION

Cancer is characterized bymany alterations including transcriptome
and proteome dysregulation. There seems to be a larger number of
dysregulated transcripts as compared to proteins (Stingele et al.,
2012). This suggests compensatory mechanisms on translation level
and raises the interesting question which of the changes in gene
expression are tolerated by the cancer cell and which not. Our
analysis reconfirms that complex members are to a certain degree
protected from abundance changes that could mess with complex
stoichiometry. In addition, we showed that the type of interaction
within a protein complex constrains proteome abundance and
dysregulation to maintain functional complex organization. To
address this, we systematically categorized interaction types in
complexes by integrating experimental measurements and
computational predictions, and tested each category for its impact
on abundance changes by using cancer proteomics data.

In most yet not in every case, our observations matched our
expectations. However, in some comparisons we observed different
degrees of the expected trend in different cohorts: e.g., for the
observation that permanent interactions are associated with
higher correlations (Figure 2E; Supplementary Figure S2E). This
variationmight be explained by the way the physiological conditions
and local environment affect the stability of an interaction meaning
that permanent interaction may become transient under certain
conditions or vice versa (Nooren and Thornton, 2003a).
Additionally, computational prediction of transient and
permanent interactions might not fully capture how proteins
interact in different local environments represented by different
cancer types used in this study.

For proteins binding to the same proteins through overlapping
interaction sites, competition is expected. We hypothesized that
proteins competing with each other to bind their common partners
will show weaker correlations in their protein abundances. However,
we were surprised that the results were in the opposite direction of our
expectation (Figure 2D; Supplementary Figure S2D). Those results
could be reproduced over a range of thresholds for binding site overlap
definition (Supplementary Figure S4). The reason could be that
alternative regulatory mechanisms prevent competition between
partners (Li et al., 2015) or that our computational estimates of

competition vs. cooperative binding are not accurate. For example,
biophysical properties of interaction sites of proteins (e.g., steric
hindrance) can favor or prevent interactions between them and
thus, the classification of proteins based on the overlap in the
interaction interface might not represent competitive or cooperative
binding in reality. In addition, it should be noted that those estimates
are based on themeasurement from in vitro experiments. The proteins
classified as competing could have different localization or be expressed
in different cells/tissues in vivo and in reality never meet.

The purpose of this study was to provide a proof of concept that
interaction types within complexes affect co-abundance patterns in
cancer. To this end, we picked only a limited set of studies to classify
interactions or quantify protein abundances. Hence, the primary
limitation of our study is the small number of representative
examples for several types of interactions such as permanent vs.
transient interactions wheremining the literature revealed only a few
instances. Additionally, for the class of context-specific vs. general
interactions, we considered the proteomics measurements of two
different cell lines. Thus, integrating a larger number of cell-line
specific proteomics interaction datasets will potentially provide a
more comprehensive understanding in the future.
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