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Background: More than 150 types of brain tumors have been documented. Accurate
diagnosis is important for making appropriate therapeutic decisions in treating the
diseases. The goal of this study is to develop a DNA methylation profile-based
classifier to accurately identify various kinds of brain tumors.

Methods: Thirteen datasets of DNA methylation profiles were downloaded from the Gene
Expression Omnibus (GEO) database, of which GSE90496 and GSE109379were used as
the training set and the validation set, respectively, and the remaining 11 sets were used as
the independent test set. The random forest algorithm was used to select the CpG sites
based on the importance of the features and a multilayer perceptron (MLP) model was
trained to classify the samples. Deconvolution with the debCAM package was used to
explore the cellular composition difference among tumors.

Results: From training datasets with 2,801 samples, 396,568 CpG sites were retained
after preprocessing, of which 767 were selected as the modeling features. A three-layer
MLP model was developed, which consists of 1,320 nodes in the hidden layer, to predict
the histological types of brain tumors. The prediction accuracy is 99.2, 87.0, and 96.58%,
respectively, on the training, validation and test sets. The results of deconvolution analysis
showed that the cell proportions of different tumor subtypes were different, and it is
approximately enough to distinguish different tumor entities.

Conclusion: We developed a classifier that is robust for the classification of central
nervous system tumors, and tried to analyze the reasons for the classification
performance.
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INTRODUCTION

Brain cancer is an umbrella term accounting for many malignant tumors affecting different tissues in
the nervous system. Survival rates for brain tumors vary widely, depending on the type of tumors and
other factors. Recently, the classification of brain tumors has been evolving rapidly. The fourth
edition of the World Health Organization (WHO) classification, published in 2016, introduced
molecular parameters for the first time in addition to histology to define many tumor entities.
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Despite an enormous advancement of the 2016 classification
system which facilitates the clinical, experimental and
epidemiological studies that would lead to improvements in
the lives of patients with brain tumors, it has raised many
concerns and been considered outdated at the time of
publication. It has been superseded by the 5th edition (WHO
CNS5) that was released recently.

During the last decade, next-generation sequencing (NGS)
and other high-throughput molecular profiling techniques
supplying comprehensive data further transformed the
diagnosis of brain tumors and the advances in machine-
learning provided more accurate prediction of outcome and
response to therapy. Among different omics, DNA-methylome
profiling has been proven a valuable technique that can
complement the diagnostic process, in particular for
histologically ambiguous tumors.

DNA methylation is an epigenetic mechanism involving the
binding of a methyl group onto the C5 position of the cytosine via
a covalent bond (Portela and Esteller, 2010). DNA methylation
regulates gene expression by recruiting proteins involved in gene
repression or by inhibiting the binding of transcription factor(s)
to DNA (Zafon et al., 2019). Similar as transcriptomics, DNA
methylation provides rich information on the molecular
characteristics of cells. But the high stability of the covalent
modification makes it ideal for clinical diagnosis and
applicable to formalin-fixed and paraffin-embedded specimens,
circumventing the stringent sample preparation requirements in
mRNA profiling (Koch et al., 2018).

DNA methylation-based biomarkers have been used in
diagnosis and prognosis for brain tumors. For instance,
hypermethylation of MGMT promoter in glioblastoma
indicates that the tumor is sensitive to temozolomide
treatment, though the predictive capability is limited to the
IDH wild-type gliomas (Reifenberger et al., 2017). Chen et al.
(2017) developed a prognostic signature for in IDH mutant
glioblastoma based on the expression levels of 10 glycolytic
genes, and found that these genes are hypermethylated in the
promoter region in patients with better prognosis, demonstrating
a potential to use the methylation statuses of the promoter
regions of these genes for prognosis. Based on DNA
methylation profiles, ependymomas were clustered into nine
subgroups, which reflects different locations, genomic and
epigenomic characteristics of the tumors. Similarly, choroid
plexus tumors were divided into three subgroups based on
DNA methylation, one of which is located in the fourth
ventricle of adults and the other two occur mainly in children
(Thomas et al., 2016; Pienkowska et al., 2019). Machine learning
algorithms have been applied in the classification of brain tumors
using DNA methylation levels as features. Zhang et al. (2020)
adopted support vector machine (SVM) and other algorithms to
develop classifiers for cell lines from 13 tissues including brain,
lung and others, and the classification accuracy reached to 96.3%.
Gomez et al. (2018) developed two diagnosis classifiers with the
linear discriminant analysis method, which were used to
distinguish four subtypes of medulloblastomas and the
accuracy rates reached to 99 and 92%, respectively. Therefore,
machine-learning algorithms demonstrate a great potential in

developing signatures for classification, prognosis and prediction
of brain tumors based on the whole genome DNA methylation
profiles.

Recently, Crapper et al. (2018) developed a random forest
classifier to improve pathological diagnosis of nearly 100 brain
tumor entities based on genome-wide DNAmethylation patterns
and demonstrated its application in a routine diagnostic setting.
Later, they reported a DNA-methylation-based diagnostic model
for practical diagnostic scenarios. In the validation set, the classes
of 12% of the samples could not be predicted due to insufficient
prediction scores, and only 1% of the samples were predicted
incorrectly. However, the classifier needs 10,000 DNA
methylation probes as input features, which make it liable to
the overfitting risk and difficult to translate the classifier into a
clinical detection kit. In this study, we aim to develop an accurate
and robust classifier for brain tumors using fewer probes in order
to improve clinical translatability and interpretability of the
machine learning model.

MATERIALS AND METHODS

Data Collection
We downloaded 13 DNAmethylation datasets of brain tumors in
the raw data format from the Gene Expression Omnibus (GEO)
database (Supplementary Table S1). Among them, GSE90496,
consisting of 2,801 samples and covering 82 types of brain tumors
and nine types of normal brain tissues, was used as the training
set. GSE109379, consisting of 1,104 samples and covering 69
types of brain tumors, was used as the validation set. The
remaining data was used as the independent test set, which
consists of 1,200 samples and covers 17 types of brain tumors.
The distribution of the data sets is shown in Figure 2. All the
datasets were generated by the Illumina Infinium
HumanMethylation450 BeadChip (450k) and Infinium
MethylationEPIC BeadChip (850k).

Data Preprocessing
The data preprocessing was carried out with the R language (v.
4.0.0). Using the minfi (Aryee et al., 2014) (v.1.34.0) package to
import the IDAT files, we performed background correction
(bg.correct function) and dye correction (correct the average
probe intensity to 10,000) for the two channels, and then
performed batch effect correction to correct the difference
between formalin-fixed paraffin-embedded (FFPE) and freshly
frozen samples and/or other systematic bias on the log2 converted
fluorescence intensity values (removeBatchEffect function, limma
(Ritchie et al., 2015) package (v.3.24.15). Estimated batch effects
were also used to correct the validation set and test set. Beta values
were calculated from the retransformed intensities using an offset
of 100.

In addition, we deleted the following probes 1) probes located
on the sex chromosomes, 2) probes that cannot be uniquely
aligned to the hg19 reference genome, 3) probes containing single
nucleotide polymorphisms, 4) probes not included in the EPIC
chip. The remained 396,568 probes were used for downstream
analysis.
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Feature Selection
The feature selection and model development were carried out
with the Python language (v.3.8.3) with the scikit-learn
(Pedregosa et al., 2011) module (v.0.23.1). The selection of the
probes for model development was based on their importance
coefficients in the random forest model which was optimized
iteratively for the hyperparameters and number of probes. The
initial values for the random forest model include “random_state”
� 0, “n_estimators” � 100, “max_features” � “sqrt” and
“class_weight” � “balanced’.” The RandomForestClassifier
function was used to fit the training set to the model and an
importance coefficient was assigned to each probe.

A set of top ranked probes were selected to develop the
multilayer perceptron (MLP) model and to optimize the
hyperparameters in order to achieve the highest accuracy in
the validation set. With the optimized hyperparameters, the
importance coefficients were updated with the new fitting
model. This iteration was repeated manually to obtain a
minimal set of features without sacrificing the accuracy too
much. In the final model, 767 probes were selected for modeling.

Multilayer Perceptron Model Development
A MLP model is a class of feedforward artificial neural network
consisting of three types of layers, including input, hidden and
output layers. A minimal 3-layer model was built in this work to
avoid the potential overfitting problem. The model was trained
using the MLPClassifier function from the scikit-learn module.
The hyperparameters of the model were optimized along the
features selection as mentioned in the previous section. The
hidden layer consists of 1,320 nodes in the final model and
the activation method is Rectified Linear Unit. The model was
solved using the random gradient descent method with the
adaptive learning rate and a maximum number of iterations
of 1,000.

Deconvolution Analysis
First, the random forest model was applied to select top 10,000
probes based on their importance coefficients assigned by fitting
the model to the training dataset. Next, with the debCAM (Chen,
2020) package (v1.6.0), an unsupervised and reference-free
deconvolution was performed on the beta values profiles of
the 10,000 probes. The number of subpopulations, aka. cell
components with distinct DNA methylation features, was
limited from 2 to 20, and debCAM determined the optimal
number to be 10. Cell types were identified using marker
genes from CellMarker database (Zhang et al., 2019).

Statistics and Plotting
The heatmaps were drawn with the ComplexHeatmap package
(Gu et al., 2016) (v.2.6.2) in R. The probability density curves were
plotted with seaborn’s kdeplot function (Waskom, 2021)
(v.0.11.0) in python. The nonlinear dimensionality reduction
algorithm, t-Distributed Stochastic Neighbor Embedding
(t-SNE), was carried out using the TSNE function from scikit-
learn with the default parameters. Other statistical analysis and
plotting were performed with R (v.4.0.0).

RESULTS

Identifying Methylation Markers With
Classification Capability by Random Forest
The flowchart of this study is shown in Figure 1. We downloaded 13
sets of DNA methylation profiles of various types of brain tumors
measured by the Illumina 450k andEPIC (850k)microarray platforms
from the GEO database (Figure 2), of which GSE90496 was used as
the training set, GSE109379 as the validation set, and the remaining as
the independent test set (Supplementary Table S1). The training set
covers 82 types of brain tumors and nine types of normal control
tissues located in different brain regions, with a total size of 2,801
samples. The validation set contains 69 types of brain tumors with a
total sample size of 1,104 and the independent test set consisting of
1,200 samples covers 17 types of brain tumors (Figure 2).

All the original methylation profiles were preprocessed with
the same procedure to obtain the beta value matrices as detailed
in the Materials and Methods section. In particular, the batch
effect correction formulas obtained in the training dataset were
saved and latter applied to individual profiles in the validation
and test tests to ensure that the same transformation rules were
used for all the samples. In total, 396,568 probes remained after
preprocessing with a standard deviation greater than 2.62 × 10−3

across 2,801 samples in the training dataset.
The random forest model was used to further select the probes as

the modeling features based on their importance coefficients. The
importance coefficient represents the information gain associatedwith
the addition of the feature to the model, the larger the coefficient, the
greater the classification ability of the feature. The feature selection and
the hyperparameters optimization were carried out iteratively as
detailed in the Materials and Methods section. In the final model,
767 probes were selected which let the classifier reach the highest
accuracy in the validation set. The distribution of the importance
coefficients of these probes is shown in Supplementary Figure S1.
Using the beta values of these probes to calculate the Pearson
correlation between samples as the similarity measure, hierarchy
clustering of the samples in the training set showed that they
clustered together according to their subtypes (Figure 3A), which
demonstrates the feasibility for classification of the selected features.

Figure 3B compares the empirical probability density
distribution of the standard deviations of the 767 features across
samples with that of all probes. From Figure 3B, we see that
although the selected probes tend to have a larger standard
deviation than the background probes, half of the probes still
have very low standard deviations (s < 0.1). Therefore, the
selection method based on standard deviations would miss these
probes which have consistently higher (or lower) beta values in the
samples of one class with a limited size and consistently lower (or
higher) beta values in all other classes of samples.

Performance Evaluation of 3-Layer
Perceptron Model in the Training and
Validation Datasets
A 3-layer perceptron model was developed for classification
(Figure 4A), in which the input and output layers consist of
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767 and 91 nodes, respectively, while the hidden layer consists of
1,320 nodes in the optimized model. The activation function is
the rectified linear unit function, and the output given a sample
input is a vector of 91 values with a sum of 1, which correspond to
the predicted probabilities for the 91 classes. The class with the
largest probability is considered as the predicted result.

The accuracy rate of the classifier is 99.2% in the training set
and 87.0% in the validation set (Figures 4B,C). The latter is
much higher than the performance of the random forest
classifier (accuracy � 79.1%) in the validation set developed
with the same set of features. In the training set, 5-fold cross-
validation showed an accuracy of 0.961, 0.966, 0.957, 0.968,
and 0.952, respectively, in five iterations. The results showed
that most errors occur in the subtype assignment of
glioblastomas (GBM) (Figure 4D). What is particularly
worth noticing is that a few subtypes form a cluster, such
that “GBM, MES,” “GBM, RTK I” and “GBM, RTK II” forming
one class and “GBM, RTK III,” “GBM, MID” and “GBM,
MYCN” forming another class. Most misclassification cases
occur within the classes. For example, 13 cases of “GBM, MES”
are predicted to be “GBM, RTK II” and 2 cases of “GBM, RTK
I” are predicted to be “GBM, RTK II.” The rest of the errors are

distributed in other 7 types of brain tumors (Table 1). In the
validation set, there are 79 samples that were incorrectly
classified (Supplementary Table S2). Similarly, most of
them are glioblastomas, 18 cases of “GBM, MES” predicted
to be “GBM, RTK II,” 10 cases of “GBM, RTK I” predicted to be
“GBM, RTK II,” and 8 cases “GBM, RTK II” predicted to be
“GBM, MES.” The results suggest that different subtypes of
glioblastomas have vague boundaries, which makes it difficult
for the classifier to predict accurately.

The distribution of the predicted class probabilities is
plotted for each subtype in Figure 5A. Most of the
probabilities are close to 1 and the proportions of the
values less than 0.5 are nearly zero in most classes.
Supplementary Figure S3A shows the distribution of the
differences between the largest probabilities (predicted class
probabilities) and the next largest probabilities. From
Supplementary Figure S2A, we see that most of the
differences are higher than 0.8 and only nine samples have
a difference less than 0.1. Supplementary Figure S2B shows
the differences between the largest predicted probability
value and the next largest predicted probability value of
the samples that were incorrectly predicted in the training

FIGURE 1 |Workflow chart of this study. After the training set was preprocessed, we screened 767 features to develop the MLP model, and then applied it on the
validation set and independent test set. In addition, 10,000 features were screened for deconvolution analysis to estimate the cell composition of each sample.
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set. It can be found that the distribution tends to be on the
left, indicating that the model’s prediction results for these
samples are not confident enough. And in fact, the classes
with the next-largest probabilities are actually the true labels
(Figure 5B). These results show that the classification model
is sufficiently stable.

Performance of the Multilayer Perceptron
Classifier Evaluated in the Independent
Test Set
Eleven data sets were downloaded from GEO, forming the
independent test set, which consist of 17 subtypes of brain
tumors with the histopathological labels, a total of 1,200
samples. The prediction accuracy of the MLP model on this

test set is 96.58% (Supplementary Figure S3). A total of 26
samples were misclassified (Table 2). Except for a few cases, the
errors occurred between similar subtypes of the same brain tumor
types like GBM. For example, “GBM, RTK I” or “GBM, RTK II”
were assigned to “GBM, RTK III.”

Cellular Components are Able to Classify
Brain Tumors
To further understand the outstanding performance of the
classification model, a reference-free deconvolution analysis
was performed on the training dataset. Since the tumors are
located in different brain regions, it is likely that they are
composed with different cell populations and each cell type
may carry unique epigenetic features. Using the random forest

FIGURE 2 | The numbers of samples of different subtypes in the training set, validation set and test set. The color annotation corresponding to each subtype is
consistent in this article.

FIGURE 3 | Selected features show strong classification capability. (A) Pearson correlation heatmap based on the selected probes among the samples in the
training set. (B) Distribution density curves of the standard deviations of all the probes (blue) after preprocessing and the selected 767 probes (orange).
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model, we screened top 10,000 probes with the highest
importance coefficients. The deconvolution analysis was
performed with these features on the training dataset using
the debCAM package and 10 cell types and their proportions in
each sample were obtained. A cluster analysis on the cellular
proportions from the deconvolution result found that samples
of the same subtype are approximately clustered together
(Figure 6A). Similar results were obtained from the t-SNE
dimensionality reduction analysis (Figure 6B). This shows
that the result of deconvolution is reliable. In addition, several
cell types have strong specificity, appearing in specific subtypes
only, which implies that the difference in the ratio of different
cell types may be the reason of a good performance of the
classifier.

After mapping the methylation probes to genes and then using
cell marker genes from the CellMarker database (Zhang et al.,
2019), we tentatively assigned a few components to cancer stem
cell, neural stem cell, Th1 cell, AXL + SIGLEC6+ dendritic cell,
epithelial cell, granulosa cell, meiotic prophase fetal germ cell and
mitotic arrest phase fetal germ cell. However, not every cell
component has basis genes overlapping with the cell markers.
These need further studies to illustrate the components and their
different roles in each tumor type.

DISCUSSION

Currently, more than 150 types of brain tumors have been
documented1 and the main diagnosis methods are imaging
tests, including MRI and CT. Interoperative pathological
examination is often needed to determine the nature of the
tumors. A stereotactic needle biopsy may be done if the tumor
is in hard-to-reach areas or very sensitive areas that might be
damaged by a more extensive operation (Jackson et al., 2001;
Villena Martín et al., 2020). More accurate classification is key to
deliver precision therapy for better prognosis of patients. DNA
methylation is considered to be an ideal material for tumor
diagnosis and classification because the information can be
stored stably in routine clinical samples (Koch et al., 2018).
There are a few machine learning methods based on DNA
methylation profiles that were developed to subtype brain
tumors. Zhang et al. (2020) developed a classification model
with SVM and other algorithms for 13 cell lines from brain, lung
and other tissues, and the accuracy reached to 0.963. Gomez et al.

FIGURE 4 |Classification performance of the MLPmodel. (A) The three-layer perceptron model structure. The input layer consists of 767 nodes, corresponding to
767 features. The hidden layer has 1,320 nodes, and the output layer has 91 nodes corresponding to 91 classes. Distribution of the prediction results in the training set
(B) and in the validation set (C). Each column represents one tumor class. The bottom parts represent the correctly predicted results and the top parts enclosed by a
black rectangle represent the incorrect results where the colors correspond to the predicted classes. (D) Heat map showing results of a 5-fold cross-validation of
the MLP classifier in the training set, which incorporates the result allocated to 91 methylation classes of all 5-iterations. The diagonal data cells represent classification
accuracies while the off-diagonal cells represent the misclassified rates. For example, 45 of the 56 “GBM, MES” samples were correctly classified (80.4%), and 11
samples were misclassified as “GBM, RTK II” (19.6%). The color of annotation and abbreviations can refer to Figure 2. Methylation class families (MCF) are indicated by
black squares.

1American Association of Neurological Surgeons. https://www.aans.org/Patients/
Neurosurgical-Conditions-and-Treatments/Brain-Tumors [Accessed April 23,
2021].
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(2018) adopted linear discriminant analysis to develop two
models classifying the four subtypes of medulloblastomas with
accuracy rates of 99 and 92%, respectively. The study carried out
by Crapper et al. (2018) is the most comprehensive one. A
random forest classifier was built, which incorporates 10,000
probes as features from Illumina’s 450k microarray platform,
to distinguish 82 types of brain tumors. Performance of the model
has been validated through multi-center clinical application. But
we suspect that so many features may make the classifier
potentially at risk of overfitting and it also make difficult to
develop a fast detection kit for clinical translation. Here we built a
three-layer MLP classifier with only 767 features without
significant performance loss. Furthermore, the deconvolution
study showed that the difference in the cellular composition is
sufficient to discriminate different subtypes to a good degree.

The feature selection in the current study was based on the
feature importance computed in the random forest model which
measures the information gain upon addition of a feature, the
larger the importance coefficient, the greater the classification
ability. For multiple-category classification, it prefers the features
that can distinguish many categories simultaneously and these
features should have large variance across samples. But for those
features with strong correlation (this is the case in DNA
methylation where the methylation levels of many CpG sites
are strongly correlated), only one of them would be selected. This
is an advantage on one hand since the redundancy is removed,
but on the other hand not necessarily the best feature is selected.
The top 20% features with the largest variance are in this category,

FIGURE 5 |Distribution of the predicted scores for each class in the training set. (A) Each row represents a probability density curve of the predicted scores for each
class to which the samples belong. The heights of curves were normalized. (B) The predicted scores of the true classes and the largest predicted scores of the incorrectly
classified samples in the training set.

TABLE 1 | The incorrect prediction result in the training set. The first column is the
true label, the second column is the predicted result, and the third column is
the number of the corresponding samples.

Ground truth Predicted Class Count

A IDH A IDH, HG 2
DLGNT O IDH 1
ENB, A ENB, B 1
GBM, MES GBM, RTK II 13
GBM, RTK I GBM, RTK II 2
GBM, RTK II GBM, RTK I 1
LGG, DIG/DIA CONTR, REACT 1

TABLE 2 | The incorrect prediction result in the independent test set. The first
column is the true label, the second column is the predicted result, and the
third column is the number of the corresponding samples.

Ground truth Predicted Class Count

ATRT, MYC ATRT, SHH 2
PITAD, ACTH PITAD, FSH LH 1
PITAD, ACTH CONTR, ADENOPIT 1
ETMR CONTR, HEMI 1
ETMR DMG, K27 1
GBM, MYCN MB, SHH CHL AD 1
GBM, RTK I GBM, RTK III 2
GBM, RTK II GBM, RTK III 14
GBM, RTK II LGG, MYB 1
GBM, RTK II GBM, MYCN 2
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which have a median importance coefficient of 1.0E-3, ranging
from 1.6E-4 to 2.5E-3 and a median variance of 3.9E-2, ranging
from 2.5E-3 to 1.1E-1. Most of the rest features can only
distinguish one or two classes from the other classes, so the
overall variance is limited (see Figure 3B). Among them, there
are two scenarios. One is hypermethylated in most classes but
hypomethylated in one class and the other is opposite. The sites
on the left and in the middle in Supplementary Figure S4 belong
to these two scenarios, respectively. The feature selection based
on the importance coefficient is biased towards the classes with
larger sample sizes. In Crapper et al. (2018)’s study, they screened
10,000 probes, and our research selected 767 probes which should
be a subset of Crapper’s set. Regarding the distribution of
importance coefficients of the probes, there are mainly three
distinct ranges (Supplementary Figure S1). The importance
coefficient ranges from 0 to 6.24E-4, while the most important
767 probes are distributed between 1.29E-4 and 6.24E-4, covering
79% of the range; the most important 10,000 probes are
distributed between 3.03E-5 and 6.24E-4, covering 95% of the
distribution range, and the remaining probes are only distributed
in a very limited importance range. Overall, it is reasonable to
select 767 probes which captures the most important distinction
capability.

The distribution of the probes’ genetic locations is shown in
the Supplementary Figure S5A. In total, 406 probes (373 + 33)
are located in the coding regions while the rest are located in the
regulatory regions. Using functional enrichment analysis, we
found that most pathways, enriched by the genes in which the
probes are located, are related with functions of neuron cells and
nervous system (Supplementary Figure S5B). Among the
selected features, some methylation sites have been studied as

markers or therapeutic targets in brain tumors. Probe
cg11890453, located in the 5′UTR region of SOCS6, is
hypomethylated in medulloblastoma. Tanaka et al. (2014)
found interferon-β inhibited the viability of medulloblastoma
and glioblastoma cells by upregulating the expression of SOCS6.
Probe cg13257371, in the gene body region of MSI2, is
hypermethylated in medulloblastoma. Cox et al. (2013) found
that medulloblastoma cells was significantly inhibited by
knocking out the MSI2 gene. Probe cg14483244, in the gene
body of HDAC5, is hypermethylated in the G4 subgroup of
medulloblastoma, in which HDAC5 has a higher expression
than in the SHH and WNT subgroups (Milde et al., 2010).
Probe cg20585869 is in the transcription initiation position
(TSS) of NEFM. It is hypermethylated in glioblastoma which
leads to a low expression of NEFM (Lee et al., 2015). A few genes
have been included in the WHO CNS5 classification guideline
(Louis et al., 2021). For example, TERT (cg19977628, gene body
region) promoter mutation is a biomarker in classifying
“Oligodendroglima, IDH-mutant,” “1p/19q-codeleted
Glioblastoma,” “Glioblastoma, IDH wildtype” and
“Meningioma.” FGFR (cg14733725, cg07250222, TSS1500
region) is a marker gene in “polymorphous low-grade
neuroepithelial tumor of the young”; SMO (cg01475577, gene
body region) and GLI2 (cg14773228, gene body region) are
marker genes in “Medulloblastoma, SHH-activated”; DICER1
(cg18503,758, gene body region) is a marker in “Embryonal
tumor with multilayered rosettes.”

The complexity of brain tumors makes the classification
difficult. The boundaries between different classes are often
blurry. From Figure 5 and Supplementary Figure S2, we see
that for the misclassified samples, the predicted classes with the

FIGURE 6 | Deconvolution result in the training set. (A) Heatmap of the cellular proportions of 10 components in all the samples. Rows are samples and columns
are the components. (B) The t-SNE dimensionality reduction result based on the proportions of 10 components.
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second highest probability are often the true classes. In
combination with histology, the predicted classes are similar
with the real classes. For example, some grade II tumors tend
to progress to more malignant tumors, low-grade diffuse
astrocytomas may transform into anaplastic astrocytoma and
glioblastoma and similar transformation occurs in
oligodendroglioma and oligoastrocytomas (Louis et al., 2007).
Therefore, some histological classificationmay be inaccurate at all
as Crapper’s study found. Most classification errors are found
between subtypes of GBMs which reflects that our current
understanding on GBM is not deep enough. On one hand,
accuracy of clinical diagnosis of GBM is only 80% (Forst et al.,
2014). On the other hand, the subgroup classification of GBM is
constantly changing. For example, in recent WHO CNS5
classification (Louis et al., 2021), “GBM, IDH-mutant” subtype
was removed (astrocytoma IDH-mutant subtype was introduced)
and pediatric-type neoplasm was excluded from GBM. For these
tumors, we may combine DNA methylation classification results
with genetic mutation status given in the classification guide to
further improve the diagnosis accuracy.

Although an accuracy of 96.58% was obtained in the
independent test set in this study, we have to admit that the
dataset only included 17 subtypes and there were a large number
of EPN and PF A (n � 685) that were easily distinguishable, so the
results were not conclusive. Some subtypes have fewer data sets in
public database, and more comprehensive testing is needed for
future studies.

Through dimensionality reduction with t-SNE analysis of the
cell ratio matrix obtained by the cellular deconvolution of the DNA
methylation profiles in the training set, we found that the same
subtypes were clustered together. This result indicates that
difference in cellular composition is a major contributing factor
to the profile differences among various subtypes. It is likely that the
variation in cellular composition contribute significantly to the
performance of the classifier, although the classifier development
and profile deconvolution have different goals. This also exposes
another challenge in developing the classifier based on the DNA
methylation profiles. For a specific tumor entity with the same
oncogenic molecular alterations, the cellular composition may vary
dramatically because of different tumor microenvironment while

different tumor entities may share similar microenvironment
leading to the same molecular profiles. Therefore, differences in
tumor microenvironment bring additional difficulties to cancer
classification. Clinical relevance of the classification results
should be evaluated based on the prognostic and predictive
value. In the follow-up research, we will try to determine the cell
components in the deconvolution results, to investigate the
influence of the tumor microenvironment on the classifier, and
to further improve the model’s performance.
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