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Recent advancements in machine learning techniques for protein structure prediction
motivate better results in its inverse problem–protein design. In this work we introduce a
new graph mimetic neural network, MimNet, and show that it is possible to build a
reversible architecture that solves the structure and design problems in tandem, allowing
to improve protein backbone design when the structure is better estimated. We use the
ProteinNet data set and show that the state of the art results in protein design can be met
and even improved, given recent architectures for protein folding.
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1 INTRODUCTION

Protein structure prediction (PSP) and protein backbone design are two related tasks. The former,
aims at deriving three dimensional models of proteins from their residue (amino-acid) sequences.
The latter, protein backbone design, aka the inverse protein folding problem, focus on suggesting
sequences that are likely to fold to a given structure. These two scientific problems have remained
open for more than 4 decades already, with unprecedented recent successes (Sun and Kim, 2017;
Strokach et al., 2020; Ben-Sasson et al., 2021; Jumper et al., 2021). They have common underlying
physical principles, and consequently the same computational infrastructure may cope with both
(Jones, 1994; Leaver-Fay et al., 2011; Norn et al., 2021). Yet, these problems are typically considered
separately, with many scientific endeavours focusing on either prediction or design but not on both.
Thus, the current breakthrough in PSP does not directly affect the design filed, which seems to
somewhat lag behind. Here we present a unifying framework that handles both problems
simultaneously offering a conceptual way to harness progress in PSP to push the design field
forward. Our method, dubbed MimNet, is inspired by the reversibility of the folding/unfolding
physical processes, and the ability of molecular dynamics simulations to reproduce this behaviour.
We use essentially the same mathematical formulation to mimic (hence the name) the physical
processes by non-physical, alchemy, processes that reversibly transform “coordinates” between
sequence and Cartesian spaces. To this end we leverage bi-directional Graph Convolutional Neural
Networks (GCNs) that solve both problems, PSP and design, using the same learned weights.

Evolutionary inference, mainly in the form of multiple sequence alignments (MSAs) of
homologous proteins, has long been recognized as a major source of structural insight. First
order statistics of MSAs including conservation profiles, position-specific score matrices (PSSMs)
(Gribskov et al., 1987; Altschul et al., 1997) and hidden Markov models (Remmert et al., 2012) allow
the identification of remote homologs as modeling templates (Bates et al., 2001; Schwede et al., 2003;
Hildebrand et al., 2009; Waterhouse et al., 2018), and reliable prediction of one-dimensional
structural features like secondary structure (Rost and Sander, 1993), transmembrane segments

Edited by:
Liam James McGuffin,

University of Reading, United Kingdom

Reviewed by:
Liang-Tsung Huang,

Tzu Chi University, Taiwan
Björn Wallner,

Linköping University, Sweden
Silvia Crivelli,

Lawrence Berkeley National
Laboratory, United States

Steven Farrell,
Lawrence Berkeley National
Laboratory, United States, in

collaboration with reviewer SC
Rafael Zamora-Resendiz,

Lawrence Berkeley National
Laboratory, United States, in

collaboration with reviewer SC

*Correspondence:
Eldad Haber

eldadhaber@gmail.com

Specialty section:
This article was submitted to

Protein Bioinformatics,
a section of the journal

Frontiers in Bioinformatics

Received: 26 May 2021
Accepted: 29 March 2022
Published: 05 May 2022

Citation:
Eliasof M, Boesen T, Haber E,
Keasar C and Treister E (2022)

Mimetic Neural Networks: A Unified
Framework for Protein Design

and Folding.
Front. Bioinform. 2:715006.

doi: 10.3389/fbinf.2022.715006

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 7150061

ORIGINAL RESEARCH
published: 05 May 2022

doi: 10.3389/fbinf.2022.715006

http://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2022.715006&domain=pdf&date_stamp=2022-05-05
https://www.frontiersin.org/articles/10.3389/fbinf.2022.715006/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.715006/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.715006/full
http://creativecommons.org/licenses/by/4.0/
mailto:eldadhaber@gmail.com
https://doi.org/10.3389/fbinf.2022.715006
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2022.715006


(Rost et al., 1995), and solvent accessibility (Adamczak et al.,
2004). Second order statistics, like direct coupling (Morcos et al.,
2011) and inverted covariance matrices (Jones et al., 2012; Li
et al., 2019), are used to predict spatial contacts between residues
(Vassura et al., 2008; Kamisetty et al., 2013; Tetchner et al., 2014).
The use of second order statistics require “deep” MSAs, that is
alignments of many diverged homologous sequences. Searching
for these homologous sequences, in large and rapidly growing
datasets, becomes a major task in PSP that consumes much time
and computational resources. Further, the sheer size of “deep”
MSA datasets makes them hard to share.

In recent years, deep learning techniques boost the efforts to
solve the PSP problem (AlQuraishi, 2019a; Drori et al., 2019;
Hou et al., 2019; Kandathil et al., 2019; Xu, 2019; Zheng et al.,
2019; Senior et al., 2020; Baek et al., 2021), reaching remarkable
unprecedented performance, as was demonstrated in the
CASP13 and CASP14 competitions (Abriata et al., 2019;
Kryshtafovych et al., 2019; Jumper et al., 2021). Currently, all
the state-of-the-art, high performance, methods rely on second
order statistics derived from “deep” MSAs. In this study we
chose an alternative rout to PSP, namely using first order
information only (Li et al., 2017; Gao et al., 2018;
AlQuraishi, 2019a; Torrisi et al., 2020; Xu et al., 2021).
Giving up on the structural clues provided by second order
information, this approach has received less attention in recent
literature. Nevertheless, by using only first-order statistics we
are able to focus on the development of new prediction
strategies with reasonable resources. To this end, we follow
the example of (AlQuraishi, 2019a) and benchmark on the
relatively light-weight ProteinNet (AlQuraishi, 2019b), in
which the only inputs to PSP are sequences and PSSMs
(formulated as a per-position probability density function).
We further adopt a lean protein representation with a single
interaction point, the Cα atom, per residue. Finer grained
protein representations (i.e., more interaction points per
residue) are more expressive, and thus likely to achieve better
results. Yet, when developing a novel methodology we do not
aim at state-of-art performance but rather at simplicity and ease
of experimentation. The Cα representation for that matter is
expressive enough. Yet, our MimNet is on-par with previous
studies that used only first order data, and it outperforms
(AlQuraishi, 2019a), which uses the same training and test
sets, and thus can be directly compared (see Section 3.3).

PSP gained much more attention over the years compared
with its inverse, protein design. One apparent reason, for the
more central role of PSP, is that progress in this field is monitored
and accelerated by two accepted and objective benchmarks:
Critical Assessment of Structure Prediction (CASP) (Moult
et al., 1997; Kryshtafovych et al., 2019) and Continuous
Automated Model EvalutiOn (CAMEO) (Haas et al., 2018).
The protein design field lacks benchmarks like CASP and
CAMEO, and a reliable evidence of success requires expensive
synthesis and functional characterization in the laboratory
(Dahiyat and Mayo, 1996; Basanta et al., 2020; Ben-Sasson
et al., 2021). When laboratory validation is infeasible (e.g., this
study), researchers resort to re-designing proteins of known
structures.

Notwithstanding the evident importance of CASP and
CAMEO they compare the “end product” (i.e., prediction) of
elaborate pipelines. A mediocre implementation of one stage of
the pipeline may overshadow other, better implemented stages.
Most importantly, data collection and preprocessing may
dominate the performance of data driven methods. The PSP
data-set of this study, ProteinNet, offers an alternative type of
benchmark. In the spirit of machine learning data-sets such as
ImageNet (Deng et al., 2009), it provides predefined training and
test sets (based on the PDB and on CASP validation) and allows
researchers to focus on the development of novel machine
learning schemes. Using a reversible network, this study begs
to use the same data-set also as a benchmark for its design side.
Specifically, we aim to reproduce the residue probabilities of
ProteinNet’s PSSMs based on the Cα Coordinates. Indeed, a
network can learn to generate sequences (Strokach et al., 2020) as
the “natural” output of a design algorithm. However, sequences
are in a sense arbitrary, as homologous proteins share similar if
not identical (up to measurement errors) structures, while their
sequences are diverged. Thus, the design problem of some
structure does not have a unique solution, but rather a family
of sequences that we represent by a PSSM that associates each
position with a residue probability distribution function.
Individual sequences may then be sampled form the PSSM or,
if the target structure exists in nature, retrieved from sequence
data-sets with a search algorithm (e.g., BLAST). The former is
similar in spirit to the veteran back-to-consensus strategy of more
traditional protein design approaches (Bershtein et al., 2008;
Chandler et al., 2020).

Employing deep learning for protein design task is a relatively
new idea (O’Connell et al., 2018; Ingraham et al., 2019; Anand-
Achim et al., 2021; Norn et al., 2021). A similar approach to ours
was recently presented in (Strokach et al., 2020) where graph
methods were proposed for protein design, reporting promising
results by treating the problem as a graph node classification
problem, surpassing other de-novo design codes. While (Strokach
et al., 2020) and our method share some similarities, ours is
largely different as we use reversible architectures which offer
numerous advantages, discussed in the following. As we show in
Section 3.2, our approach obtains better results on a large data-
set derived from the Protein Data Bank (PDB).The main part of
this work is the introduction of a framework that unifies the
treatment of protein folding and design. Our framework mimics
the physical formulation of protein folding using a neural
network. Hence, we coin the term Mimetic Deep Neural
Networks (MimNet), which we apply to graphs, describing
protein structures. While our work focuses on protein folding
and design, the proposed network can be applied with any node
or edge data that is available, thus it suits using both first or
second order statistics.

The main idea is to generate a reversible transformation from
the structure to the sequence and vice versa by using reversible
neural network architectures (Chang et al., 2018; Ruthotto and
Haber, 2019). These networks are bi-directional (can propagate
forward and backward), and hence allow us to jointly train them
to solve both the folding and the design problems, utilizing both
the sequence and the structure of the protein simultaneously. This
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effectively doubles the amount of the data with respect to the
network parameters. Such networks can utilize any type of layer,
from structured to graph convolution or attention, harnessing
recent advances in the understanding of protein folding
architectures. Another important advantage of such a network
is its memory footprint. Since the network is reversible, it is
possible to train an arbitrarily long network without storing the
activations, at the cost of double the computation of the backward
pass (Chang et al., 2018). This enables the use of very deep
networks that are impossible to use otherwise.

Furthermore, the physical folding process can be described by
a second order differential equation derived from Hamiltonian
dynamics. Therefore, we consider reversible architectures that are
inspired by Hamiltonian dynamics hyperbolic differential
equations (Chang et al., 2018; Ruthotto and Haber, 2019),
which can be used to simulate this process. One can therefore
claim that such a mimetic network is more faithful to the physics
of the protein folding problem compared to a standard deep
network like a ResNet (He et al., 2016). In particular, using such a
dynamics has conservation properties that avoid the well known
phenomenon of over-smoothing in graphs (Ming Chen et al.,
2020; Zhao and Akoglu, 2020; Chamberlain et al., 2021; Eliasof
et al., 2021). In this paper, we particularly explore the use of
reversible GCNs, which are graph-based deep learning methods
(Gao and Ji, 2019; Wang et al., 2019). Such networks are inspired
by molecular dynamics, and their pairwise interactions are
reminiscent of the residue interactions in a three dimensional
physical system.

The rest of the paper is organized as follows. In Section 2 we
discuss the problem and introduce the key mathematical ideas
which constitute the building blocks of our network. In particular,
we discuss multiscale reversible networks and different types of
graph convolution techniques that are used to solve the problem.
We then define our MimNet and its objective functions. In
Section 3 we perform numerical experiments with data
obtained from ProteinNet (AlQuraishi, 2019b). ProteinNet is a
publicly available data set that contains both sequences and
PSSMs and thus allows for the training of a folding network
with first order statistics as done in the recurrent geometric
network (RGN) (AlQuraishi, 2019a). The size of the data set,
its structure, and the division into training validating and testing
subsets, were carefully selected, allowing one to rigorously test the
design problem as well. Finally, in Section 4we discuss the results
and summarize the paper.

2 METHODS

Before discussing the particular network and architecture, we
define the data and the functions of folding and design problems.
Specifically, assume that S ∈ S is a 20, ×, nmatrix that represents
a protein sequence of n amino acids. Let S+ ∈ S+ be additional
data that is related to the sequence such as PSSM and possibly
covariance information derived from MSAs. Also, let X ∈ X be a
3 × n matrix that represents the protein structure (coordinates).
We define the mapping F: S × S+ → X as the folding mapping.
This mapping takes the information in S and S+ and maps it into

the estimated coordinates X̂ that reveal the structure of the
protein. Throughout the paper we denote F(S) instead of F(S,
S+) for brevity. Consider now the opposite mapping from the
space X to the space S × S+. We denote this mapping as
F†: X → S × S+ and it can be thought of as some psedu-
inverse of the mapping F. These mappings can be learnt
separately and independently as has been done so far.
However, since F and F† are closely related, it is tempting to
jointly learn them, utilizing both the sequence, its attributes, as
well as the structure of the protein in tandem.

We now review the concept of a mimetic deep neural network,
that is, a neural network whose functional form mimics
simulations of folding dynamics. To this end, a deep network
can be thought of as a time discretization of a differential equation
(Chen et al., 2018; Ruthotto and Haber, 2019). According to this
interpretation, each layer represents the state of the system at
some particular pseudo-time. The mimetic properties are first
discussed in pseudo-time, namely, how the network propagates
from one layer to the other. The second mimetic property
considers the spatial domain, meaning, how a particular
residue in the protein interacts with another residue. These
properties are put together to generate a mimetic deep neural
network that imitates Verlet integration in a high dimensional
space, using network architectures that are derived by discretized
differential operators in time and space (Ruthotto and Haber,
2019; Eliasof and Treister, 2020). The treatment in both space and
time are put together within a network optimization procedure to
train the system and yield a network that can solve both the
folding and the design problems.

2.1 Reversible Networks and Dynamical
Systems
In this subsection we show how to build a mimetic network in
time by using reversible dynamics. Reversible systems play a
major role in physics for applications that range from
Hamiltonian dynamics to wave equations. Broadly speaking,
a reversible system is one that can propagate forward in time
without information loss and therefore, can propagate
backwards in time. Simple physical examples are a
pendulum or a wave. These systems (in their idealized
form) do not change their entropy, and therefore allow for
forward or backward integration in time. Typical molecular
dynamics is solved using reversible methods (Allen, 2004)
(that is, integrating Hamiltonian dynamics) and therefore, it
is natural to explore neural network architectures with similar
properties.

To be more specific, given the input for the folding task [S, S+]
(e.g., the concatenation of the one hot encoding sequence design
and PSSM matrices) we first apply

Y0 � q S, S+[ ], θe( ) (2.1)
where Y0 contains nf channels of n-length sequence features,
embedded by the transformation q(·, ·), parameterized by the
weights θe. This layer transforms the input to the latent space of
the network. Here we use a 1D convolution for q, but other
transformations may also be suitable.
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The initial state Y0 and its velocity vector V0 are then pushed
forward by a deep residual neural network. In particular, we
consider a network with the following structure

Vj+1 � Vj + h · f Yj, θj( ) (2.2a)
Yj+1 � Yj + h · g Vj+1, θj( ), (2.2b)

where j = 0, . . . , T is the layer index. h is a parameter that
represents a time step size and θj are learnt parameters that
characterize the j-th layer. The system in Eq. 2.2a can be
interpreted as a Verlet type discretization of a dynamical
system with learnable forces that are the gradients of some
potential function. A particular case of such dynamics is
obtained by setting g = Id (the identity transformation)
yielding the second order dynamics

Yj+1 � 2Yj − Yj−1 + h2f Yj, θj( ). (2.3)
This scheme is reversible, regardless of the choice f (which we
discuss Section 2.3), since we can express Yj−1 as a function of Yj

and Yj+1. The propagation forward (and backward) is not
complete without defining the boundary conditions Y−1 and
YT+1. Here we arbitrarily choose Y−1 = Y0 and YT−1 = YT, that
is, initializing the network with zero velocity, i.e., V0 = 0. An
illustration of the dynamics is plotted in Figure 1. Note, that this
formulation is a slight (but important) modification of the
standard ResNet (He et al., 2016) that reads

Yj+1 � Yj + hf Yj, θj( ). (2.4)
Given the final state of the system YT, we predict the

coordinates X by projecting YT onto a three dimensional space

X̂ � q+ YT, θf( ), (2.5)
where X̂ are the predicted coordinates. The transformation q+(·, ·)
can be realized by a neural network, and we choose it to be a
learnable projectionmatrix of size nf × 3 such that the final feature

maps are projected to 3D coordinates. The layer in Eq. 2.5 may
also contains some additional constraints. In particular, we may
demand that

|X̂i − X̂i−1| � c,

constraining the distance between every two residues to c =
3.8 Å. We have found that when the data is noisy implementing
this constraint is needed in order to obtain physically feasible
results (see Section 2.5.3).

In the forward pass, described above, the folding problem was
solved, where we march from the protein design attributes (as in
Section 2.1) to its coordinates. In the backward pass, we solve the
design problem, where our goal is to predict the sequence given its
coordinates. We start the backward pass by embedding the
coordinates into the network feature space, i.e.,

YT � q+( )* X, θf( ), (2.6)
where (q+)* is the adjoint of the transformation q+. We then
march backwards, replacing the entries of Yj+1 and Yj−1 in Eq. 2.3
and finally, using the adjoint of q to propagate from Y0 to the
sequence space

Ŝ, Ŝ
+[ ] � q* Y0, θe( ), (2.7)

where Ŝ
+

is the predicted PSSM, and Ŝ is a one-hot
representation of the predicted sequence (the top probability
residue-type in each position). These forward and backward
passes couple the design and the folding tasks together into a
single network that, similarly to the physical dynamics, can be
integrated (in time) from sequence to coordinates and backwards
from coordinates to a sequence.

2.2 Graph Convolutional Networks
Section 2.1 considers the propagation of the network from its
initial condition (a sequence) to its final one (3D structure) and
vice versa. The discussion was agnostic to the choice of the
function f(·, ·) in Eq. 2.3 that realizes the network in hand. In
this section we review the concept of a graph network and discuss
its computation.

The idea behind a graph based method is rooted in the physics
of the problem. Energy based simulations can be thought of as
pairwise interactions on a graph based on the L2 distance between
the residues. Indeed, as the distance between residues is smaller,
the interaction between them is stronger. This motivates us to use
machine learning techniques that mimic this property. As the
dynamical system is evolving, the interactions between pairs of
close residues is significantly larger compared to far ones.

One of the most successful techniques for image and speech
processing is Convolution Neural Networks (CNN) (Krizhevsky
et al., 2012; Goodfellow et al., 2016). The method relays on the
structured grids on which sequences and images are defined. That
is, every element has neighbouring elements in a structured
manner. In recent years, similar ideas were extended to more
complex geometries and manifolds, which can be conveniently
represented by a graph (Ranjan et al., 2018; Hanocka et al., 2019;
Wang et al., 2019). The main idea is to replace the structured

FIGURE 1 | The architecture of MimNet with graph convolution layers.
An embedding layer transforms the input into a latent space which then
propagates through a GCN layer fed with the outputs of two previous layers. A
graph that represents the protein structure is computed after each layer.
The final layer is then projected back to obtain residue coordinates.
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convolution with a graph based convolution. That is, rather than
convolving each location in the feature map with its near
neighbours, define the distance between each location based
on node or edge features, and then convolve the residues that
are close on the graph.

To be more specific, we let Yj be the state at the jth layer. Then,
we define a graph convolution block as follows:

f Yj( ) � −C* θj, σ C θj,Yj( )( )( ) (2.8)
where C(θj, ·) is the graph convolution operator with its learned
associated weights θj. This operator spatially resembles a discrete
differential operator, e.g., a mass term, a graph Laplacian, or an edge
gradient (Eliasof and Treister, 2020). σ(·) is the ReLU activation
function. The operator C* is the adjoint operator of C (like a
transposed convolution), applied using the same weights θj. This
way, assuming that σ is a monotonically non-decreasing function
that either zeroes its input or preserves its sign, we get a symmetric
and positive semi-definite operator.We use the negative sign in front
of the layer such that the operator f(·) is negative, which is important
if we are to generate a stable dynamics—see (Ruthotto and Haber,
2019) for details and analysis.

Many graph based networks employ a graph convolution with
fixed connectivity (Ranjan et al., 2018; Bouritsas et al., 2019). This
is reasonable if the final topology is known. However, for protein
folding we start with an unknown structure and it is evolving
(learnt) from the data. Therefore, rather than using a fixed graph
for the network we let the graph evolve throughout network. We
thus recompute a weighted graph Laplacian at each layer, or, for
computational saving, every few layers. To this end, we compute
the weighted distance matrix between each two residues

Wj � exp −α−1D Yj( )( ), (2.9)
where α is a scaling parameter (we set α = 10) and D is the L2
distance between each two residues

D Y( ) � Y211⊤ + 11⊤Y2 − 2Y⊤Y( ). (2.10)
The vector 1 is a vector of ones of appropriate size. Using the
distance matrix we define the graph Laplacian as

Lj � diag Dj1( ) −Dj. (2.11)
The approach of dynamically updating the connectivity of the
graph was also suggested in (Wang et al., 2019), where k nearest
neighbors are equally chosen per node, regardless of their
distances. However, this imposes a non-smooth transition of
the graph, which may result in optimization difficulties. Thus, we
employ a weighted fully connected graph that can smoothly
strengthen or weaken the connectivity of the residues. Since
the weighting of the edges makes the graph Laplacian
continuously differentiable with respect to the network
parameter - a smoother optimization trajectory is obtained,
leading to better results in our experience.

2.3 Multiscale Graph Networks
The limitation of graph based networks, similar to other
convolution methods is that they generate strong local

interactions only. Hence, spatially-distant connections may
suffer from weak interactions (due to small weights), and
information will be spread slowly within the
network—requiring more layers to compensate for. An elegant
way to introduce long-range interactions and pass information
between far-away parts of the graph is to consider a multiscale
framework.

To this end, instead of a standard graph convolution C in Eq.
2.8, we use a multiscale mechanism that is similar to a U-net
(Ronneberger et al., 2015; Shah et al., 2018), where coarse scale
approximations of the protein are composed. In particular, in the
multiscale version of Eq. 2.8we choose C in to be the encoder part
of a U-net, and the operator C* is the transposed operation, that
has a decoder structure (parameterized by the same weights).
Together, they form a symmetric graph U-net. The reversibility of
the networks remains, since Eq. 2.3 is reversible for every f, and in
particular for our symmetric U-net.

Our graph U-net is comprised of nLevels graph scales. At each
level we perform a GCN block where we use both the graph and
sequence neighbors in our convolutions:

Yj+1 � ωjYj + σ N Kj Yj + YjLj( )( )( ). (2.12)
where Kj is a 1D convolution with kernel of size 9, connecting
nodes on the protein sequence, and Lj is the graph Laplacian
operator from Eq. 2.11. N is the instance normalization layer,
and σ is the ReLU activation.ωj equals 1 when graph coarsening is
not applied, and 0 otherwise. On the coarsest level of the U-net,
we perform two convolution steps like Eq. 2.12. At each level, the
graph differential operator Lj is re-computed on the coarse graph
allowing for simple and inexpensive computations between
scales. In addition, since the protein has a simple linear
underlying chain, we use linear coarsening, implemented by
simple average 1D pooling—this is illustrated in Figure 2. In
the decoder part of the U-net we apply the transposed operators,
and to refine our graph (unpooling) we use a linear interpolation
along the chain. To propagate information between matching
levels we add long skip-connections after each convolution, for a

FIGURE 2 | Coarsening a protein. The features of each two residues in
the chain (left graph) are averaged together and a new coarse graph is
computed (right) for the coarse protein. The graph Laplacian is computed
directly from the rediscretized coarse protein.
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stable training scheme (see Figure 3). For the U-net depth, we
chose nLevels = 3, which provides a good trade-off between
performance and computational requirements.

2.4 The MimNet Architecture
Combining our building blocks together, we now define our bi-
directional mimetic architecture, called MimNet. The network
consists of three main components - the opening embedding
layer, a stacked graph U-net modules, and a closing
embedding layer.

At the start and end of MimNet we use the embedding layers
Eq. 2.1 and Eq. 2.5, both of which are implemented using a
simple 1 × 1 convolution of appropriate sizes (n = 40). At the core
of our network we employ a series of T graph U-nets modules.
Each graph U-net is defined according to section 2.3, and all of
them are of identical dimensions. That is, each has nf channels of
equal dimensions on the finest level.

2.5 Training MimNet
Our MimNet allows us to build the physics of the problem into
the neural network. This needs to be followed by a thoroughly
thought training process. In particular, care needs be taken when
choosing the appropriate problem to minimize and the
appropriate choice of loss functions and regularization. We
now discuss these choices for our training.

2.5.1 The Optimization Problem
Since we have a bi-directional network, we use both directions to
train the network. We define the objective function

J θ( ) � 1
N

∑
j

ℓfold F Sj, θ( ),Xj( ) + ℓdesign F† Xj, θ( ), Sj( ) + βR θ( ).

(2.13)
Here θ are all the parameters of the network, F is the forward
network from sequence to coordinates and F† is the backward
mapping from coordinates to sequence. The loss functions ℓfold
and ℓdesign are chosen to measure the discrepancy between the
estimated and true coordinates and between the predicted and
true sequence design, respectively. The choice of these functions
is to be discussed next. Finally, R(·) is a regularization term that
ensures stability of the network and is described below.

2.5.2 Loss Function for the Design Problem
The loss function for the design problem aims at an accurate
PSSM and sequence prediction by the network. Noting

Ŝ, Ŝ
+[ ] � F† Xj, θ( ). (2.14)

We interpret both Ŝ and Ŝ
+
as matrices for which their ij-th entry

is the probability of the j-th residue to be of residue-type i. Thus, a
natural comparison between two PSSMs is the KL-divergence
Silverman (1986) that compares the predicted and ground-truth
distributions, setting

ℓdesign � ∑ S+ ⊙ log Ŝ
+
⊘ S+( ) +∑ S ⊙ log Ŝ ⊘ S( ), (2.15)

where ⊘ denotes element-wise division. Having a PSSM as an
output allows for greater flexibility when designing a protein,
since there is not necessarily a unique answer to the design
process, and the PSSM represents this ambiguity. As we show
later, utilizing the PSSM-based loss in Eq. 2.15 has a significant
contribution to the accuracy of the network compared to a loss
based on the sequence alone used in (Strokach et al., 2020). Thus,
as we demonstrate later, the coupling of PSSM and sequence
estimation yields favorable performance.

2.5.3 Loss Function for the Folding Problem
We turn our attention for the loss function for the folding
problem. Clearly, one cannot simply compare the coordinates
obtained by the network, F(S) to the observed coordinates of the
sequence, as they are invariant with respect to rotation and
translation. Similar to the work (AlQuraishi, 2019a) one can
compare the distance matrices obtained from the coordinates. Let
Ds(X) �

					
D(X)√

be the pairwise distance matrix in Eq. 2.10. The
distance matrix is invariant to rotations and translations. Thus, it
is possible to compare the distances obtained from the true
coordinates, Ds(X) to the distances of the predicted
coordinates Ds(F

†(S)) by their dRMSD in Eq. 2.16.

ℓfold �
																											
1
nM

M ⊙ D F S, θ( )( ) −D X( )( )‖ ‖2F
√

(2.16)

WhereM is a masking matrix, and nM is the number of non-zeros
inM. Zero elements inM correspond to either missing data in the
native structure or to large distances. In proteins residue distances

FIGURE 3 | A graph U-net. GCN is defined in (2.12). Pool and unpool denote graph coarsening and refinement, respectively. Skip connection denotes a summation
of the respective feature maps.

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 7150066

Eliasof et al. Mimetic Neural Networks

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


may range from a few to dozens Ångstroms. Naively minimizing
the L2 distance would therefore focused on the large scale
structure of the protein and might neglect the small scale
structures as they would contribute remarkably less to the loss
function. This motivated previous studies to use a threshold value
and ignore distances larger than that threshold. For example,
AlphaFold (Senior et al., 2020) and RGN (AlQuraishi, 2019a) use
a 22.8Å cutoff, which correspond to six times the distance
between consecutive Cα atoms. During the training phase, we
used a slightly more conservative value of 7 residues, which
translates to 7 × 3.8Å = 26.6Å. For evaluation and comparison
purposes, we report our results using the same cutoff distance of
22.8 Å as RGN.

2.5.4 Regularization
The last component in our optimization scheme is the
regularization, R(θ). We rewrite θ = [θ0, . . . , θL] where θj are
the parameters used for the j-th layer. Then, smooth dynamics are
obtained if the total variation of the dynamical system’s
parameters is small (Ruthotto and Haber, 2019). Thus we
choose the following regularization function

R θ( ) � ∑
j

|θj+1 − θj|1. (2.17)

We note, that since the parameters θi denote the weights of the i-
th UNet in our network, our regularization term considers the
correspondingly-sized layers across subsequent layers of UNets.
An example of the rather smooth folding process throughout the
network is given in Figure 4. Note that we do not use the standard
Tikhonov regularization (so called weight decay) on the weights
as they do not guarantee smoothness in time which is crucial for
reversible networks and integration in time (Celledoni et al.,
2020).

2.6 Full Atom Model Reconstruction
While Cαmodels of protein structures are simple and allow fast
structure estimate, they are not useful in practice. This is
because it is possible to obtain a low dRMSD score for
models that are not physically feasible. Such models can
have too short distances between non-consecutive residues,
and their geometry may be inverted as the loss function is
invariant to mirror symmetry. While coping with this task in
an end-to-end fashion is our long-term goal, we currently cope
with it with a post processing stage based on our in-house
molecular modeling Package MESHI (Kalisman et al., 2005)
and scwrl4 (Krivov et al., 2009). An example of a post-
processed reconstruction appears in Figure 5. This
reconstruction stage consists of four steps:

• Random assignment of Cβ and backbone atoms close to
their corresponding Cα atoms

• Several rounds of energy minimization, gradually
reducing constraint on the Cα atom positions. The
energy function includes standard bonded (bond,
angle, plane out-of-plane, and torsion-angle (Amir
et al., 2008) pairwise non-bonded term (Summa and
Levitt, 2007) and hydrogen-bonds terms (Levy-
Moonshine et al., 2009).

• Assigning side-chain atoms to their most common rotamer
• Side-chain repacking with scwrl4.

3 NUMERICAL EXPERIMENTS

We verify our method by performing three sets of
experiments—protein folding, design, and an ablation study to
quantify the contribution of the reversible learning.

FIGURE 4 | Distance maps of the high-dimensional feature evolution from unstructured (top left) to structured (bottom right) throughout the bi-directional network,
during structure prediction of T0783. For a better demonstration of the process smoothness, the network includes 32 layers instead of the six layers used throughout the
numerical study. Step size was adjusted to match the integration time. The idea of layer interpolation is discussed in Ruthotto and Haber (2019); Chen et al. (2018); Han
et al. (2018).

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 7150067

Eliasof et al. Mimetic Neural Networks

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


3.1 Dataset and Settings
3.1.1 Dataset
For the experiments we used the data set supplied by ProteinNet
(AlQuraishi, 2019b). The data contains proteins processed from
the PDB data set, and is organized to hold training, validation and
testing splits specifically for CASP 7–12. The ProteinNet data for
CASP 11, for instance, contains 42,338 proteins that are less than
1,000 residue long for training, 224 proteins for validation and 81
test proteins. All training and validation proteins were publicly
available before CASP11, and the test set proteins are CASP11
targets. This data set was used in (AlQuraishi, 2019a) and more
recently in (Drori et al., 2019). We use the 90% thinning version
of the data, as reported in (AlQuraishi, 2019a). While the first
order statistics is available, second order statistics cannot be
downloaded freely and requires complex and expensive pre-
processing. We therefore use only first order statistics in this
work. We compare the results to two other recent methods RGN,
which uses identical information, and proteinSolver. Note that
the recent success of the AlphaFold2, as well as other methods, in
CASP 14 were achieved using second order statistics.

3.1.2 Network and Optimization Settings
Throughout our experiments, we use our MimNet as described in
Section 2.4 with nf = 128 with nLevels = 3 and T = 6. Other hyper-
parameters, e.g., deeper networks using T > 6, may yield better
performance and are worthy of consideration at corresponding
computational cost. We use the Adam optimizer with a learning
rate of 0.0001 and a batch size of 1, trained for 250 epochs. For the
protein folding loss described in Eq. 2.5.3, we impose a dynamic
mask M such that it begins from considering all distances, and
linearly decreasing to the cutoff distance used of our training

phase, which is 26.6Å. This way, our optimization scheme starts
by capturing the global structure of the protein and gradually
optimizing local interactions (distances) between residues. Our
experiments are carried on an Nvidia Titan RTX. Our code is
implemented in PyTorch (Paszke et al., 2019).

3.1.3 Comparisons
To evaluate our results we compare them to two recent studies, in
the fields of protein design and PSP. First, for protein design, we
compare our results with those of (Strokach et al., 2020). Their
ProteinSolver is a graph neural network for the solution of the
design problem. Using a sophisticated graph representation of the
protein and its features, ProteinSolver obtains state of the art
results, and a remarkable improvement over previous design
studies. Thus, we consider it a good benchmark. Second, the
results of the PSP side of our study are compared to the work of
(AlQuraishi, 2019a). While that work did not achieve state of the
art results (compared with methods that use second-order
statistics), it is the only recent PSP study, known to us, that
uses first order information from the ProteinNet dataset only.

3.2 Protein Design
The design experiments used Cα models, obtained from
ProteinNet, to predict the corresponding PSSMs. As discussed
in Section 2.5.2, the PSSMs are soft-assignments of the designed
sequences, in accordance with the multiple design possibilities
given a structure. The KL-divergence between the predicted
PSSM and the ground-truth PSSM as supplied by the data in
proteinNet is thus a natural measure, which we use for both
training and performance evaluation. To compare our results
with the recent work of ProteinSolver (Strokach et al., 2020) we

FIGURE 5 |Reconstruction of chirally accurate full atommodel. (A–D). Alpha trace representation of: the native structure of T0798 (A), MimNet output with dRMSD
5.194Å, GDTTS 0.19, LDDT 0.424 (B), and two energy minimize models of the MimNet output (C) and its mirror image (D). The secondary structure elements of the
native structure are colored from first (dark blue) to last (dark red). The atoms of the other models are colored the same, regardless of their conformation. The energy of
the minimized model (C) is −7838 (arbitrary units) and a dRMSD/GDTTS/LDDT of 5.076Å/0.20/0.426, while the energy of the minimized mirror image (D) is
−18474, and a dRMSD/GDTTS/LDDT of 4.866Å/0.57/0.4358. (E). A ribbon representation of minimized mirror image, superimposed on the native structure.
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employed the code and weights that are supplied with the paper
(based on the 2015 version of the PDB) and used this pre-trained
model to generate PSSMs for the proteinNet test sets data (CASP
7–12). The PSSMs predicted by ProteinSolver are then compared
to the true PSSMs using KL-divergence. Table 1 depicts the
design performances of proteinSolver and our MimNet on the
various ProteinNet test sets. It shows a major improvement in
MimNet, although ProteinSolver utilizes a superset of both the
training and test sets of (CASP 7–11).

3.3 Protein Folding
Our folding experiment used first-order data (PSSM and a one hot
sequence encoding), obtained from the ProteinNet test sets, to
generate Cα models of the corresponding native structures. The
accuracies of these models are evaluated by dRMSD to make the
results comparable to those of RGN that used the same data sets
(AlQuraishi, 2019a). Table 2 depicts the average performances of
each method on the different test sets, suggest that the use of
MimNet can significantly improve the accuracy of protein folding.

3.4 Additional Experimental Setup
To further test the method’s performance, we deviated from the
ProteinNet scheme by creating new test sets. To this end,

performance of a model based on CASPi training set, is tested
by the union of all CASP test sets CASPi, . . . ,CASP12. This way,
all but the last model were tested on larger and somewhat
different test sets. The performances, presented in Figure 6,
are consistent with results of the standard test sets reported in
Tables 2, 4. We show the dRMSD and Accuracy, which is
consistent with the KL divergence score.

3.5 Per-Target Performance
Per-target performance in both folding and design is presented in
Figure 7, and is consistent with the average values presented the

TABLE 1 | KL-divergence comparison of recent Protein-Design methods.

Model CASP 7 CASP 8 CASP 9 CASP 10 CASP 11 CASP 12

ProteinSolver Strokach et al. (2020) 1.73 1.61 1.63 1.5 1.67 1.62
MimNet (ours) 0.98 0.87 0.92 0.88 0.91 0.94

TABLE 2 | dRMSD (Å) comparison of recent Protein-Folding methods. Averages of FM (novel folds)/TBM (known folds) are shown.

Model CASP 7 CASP 8 CASP 9 CASP 10 CASP 11 CASP 12

RGN AlQuraishi, (2019a) 9.3/5.6 7.3/5.9 8.7/6.5 10.0/6.9 8.5/7.4 10.7/6.9
MimNet (ours) 5.8/5.4 6.1/5.5 6.4/5.8 6.6/6.5 6.6/5.6 6.4/6.0

FIGURE 6 | The obtained dRMSD and residue accuracy on the union of
test of subsequent CASP editions. (e.g., the test set for CASP 8 is a union of
CASP 8 until 12).

FIGURE 7 | A comparison of the obtained dRMSD and residue accuracy
on CASP 12 test set with our MimNet.

TABLE 3 | A comparison of the reversible and standard ResNet architectures on
folding and design tasks on CASP 11. For the folding task, we report both FM
and TBM proteins dRMSD (Å) scores. For the design task, the KL-divergence of
the PSSM and sequence (one-hot labels) are reported, along with the sequence
prediction accuracy.

Model Folding Design

FM TBM PSSM One-hot

MimNet (ResNet) 7.1 5.9 1.00 1.77 (19.9%)
MimNet (Reversible) 6.6 5.6 0.93 1.73 (20.7%)
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Table 3. Interestingly, we can see a negative correlation between
the obtained dRMSD and accuracy. That is, where our network
yields lower (better) dRMSD, a higher sequence prediction
accuracy is obtained.

3.6 The Significance of Reversibility
One of the key contributions of our work is the introduction of
reversible network architecture that can jointly learn both protein
folding and design, which have not been done until now. We
therefore delve on the significance of the reversibility scheme.
There are three advantages for a reversible network architecture
over a one directional network. First, and most important, typical
one directional graph networks (e.g., ResNet like) are known to
have smoothing properties that do not recover high frequencies
well (Ming Chen et al., 2020; Zhao and Akoglu, 2020), a problem
that can be alleviated by using second-order dynamics networks
(Eliasof et al., 2021), which are also reversible, and behave like our
dynamics in 2.3. Second, although we have not used this property
in this work, reversible network allow to use very deep networks
without limitation on memory (Gomez et al., 2017). Finally, in
some cases, reversible architecture yields better results in training
and generalizing compared to their one directional counterparts
(Zhu et al., 2017; Chang et al., 2018; Yang et al., 2019). Most
importantly it is a common approach in Language models
(Devlin et al., 2018).

To validate the observations above on the considered data-set,
we compare the reversible architecture to a standard ResNet (as in
Eq. 2.4) architecture using the same settings. Namely, we employ
the same input and output as well as number of layers and
channels (as described in Section 3.1.2), yielding an identical
number of parameters. The results for this experiment are
provided in Table 3. The results suggest that using the
reversible architecture is favored.

We now examine the importance of training the network in a
bi-directional manner. We compare the behavior of our network
when trained for both directions, versus the case of optimizing it
only one direction (from sequence to coordinates and vice versa).
Our results are summarized in Tables 4, 5 , suggesting that in
some cases coupling the learning of folding and design problems
can lead to better results in both folding and design, however, the
effect of training on both sets of data at the same time, was
marginal. Curiously, the reversible training experiments were our
original motivation for the inclusion of PSSM in the design loss
function (for symmetry considerations). In retrospect it turned

out that this has a considerable positive effect on the design
performance. Notably, the accuracy of one-hot prediction
improves when the network is trained using PSSM (Table 4).

4 CONCLUSION

In this work we introduce a novel approach that unifies the
treatment of protein folding and protein design. Our
methodology is based on a combination of two recently
studied techniques developed in deep learning. The first is a
reversible architecture. Such an architecture allows us to
propagate forward and backward and therefore have a
network that can propagate sequence information into
coordinates information and, more importantly for the protein
design, propagate backward from a structure to a sequence. In the
context of employing neural networks for molecular dynamics, it
is natural to couple the reversible architecture with a graph
representation, since our network models the pairwise
interactions between amino acids as edges in the graph.
Furthermore, to allow far field interactions, a multiscale
structure is used.

In this scheme the input of one direction is the output of the
other. The folding direction starts from a sequence and a PSSM
formulated as a matrix of residue probabilities, and its output is a
protein conformation. The loss function for training is the
standard dRMSD metric applied to the output conformation
and the native structure. Beyond the scope of this study, the
scores of general PSSMs may not represent probabilities. In such
cases however one can employ the SoftMax scheme to convert the
scores to residue probabilities. The native structure in turn is the
input to the design direction and the output is a PSSM and
sequence, with their KL-divergence serving as the loss function

TABLE 4 |Comparison between Coordinates to Design (C→ D) and reversible learning (C↔ D) on CASP 7–12. The letters in the brackets represent the data considered by
the loss function. P denotes PSSM, O denotes one-hot encoding of the sequence and P/O implies both data are utilized. We report the KL-divergence scores of the
PSSM, the sequence or both. The accuracy of the sequence is depicted in brackets where applicable.

Dataset C →
D (P)

C →
D (O)

C →
D (P/O)

C ↔
D(P)

C ↔
D(P/O)

CASP 7 1.08 1.79 (16.7%) 1.02/1.69 (23.2%) 0.98 0.96/1.69 (23.1%)
CASP 8 0.87 1.77 (14.2%) 0.89/1.67 (21.1%) 0.87 0.88/1.64 (21.5%)
CASP 9 0.90 1.74 (13.9%) 0.90/1.61 (21.3%) 0.92 0.91/1.62 (21.0%)
CASP 10 0.83 1.76 (16.1%) 0.84/1.65 (21.7%) 0.88 0.83/1.69 (21.2%)
CASP 11 0.98 1.82 (14.3%) 1.00/1.75 (20.2%) 0.91 0.93/1.73 (20.7%)
CASP 12 0.97 1.85 (14.0%) 0.99/1.75 (20.3%) 0.94 0.91/1.74 (20.3%)

TABLE 5 | Comparison between Design to Coordinates (D → C) and reversible
learning (C ↔ D) on CASP 7–12. Results are reported in dRMSD (Å).

Dataset D → C D ↔ C

CASP 7 5.41 5.50
CASP 8 5.54 5.58
CASP 9 5.89 5.83
CASP 10 6.86 6.61
CASP 11 5.91 5.84
CASP 12 6.32 6.07
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for training. Previous studies only derived a single output from
the PSSM. We note that the design problem does not have a
unique answer and therefore we follow a more probabilistic
approach.

We have performed extensive numerical experiments that
compares both folding and design on the CASP 7–12 data
sets. These data sets contain tens of thousands of proteins that
we trained both on folding and design tasks. We compared the
results of the protein folding to a recent work that uses only first
order information. We have shown that our network performs on
par or better than that network for the folding task. More
importantly however, we have shown a significant
improvement on the protein design task, achieving a KL-
divergence loss that is less than half of a recently published
work.We attribute this success to the use of recent protein folding
architectures as well as using extensive data sets that allow better
training of the proposed architecture.We note that our network is
generic and can use both first order statistics, as in this study, and
second order statistics.

Finally, we believe that the ProteinNet data-set constitutes a
great leap forward as it allows scientists to compare methods on
the same footings, similarly to the impact of ImageNet (Deng
et al., 2009) on the computer vision community.
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