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Background: It is important to identify when two exposures impact a molecular

marker (e.g., a gene’s expression) in similar ways, for example, to learn that a

new drug has a similar effect to an existing drug. Currently, statistically robust

approaches for making comparisons of equivalence of effect sizes obtained

from two independently run treatment vs. control comparisons have not been

developed.

Results: Here, we propose two approaches for evaluating the question of

equivalence between effect sizes of two independent studies: a bootstrap

test of the Equivalent Change Index (ECI), which we previously developed,

and performing Two One-Sided t-Tests (TOST) on the difference in log-fold

changes directly. The ECI of a gene is computed by taking the ratio of the effect

size estimates obtained from the two different studies, weighted by the

maximum of the two p-values and giving it a sign indicating if the effects

are in the same or opposite directions, whereas TOST is a test of whether the

difference in log-fold changes lies outside a region of equivalence. We used a

series of simulation studies to compare the two tests on the basis of sensitivity,

specificity, balanced accuracy, and F1-score. We found that TOST is not

efficient for identifying equivalently changed gene expression values (F1-

score = 0) because it is too conservative, while the ECI bootstrap test shows

good performance (F1-score = 0.95). Furthermore, applying the ECI bootstrap

test and TOST to publicly available microarray expression data from pancreatic

cancer showed that, while TOST was not able to identify any equivalently or

inversely changed genes, the ECI bootstrap test identified genes associatedwith

pancreatic cancer. Additionally, when investigating publicly available RNAseq

data of smoking vs. vaping, no equivalently changed genes were identified by

TOST, but ECI bootstrap test identified genes associated with smoking.

Conclusion: A bootstrap test of the ECI is a promising new statistical approach

for determining if two diverse studies show similarity in the differential

expression of genes and can help to identify genes which are similarly

OPEN ACCESS

EDITED BY

Raghu Machiraju,
The Ohio State University, United States

REVIEWED BY

Yun Zhang,
University of Texas Southwestern
Medical Center, United States
Feiyang Ma,
University of Michigan, United States

*CORRESPONDENCE

Jeffrey A. Thompson,
jthompson21@kumc.edu

SPECIALTY SECTION

This article was submitted to Genomic
Analysis,
a section of the journal
Frontiers in Bioinformatics

RECEIVED 09 March 2022
ACCEPTED 22 August 2022
PUBLISHED 21 September 2022

CITATION

Neums L, Koestler DC, Xia Q, Hu J,
Patel S, Bell-Glenn S, Pei D, Zhang B,
Boyd S, Chalise P and Thompson JA
(2022), Assessing equivalent and inverse
change in genes between
diverse experiments.
Front. Bioinform. 2:893032.
doi: 10.3389/fbinf.2022.893032

COPYRIGHT

© 2022 Neums, Koestler, Xia, Hu, Patel,
Bell-Glenn, Pei, Zhang, Boyd, Chalise
and Thompson. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Abbreviations: DO, Disease Ontology; DGN, DisGeNET; ECI, Equivalent Change Index; PBMC,
peripheral blood mononuclear cells; TOST, Two One-Sided t-Tests.

Frontiers in Bioinformatics frontiersin.org01

TYPE Technology and Code
PUBLISHED 21 September 2022
DOI 10.3389/fbinf.2022.893032

https://www.frontiersin.org/articles/10.3389/fbinf.2022.893032/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.893032/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.893032/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2022.893032&domain=pdf&date_stamp=2022-09-21
mailto:jthompson21@kumc.edu
https://doi.org/10.3389/fbinf.2022.893032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2022.893032


influenced by a specific treatment or exposure. The R package for the ECI

bootstrap test is available at https://github.com/Hecate08/ECIbootstrap.

KEYWORDS

differential gene expression, equivalence test, study comparison, diverse experiments,
molecular marker

1 Introduction

In whole genome differential gene expression studies, the

difference in the expression of thousands of genes among groups

(e.g., treatment group vs. control group) is investigated with the

motivation of finding underlying mechanisms of different

conditions such as cancer or to observe treatment effects

(Gilbert, 2000). An emerging use for gene expression data is

to identify genes that are affected in similar or opposing ways

across different studies. There are various reasons for doing so,

including validating the results of a study (Fu et al., 2021), finding

common underlying mechanisms of a disease (Shen et al., 2016;

Blake et al., 2020), or investigating similar treatment effects of

different drugs (Hollenbach et al., 2010). One of the important

challenges in comparing studies is variable study conditions such

as technology, environment, and personnel (Goh et al., 2017).

For these reasons, gene expression levels are challenging to

directly compare across studies. In many cases though, the

focus is on the nature of the change in gene expression

between treatment or disease conditions (Gilbert, 2000).

Therefore, there is a need for statistical methods that can be

used to validate the similarity in expression changes across

studies.

Given the lack of statistical methods that can test such

equivalence hypotheses, researchers currently use naïve

methods for determining if treatments have similar effects on

gene expression. Themost-commonly employedmethod focused

on intersection, which simply involves finding the intersection of

differentially expressed genes across studies, without

determining the probability of such intersections occurring by

chance. One example is the e-cigarette study from Shen et al.

(2016), which investigated if similar pathways were enriched in

cigarette smokers. In the process of analyzing their results, they

observed that the same or different genes were differentially

expressed at several time points of their study and used this result

as well as a subsequent gene enrichment study to form their

conclusion. Another example is a study from Blake et al. (2020),

which compares gene expression across tissues in different

animal species. Again, they define genes of interest as being

both equivalently changed in the same direction and statistically

significant in a pairwise comparison of tissue types. However,

because this naïve approach is not statistically motivated, it is

prone to false positives, i.e., declaring a gene equivalently

changed when the differential expression of the gene between

two studies is in the same direction only by chance. This could

lead to a large number of candidate genes requiring validation,

which could be time-consuming and cost prohibitive

(Provenzano and Mocellin, 2007; Garrido et al., 2020).

In this study, we introduce and compare two statistical tests

of equivalent change in gene expression between two studies. An

advantage to testing for an equivalent change in differential gene

expression is that the log2-fold changes are likely to be far more

comparable across studies than the gene expression itself due to

variable study conditions such as technology, environment, and

personnel (Rudy and Valafar, 2011; Walsh et al., 2015). It should

be noted that these tests work equally well to find significant

opposing changes in gene expression which, for example, could

be used to suggest treatments that might reverse changes

associated with a disease or to identify genes affected in

opposite ways in a gene knockout and overexpression

experiment. The first test is an adaptation of the two one-

sided t-tests (TOST) applied to the fold-changes from a

differential gene expression analysis. Although traditionally

the TOST approach has been used to establish bioequivalence

of drugs (e.g., to approve generics) (Schuirmann, 1987), it has

been adapted to several other cases (Dixon et al., 2018;

Leichsenring et al., 2018; Wu et al., 2018), including finding

equivalently expressed genes in the same study (Qiu and Cui,

2010). Nevertheless, it has never been adapted to differential gene

expression analysis. The second test is based on the Equivalent

Change Index (ECI), introduced by Thompson and Koestler

(2020) in connection with gene enrichment analysis. Although

they introduced the statistic itself, no statistical test was available.

Here, we present a bootstrap procedure for the ECI statistic to

calculate confidence intervals. In the following, we will explain

the mechanisms of both approaches followed by a simulation

study to compare and assess the performance of the twomethods.

This is followed by real-world data applications using different

publicly available gene expression studies of pancreatic cancer,

Alzheimer’s disease, and smoking vs. vaping to demonstrate if

the tests can identify biologically plausible results.

2 Methods

In the following, we give a definition of the Equivalent

Change Index (ECI), the ECI bootstrap test, and the Two

One-Sided t-Tests (TOST). Furthermore, we explain the

design of the simulation study and give information about the

publicly available data sets used in our real data analysis. For the

purpose of this study, we need an effect size β̂i, the standard

deviation (for TOST) of β̂i, and a measurement of statistical
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significance for β̂i (for the ECI bootstrap test) for each

differentially expressed gene i. We decided to use the

log2 fold change (log2 FC) as effect size, although other

measures could also be used, for example the standardized

mean difference.

2.1 Equivalent change index

The Equivalent Change Index (ECI), proposed by

Thompson and Koestler (2020), is a measure of the degree

of equivalent or inverse change of attributes of the same type

across two diverse studies. The ECI λi of a gene i is calculated as
a ratio of the minimum and maximum of the absolute effect

sizes β̂ik from the two studies (k � [1, 2]) multiplied by a sign,

where the sign reflects whether the differential gene expression

of the two studies was in the same direction (positive sign) or

opposite direction (negative sign). Furthermore, the ECI is

weighted by the maximum of the p-values pik of the two

effect sizes.

λi �
sgn(β̂i1 × β̂i2)min(∣∣∣∣∣∣∣∣β̂i1

∣∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣∣β̂i2

∣∣∣∣∣∣∣∣)
max(∣∣∣∣∣∣∣∣β̂i1

∣∣∣∣∣∣∣∣,
∣∣∣∣∣∣∣∣β̂i2

∣∣∣∣∣∣∣∣)
· (1 −max(pi1, pi2))

λi is in the range of [-1,1], where -1 indicates that the effect size

was exactly opposite between the two studies and 1 indicates that

the effect sizes between the two studies were identical. Hence, λi
indicates the degree of equivalence or inverseness of the

expression of a gene compared between two separate

experiments.

2.2 ECI bootstrap test

In this section we describe our proposed bootstrap procedure

to use the ECI statistic to test for equivalence. We performed all

computations in the R environment (R Project for Statistical

Computing, RRID:SCR_001905) version 3.5. We first calculate

the ECI values for all genes using the function getECI() from the

R package ECEA (Thompson and Koestler, 2020) with the

log2 FC as effect size and corresponding p-values as

measurement of statistical significance (Figure 1). To obtain a

test measure for equivalent change, we proceed as follows:

• create bootstrap samples within treatment and control

groups for each study

• recalculate the differential gene expression for each study

separately, e.g., the log2 FC for each gene along with its

p-value

FIGURE 1
Workflow to compare the differential gene expression of genes of two different studies using the Equivalent Change Index (ECI).
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• recalculate ECI values between studies for each gene

We repeated this procedure 1,000 times.

2.2.1 Confidence interval
We used a 95% bias-corrected and accelerated (BCa)

bootstrap interval as a confidence interval for the ECI

values since it corrects for both bias and skewness

(Wicklin, 2017; Jung et al., 2019). The BCa assumes that

the data are independent and identically distributed and is

calculated as CI[β̂*L, β̂
*

U], where β̂
*

L denotes the Lth quantile and

β̂pU denotes the Uth quantile, i.e., lower limit and upper limit.

The indices L and U are defined as L � a1 · B and U � a2 · B,
where B is the number of bootstrap samples, here B � 1000,

and a1 and a2 are defined as:

a1 � Φ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ẑ0 + ẑ0 + z(α/2)

1 − â(ẑ0 + z(α/2))
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

a2 � Φ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ẑ0 + ẑ0 + z(1−α/2)

1 − â(ẑ0 + z(1−α/2))
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, Φ is the standard normal cumulative distribution

function, z(α/2) is the 100x(α2) th percentile of a standard

normal distribution, and ẑ0 and â are the bias-corrections and

acceleration factors, respectively. The bias-correction factor is

computed as the inverse of the standard normal cumulative

distribution function of the proportion of bootstrap effect

sizes β̂p smaller than the original effect size β̂:

ẑ0 � Φ−1⎛⎝1
B
∑B
b�1
I[β̂p < β̂]⎞⎠

The acceleration factor uses “leave one out” (jackknife)

resampling as follows:

â �
∑n

i�1(β̂(.) − β̂(−i))3

6[∑n
i�1(β̂(.) − β̂(−i))2]3/2

Where, β̂(−i) is an effect size of a jackknife sample and β̂(.) is the
average of the effect sizes of all jackknife samples.

We used the bias corrected confidence interval to test the null

hypothesis that the ECI value is not different from zero, in other

words, there is no equivalent or inverse change between the effect

sizes of the attributes of the two studies. We reject the null

hypothesis when the confidence interval of the ECI values does

not include zero.

2.2.2 P-value (approximate)
According to Asparouhov and Muth´en (Tihomir

Asparouhov aBMe, 2021), assuming that â � 0, we have

a1 � Φ(ẑ0 + ẑ0 + z(α/2)) � Φ(2ẑ0 + z(α/2))
a2 � Φ(ẑ0 + ẑ0 + z(1−α/2)) � Φ(2ẑ0 + z(1−α/2))

When we concentrate only on positive ECI values, we would

reject the null hypothesis of non-equivalence when β̂*L > 0 or L >
M where

M � ∑B
b�1
I[β̂p < 0]

In the special case of p-value = 0.05 (L = M) we have

0.5 � 2 · 0.025 � 2 ·Φ(−1.96)
� 2 ·Φ( − 2ẑ0 + 2ẑ0 − 1.96)
� 2 ·Φ( − 2ẑ0 + Φ−1(Φ(2ẑ0 − 1.96)))
� 2 ·Φ( − 2ẑ0 + Φ−1(a1 · B/B))
� 2 ·Φ( − 2ẑ0 + Φ−1(L/B))

Therefore, the two-sided p-value can be computed,

approximately, by

p − value � 2 ·Φ( − 2ẑ0 + Φ−1(M/B))
where M is the number of ECI values, which are smaller than

zero. In case of the ECI value being smaller than zero we compute

p − value � 1 − 2 ·Φ( − 2ẑ0 + Φ−1(M/B))

2.3 Two one-sided t-tests

What follows is a brief description of how the TOST method

was applied to these data. Let Δ represent some fold change which

is considered to be unimportant. To test for equivalent change,

we use a null hypothesis of non-equivalence vs. an alternative

hypothesis of equivalence or inverse relationship. In particular,

we must perform two hypothesis tests, namely:

H01: βi1 − βi2 ≥Δ vsHa1: βi1 − βi2 <Δ

and,

H02: βi1 − βi2 ≤ − Δ vsHa2: βi1 − βi2 > − Δ

where βik is the effect size of gene i of study k. The t-test statistics
for the two tests are:

t*1i � β̂i1 − β̂i2 − Δ
si

and,

t*2i � β̂i1 − β̂i2 + Δ
si

Frontiers in Bioinformatics frontiersin.org04

Neums et al. 10.3389/fbinf.2022.893032

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.893032


To accommodate for unequal variances we define si
according to Welch’s t-test, where si �

������
sd21
N1

+ sd22
N2

√
, sdk is the

standard deviation of β̂ik, and Nk is the size of study k. To

perform the t-test we used Satterthwaite formula for degrees of

freedom:

df �
(sd21
N1

+ sd22
N2
)2

(sd2
1

N1
)2

N1−1 + (sd2
2

N2
)2

N2−1

Only when the p-value for test one and the p-value for test

two are smaller than the significance level of α � 0.05, is a gene

considered to be equivalently changed. Likewise, to test for

inverse change, we use the same test statistics except that we

multiply β̂i1 by −1.

2.4 Multiple testing

We performed a test of equivalence for each gene. To adjust

the p-value for the multiple testing we used the adjusted false

discovery rate (FDR) approach by Benjamini and Hochberg

(1995). Here, the FDR correction qi � piN/i, where pi is the

ith p-value in a sorted list of ascending p-values and N is the

total number of p-values, is the ratio of expected false positives and

the total number of accepted positives. To adjust for the non-

monotony of the qi value we replace the qi value with the lowest qi
value among all qf, where f≥ i (Yekutieli and Benjamini, 1999).

2.5 Simulation

We conducted a simulation study to compare the two

different tests for equivalent change. This simulation study

consisted of two simulated studies of differential gene

expression, for which we aimed to test equivalent change of

gene expression. The two simulated studies, each consisting of

1,000 genes, are constructed so that 30% of the differentially

expressed genes of Simulated Study 1 are equivalently changed

between the two studies. The simulation process has two levels.

First, we simulated descriptive features of each simulated study

(mean and standard deviation), which we used in the second level

to draw random gene expression values for each sample. We then

used the simulated studies to performed differential gene

expression and the equivalence testing as described above.

In the following we will explain how each study is set up step

by step.

2.5.1 Simulated study 1
The first stage is to simulate a study with two groups. The group

is denoted by k, with controls as k � 0 and cases or treatment as

k � 1. The simulation derives certain values from a reference study

of pancreatic cancer (see section Biological Data) with case control

data, including samples that were either tumor or tumor adjacent

normal tissue (GSE16515), as described below.

a. The mean expression for gene g in the simulated control group

(k � 0) is drawn from a gamma distribution with scale and

shape parameters extracted from the reference dataset using the

function egamma () of the R package EnvStats (Millard, 2013):

mg ~ Γ(α � 8.24, β � 0.66)
b. For each gene g from the reference dataset we obtained the

mean difference in expression, denoted by δg.

c. Genes with −1≥ δg ≤ 1 are removed. For this simulation we

are only interested in genes with a difference between groups.

d. From the filtered down gene set we obtained a new gene set

by sampling with replacement, where each gene g has:

i. The standard deviation for gene g in group k of the

reference dataset, denoted by sgk
ii. The mean difference δg

e. The genes were divided into three subgroups: equivalently

changed genes (f = 1), non-equivalently changed genes 1

(f = 2), and non-equivalently changed genes 2 (f = 3). The

non-equivalently changed genes were divided into two

subgroups to have the differential expression of those genes

be balanced between the two studies: One half of the genes is

differentially expressed in one study while non-differentially

expressed in the other study and vice versa.

f. The expression value for geneg, observation i, group k is denoted

xgik and is drawn from a truncated normal distribution:

xgik ~ N(γg, sgk); 0< xgik

• With

γg � {mg + kδg iff � 1
mg iff � 2
mg + kδg iff � 3

g. With the simulated control group and treatment group, we

calculated the differential expression for each gene as

described in section “Differential Gene Expression”.

2.5.2 Simulated study 2
The next stage is to simulate gene expression from a second,

similar study. At this point, we will determine genes which are

equivalently changed across the two studies. We will choose 30%

of the differentially expressed genes (abs (log2FC) > 1 and p-value <
0.05) from Simulated Study 1 to be equivalently changed.

a. The mean expression for a gene in the simulated control

group is equal to the mean expression in Simulated Study 1.

b. Equivalently changed genes are further simulated to not

always be perfectly equivalently changed (even on average).

This is done by having a modifier for the change in gene g,

denoted θg and is in [1,2.5].
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c. For Simulated Study 2, the expression value for gene g,

observation j, group k is then drawn from a truncated

normal distribution:

ygik ~ N(γg, sgk); 0<ygik

With

γg � {mg + kθgδg if f � 1
mg + kδg if f � 2
mg iff � 3

We used the pairing of sgk and δg to be able to simulate the

fact that differentially expressed genes with low difference in

means between the treatment groups often have small

standard deviations.

Figure 2 shows the distribution of differential gene

expression of the two simulated studies for one iteration of

the simulation. The degree of equivalence of change in gene

expression between the two studies for one iteration of the

simulation is visualized in Supplemental Figure S1.

2.6 Performance measures

To assess the performance of each test we used sensitivity,

specificity, balanced accuracy and F1 score, which is the

harmonic mean of precision and sensitivity.

2.7 Biological data

The biological data analysis is based on publicly available

pancreatic cancer microarray expression data, Alzheimer’s

disease microarray expression data, and smoking RNAseq

data obtained from the NCBI-GEO database (Edgar et al.,

2002; Barrett et al., 2013) (Gene Expression Omnibus (GEO),

RRID:SCR_005012). Given that these datasets are drawn from

similar populations, we expect to see equivalently changed genes

among them.

For pancreatic cancer, one dataset was comprised of

samples of peripheral blood mononuclear cells (PBMC)

(accession number GSE74629). The other two datasets are

comprised of samples of tumor tissue (tumor tissue data set 1:

GSE16515, tumor tissue data set 2: GSE22780) (Pei et al., 2009;

Ellsworth et al., 2013; Li et al., 2016) (Table 1). The control

FIGURE 2
Example volcano plots of the two simulated gene expression studies of one simulation iteration. Marked red are all genes set to be equivalent
between the two studies. Here, the differential expression of the genes to be set equivalently changed between the two simulated studiesmust pass a
threshold (abs (log2FC) > 1 and p-value < 0.05) in Simulated Study 1 but the differential expression of the same genes is altered in Simulated Study 2 to
mirror equivalent change and thus can fail the threshold for differential gene expression.

TABLE 1 Specifics for the different pancreatic cancer studies used in
this project.

Tissue type Accession # # Tumor # Control

Disease GSE16515 36 16

Disease GSE22780 8 8

PBMC GSE74629 36 14
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data for the PBMC study were from gender, age, and habit

matched healthy participants and the control data for the two

disease tissue studies are from adjacent normal tissue of the

cancer patients. After reading in the raw files, the count data

were background corrected, quantile normalized, and the

expression values were calculated using the function rma ()

from the package affy (Gautier et al., 2004) for Affymetrix

microarray data, or the function neqc () from the package

limma (Ritchie et al., 2015) for Illumina microarray data in the

R statistical environment.

For Alzheimer’s disease, the studies GSE1297 and

GSE29378 were compared. In GSE1297 only severe cases vs.

control were considered since GSE29378 only included advanced

Alzheimer’s disease cases. In GSE29378 we only used the

CA1 regions, in order to match what was used for GSE1297.

GSE1297 was background subtracted and normalized using the

rma () function from the affy package and GSE29378 was

background corrected and normalized using neqc () function

from the limma package.

For the smoking data set, the study GSE169757 was used

where smokers were compared to control and vapers. We used

the function cpm () from the edgeR packet (Robinson et al.,

2010; McCarthy et al., 2012) to filter expressed genes by a

threshold of 0.3, which roughly corresponds to a count of 10.

To normalize the data, we used the function calcNormFactors

() from the edgeR package and voom () from the limma

package.

2.8 Differential gene expression

We used the package limma to perform differential gene

expression analysis. The model was fitted by using the functions

lmfit () and eBayes (), which uses moderated t-statistics for

ranking the genes. The standard deviation (sd) for gene g was

be extracted from the output by multiplying the square root of

the unscaled covariance ϑgj and the posterior residual variance ~s
2
g,

sd �
���
ϑgj

√
· ~sg as recommended by Smyth (2004).

2.9 Disease enrichment analysis

To investigate the association of equivalently changed genes

with disease types we used the R package DOSE (Yu et al.,

2015), which calculates a p-value using the hypergeometric

distribution to determine whether the number of genes

associated with a disease is larger than expected. We used

the function enrichDO (), which supports Disease Ontology

(DO) data (Schriml et al., 2012), and enrichDGN, which

supports DisGeNET (Pinero et al., 2015) (DGN), with a

minimal size of genes annotated by NCG category for testing

of 5 and a q-value cut off of 0.05.

3 Results

3.1 Simulation

Simulation 1 was comprised of Simulated Study 1 and

Simulated Study 2. Each simulated study contained a

simulated treatment and control. The two simulated studies

were created such that 30% of the genes were equivalently

changed with varying degrees of equivalence. Figure 3 and

Table 2 show the decision of significance of the two tests (ECI

bootstrap test and TOST) for one single iteration of the

simulation. As can be observed, for a sample size of the

comparator groups (e.g., case vs. control) of 20 people in each

of the control group and case group, the ECI bootstrap test is able

to identify the majority of equivalently changed genes (in this

example sensitivity = 0.987) but also falsely identifies not

equivalently changed genes (specificity <1). TOST on the

other hand, does not misclassify any non-equivalently

changed genes but identifies only 5 equivalently changed genes.

We repeated the previously described simulation 1,000 times

and calculated the average of sensitivity, specificity, balanced

accuracy, and F1 score for different sample sizes of the

comparator groups, namely 5, 7, 10, 20, 50, and 100

(Figure 4). As can be seen, the sensitivity and F1 score for

TOST are less than 0.2 and balanced accuracy is close to

0.5 irrespective of group size, and the specificity is close to

1 for all group sizes. The ECI bootstrap test shows that all

performance metrics are dependent on the group size (as

expected). Nevertheless, the performance of the ECI bootstrap

test is overall very good. For a group size of 10, the balanced

accuracy averages 0.940 and the F1 score averages 0.925

(Supplemental Table S1).

3.2 Biological data

In the following, the naïve approach is defined as declaring a

gene equivalently changed when it is differentially expressed in

the same direction in both studies. For the ECI bootstrap test and

TOST we report a gene as significant when it differentially

expressed in at least one of the two studies and has a q-value

less than 0.05.

3.2.1 Pancreatic cancer
We used three publicly available data sets that were created to

study pancreatic cancer. Two of the datasets contained gene

expression measurements in pancreatic tumor tissue with

adjacent normal tissue as control and the third data set

contained gene expression measurements from peripheral

blood mononuclear cells (PBMCs) with gene expression data

from gender, age, and habits matched healthy patients as controls

(hereafter referred to as the PBMC data set).
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We performed bootstrap ECI test, TOST, and naïve approach

on the biological data. Using TOST, none of the genes were

significantly equivalently changed between the two tumor tissue

data sets. When using the naïve approach, 150 genes were

identified as equivalent. While using bootstrap ECI, the

comparison of the two tumor tissue data sets led to the

identification of 251 genes which were equivalently changed.

From the 150 genes defined equivalent by the naïve approach,

127 were found equivalently changed using ECI bootstrap test

(Supplemental Table S2). Significant genes identified by the ECI

bootstrap test are enriched with annotations for pancreatic

cancer (p-adj = 5.5e-04), pancreatic carcinoma (p-adj = 3.4e-

03), and pancreatic adenocarcinoma (p-adj = 7.6e-03) when

using the DO database (Supplemental Table S7). When we

use the DGN database, multiple disease descriptions were

related to cancer such as adenocarcinoma of pancreas

(p-adj = 2.0e-04), or gastric adenocarcinoma (p-adj = 6.4e-03)

(Supplemental Table S8). The top 10 equivalently changed genes

include some with known or suspected tumor relevance such as

CYP3A5 (Noll et al., 2016), STEAP1 (Gomes et al., 2012), and

PROX1 (Saukkonen et al., 2016), which are being investigated as

drug targets for pancreatic cancer, GMNN (Kim et al., 2012;

Kushwaha et al., 2016), which is associated with cancer

pathophysiology and development, and SORBS2 (Alsafadi

et al., 2011; Zhao et al., 2018; Lv et al., 2020; Lv et al., 2021),

which is known to be associated with metastatic relapse.

Using TOST we identified two equivalently changed genes

(SPICE1 and MCEMP1) and one inverse changed gene

(STAMBPL1) by comparing tumor tissue data set 1 with the

PBMC data set. When using the naïve approach, 14 genes were

found equivalently changed. When using the ECI bootstrap test,

we identified 181 equivalently changed genes and 94 inversely

changed genes and all genes equivalently changed using the naïve

approach were also identified as equivalently changed using the

ECI bootstrap test (Supplemental Table S3). The inversely

changed genes were not found to be associated with diseases

listed in either the DO database or the DGN database. Significant

equivalently changed genes identified by the ECI bootstrap test

are enriched with annotations for pancreatic cancer (p-adj =

3.2e-03), pancreatic carcinoma (p-adj = 2.1e-02), and pancreatic

ductal adenocarcinoma (p-adj = 1.3e-02) when using the DO

database (Supplemental Table S9). When using the DGN

database, multiple disease descriptions related to pancreatic

cancer were identified such as pancreatic ductal

adenocarcinoma (p-value = 1.3e-05), and adenocarcinoma of

pancreas (p-value = 2.3e-03) (Supplemental Table S10).

The comparison of tumor tissue data set 2 with the data set

from PBMC let to no equivalently changed genes being identified

when using TOST, two equivalently changed genes identified

when using naïve approach, and we identified nine equivalently

changed genes and eight inversely changed genes when using the

FIGURE 3
Example plots of decisions based on the q-value by the two tests of one simulation iteration. Left is the significance decision of the ECI
bootstrap test, right is the significance decision of the TOST.

TABLE 2 Performance measurements for one single simulation with
group size 20. Decisions of equivalence are made using the
q-value of 0.05 for ECI bootstrap test and TOST. The TOST is too
conservative to identify any equivalently changed genes, while the
ECI bootstrap test shows good performance.

Performance ECI bootstrap test TOST

Sensitivity 0.987 0

Specificity 0.951 1

Balanced accuracy 0.969 0.5

F1-score 0.953 0
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ECI bootstrap test. The two genes identified as equivalently

changed when using the naïve approach were also

significantly equivalently changed using the ECI bootstrap test

(Supplemental Table S4). Using the DO database as well as the

DGN database resulted in no disease descriptions found to be

associated with the equivalently changed genes, likely due to the

small number identified.

3.2.2 Alzheimer’s disease
We compared two publicly available data sets for Alzheimer’s

disease, where 147 genes were differentially expressed in at least

one of the two studies. We found no genes to be equivalently

changed using TOST and three genes identified as equivalently

changed using the naïve approach. Using the ECI bootstrap test

we found 20 genes to be equivalently changed, where two were

differentially expressed in both studies (ANO3 and SST), and

1 gene to be inverse changed (Supplemental Table S5). The

equivalently changed genes are enriched with an annotation for

Non-Functioning Pituitary Gland Neoplasm (p.adj = 0.039)

when using the DGN database (Supplemental Table S11),

where down-regulation of the Pituitary Gland is associated

with Alzheimer’s disease (Ishii and Iadecola, 2015).

The top equivalently changed genes identified by the ECI

bootstrap test are: SST, FXYD7, PCP4, RASL12, SLC14A1, INA,

SERPINA3, ANO3, APLNR, AEBP1. SST is directly linked to AD

(Solarski et al., 2018). FXYD7, APLNR, INA, AEBP1 and

SERPINA3 were found to be differentially expressed in a

meta-analysis of AD data sets (Su et al., 2019). PCP4 was

found to be dysregulated in the forebrain of mice with AD

(Renelt et al., 2014). SLC14A1 is one of significantly altered

transcripts in APPswe/PS1dE9 transgenic mice during the

development of beta amyloid protein (Aβ) pathology (Wirz

FIGURE 4
Performance metrics with 95% confidence intervals of 1,000 iterations for ECI bootstrap test and two one-sided t-test (A) Sensitivity (B)
specificity) (C) balanced accuracy (D) F1 score. The ECI bootstrap test shows increasing performance with increasing group size and has overall a
good performance. The TOST shows only in specificity a better performance than the ECI bootstrap test and shows no performance for all the other
measurements.
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et al., 2013). Finally, ANO3 is significantly differentially

expressed in relation to Alzheimer’s disease (Vastrad and

Vastrad, 2021).

3.2.3 Smoking vs. vaping
We used one publicly available data set of a study of three

groups: smoking, vaping, control. We compared the control

group against both smoking and vaping for differential gene

expression and finally compared the two sub-studies (smoking

vs. control and vaping vs. control) using the TOST and ECI

bootstrap test. No genes were found to be equivalently changed

using the TOST and 382 genes were found to be equivalently

changed using the naïve approach. Using the ECI bootstrap test

we found 1,090 genes to be equivalently changed and 0 to be

inversely changed (Supplemental Table S6). Out the 1,090 genes,

380 genes were differentially expressed in both studies, 404 were

protein coding genes and 348 could be used for disease

enrichment analysis because they had an entrez id. The

disease enrichment analysis delivered 0 associated diseases for

both the DO database and the DGN database.

The top 10 equivalently changed genes are: TERB2, TM4SF1,

PHKA1, GLYATL1, AC073610.2, PF4, HECW1, CALD1,

APOBEC4, NPHP3-ACAD11. TERB2 is associated with

Spermatogenic Failure 59 (GeneCards, 2022). (Dai et al.,

2015) found that smoking is associated with impaired

spermatogenesis. (Fu et al., 2020). found TM4SF1 to be

associated with smoking. PHKA1, an inflammatory-associated

transcript, is significantly altered with prenatal nicotine exposure

(Zhou et al., 2021). GLYATL1 is associated with HCC (Guan

et al., 2020). PF4 is found to be significantly higher expressed

when smoking (Zevin et al., 2001). CALD1 is associated with in

utero tobacco smoke exposure (Breton et al., 2014). And two

SNPs nearest to APOBEC4 were associated with fluorescent

oxidation products (FIOPs) accounting for tobacco smoking

status in adults (Orsi et al., 2022).

4 Discussion

In this work, we compared two options to test for

equivalently changed genes between two studies, namely the

proposed ECI bootstrap test and TOST. We were able to

show that the ECI bootstrap performs well in identifying

equivalently changed genes with respect to balanced accuracy

and F1, which were on average both over 0.9, even for the

smallest analyzed group size of ten, while maintaining a high

specificity. Furthermore, we found that TOST greatly

underperformed the ECI bootstrap test with balanced

accuracy close to 0.5 and F1 score close to 0.

By using a threshold of 0.05 for the q-value, for the ECI

bootstrap test, we were able to identify many equivalently changed

genes between two pancreatic cancer tumor tissue studies where

most of the genes were related to cancer progression. When

comparing two Alzheimer’s data sets, the majority of the

equivalently changed genes were associated with Alzheimer’s

disease. The lack of significant enrichment for Alzheimer’s

disease itself could simply be due to non-comprehensive

annotation in the databases used. Additionally, when we were

comparing smoking to vaping most of the top equivalently

changed genes were related to smoking, though the enrichment

analysis delivered no associated disease. This is not surprising,

given that vaping is not necessarily expected to lead to similar

health outcomes as smoking. Nevertheless, the results show that

the ECI bootstrap test met our expectation of identifying

equivalently changed genes in studies of the same disease type

or exposure and, furthermore, is able to identify equivalently

changed genes which are functionally related to the disease type

or exposure and could lead to more reproducible or robust results.

Additionally, we were able to show that several genes in non-

cancer tissue (peripheral blood) of patients of pancreatic cancer

showed equivalently changed behavior to genes of tumor tissue of

the same disease which implies the systemic impact of cancer.

Those results may open the way for identifying reliable blood

markers for cancer, and for new investigative approaches into the

field of systemic changes of gene expression of cancer patients that

may be addressed in future studies. It must be mentioned that the

difference in the number of significant genes could be due to the

group sizes of the data sets.

When comparing the ECI bootstrap test to the naïve approach

we found several genes which were declared equivalently changed

using the naïve approach to be not significant using the ECI

bootstrap test. In particular, 23 genes out of 150 genes differentially

expressed in both pancreatic tumor tissue studies were not

significantly equivalently changed when using the ECI bootstrap

test. This shows that simply identifying genes as equivalently

changed because they are differentially expressed in the same

direction might lead to false conclusions. On the other hand, in

the comparison of vaping vs. smoking only 2 out of 382 genes

differentially expressed in both studies were not significantly

equivalently changed using the ECI bootstrap test. One reason

for that could be an inherent bias due to using the same control as

comparison. Additionally, the ECI bootstrap test is more powerful

because it can identify statistically equivalently changed genes even

when they are not statistically significantly changed in one of the

studies. Furthermore, although we have demonstrated the

situation in which we test for any degree of equivalent change,

it is just as simple to test for the desired level of equivalent change,

which the naïve method cannot do. Overall, the ECI bootstrap test

gives more reliable results when identifying equivalently changed

genes in comparison to the naïve approach.

Limitations of this study include the differing nature of cases

and controls in some datasets, the different group sizes, and the

lack of a ground truth in biological data. In future work, the plan

is to create a framework for power calculation to address the

influence of different group sizes on the ECI bootstrap test

performance.
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5 Conclusion

In this study we demonstrated the use of the ECI bootstrap

test in a setting of differentially expressed genes to provide

researchers with a statistical approach to identify genes which

are similarly influenced by a specific treatment or exposure.

Furthermore, statistically identified equivalently changed genes

reduces the cost for validating those genes and offers the option

of identifying new possible treatment targets.

In addition, it is also possible, due to the non-parametric

nature of the bootstrap test and the lack of assumptions on the

ECI value, to adapt the ECI bootstrap test to other options such as

methylation data or other types of ‘omics data. In future studies

we want to investigate the effectiveness of bootstrap ECI on other

types of data sets.

Furthermore, we have created an R package for the ECI

bootstrap test which can be obtained from the github repository

at https://github.com/Hecate08/ECIbootstrap.
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