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Water surface object detection is one of the most significant tasks in autonomous

driving and water surface vision applications. To date, existing public large-scale datasets

collected from websites do not focus on specific scenarios. As a characteristic of these

datasets, the quantity of the images and instances is also still at a low level. To accelerate

the development of water surface autonomous driving, this paper proposes a large-scale,

high-quality annotated benchmark dataset, named Water Surface Object Detection

Dataset (WSODD), to benchmark different water surface object detection algorithms.

The proposed dataset consists of 7,467 water surface images in different water

environments, climate conditions, and shooting times. In addition, the dataset comprises

a total of 14 common object categories and 21,911 instances. Simultaneously, more

specific scenarios are focused on in WSODD. In order to find a straightforward

architecture to provide good performance on WSODD, a new object detector, named

CRB-Net, is proposed to serve as a baseline. In experiments, CRB-Net was compared

with 16 state-of-the-art object detection methods and outperformed all of them in terms

of detection precision. In this paper, we further discuss the effect of the dataset diversity

(e.g., instance size, lighting conditions), training set size, and dataset details (e.g., method

of categorization). Cross-dataset validation shows that WSODD significantly outperforms

other relevant datasets and that the adaptability of CRB-Net is excellent.

Keywords: surface object detection, dataset, detector, baseline, cross-dataset validation

INTRODUCTION

Water surface object detection plays an increasingly significant role in the areas of autonomous
driving such as unmanned surface vehicles (USVs) and water surface vision applications. To detect
visual objects more accurately, annotated benchmark datasets (Everingham et al., 2010) are used
to validate the different object detection methods, which can avoid the time-consuming process
of building their own datasets. According to different object detection methods, a persuasive
performance comparison can be presented based on the same annotated benchmark dataset.
Nevertheless, there is a dearth of image-based datasets that focus on the application of water
surface object detection. Moreover, current water surface datasets still have several drawbacks.
For example, the primary issues existing in the boat-types-recognition dataset (Clorichel, 2018)
are small data scales, a limited number of surface object categories, and only one climate type. In
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addition, for large generic image-based datasets, such as MS
COCO (Lin et al., 2014), ImageNet (Krizhevsky et al., 2012), and
Places 2 (Zhou et al., 2015), the images of water surface visual
objects are collected from websites, and there are not enough
images for training the different neural networks. Therefore,
performance is an issue when a water surface detector is
trained on these types of datasets. To address all these issues,
it is necessary to build a new water surface dataset with a
broad range of water environments, complete categories of
common obstacles, multiple climate conditions, and various
shooting times.

This paper proposes a novel benchmark dataset called
WSODD that has more instances and categories for the detection
of common obstacles on water surfaces. It consists of 7,467
water surface images taken by a Hikvision industrial camera, and
the resolution of each image is 1,920 ∗ 1,080. A wide range of
environments, such as oceans, lakes, and rivers, are included,
and the images in WSODD are obtained under three different
shooting time periods (daytime, twilight, and night) and three
different climatic conditions (sunny, cloudy, and foggy days).
There are 14 categories and 21,911 instances in the proposed
fully annotated dataset, with each instance marked by an axis-
symmetric bounding box. All of the annotations and original
images will be public, and an online benchmark will be set up.

To delve into WSODD, CRB-Net is proposed to serve as
a baseline. Water Surface Object Detection Dataset (WSODD)
contains many small objects as well as objects that are not
easily detected, so the detector extracts deeper semantic features
and uses SPP (He et al., 2015) to enhance the receptive field.
While fusing cross-scale features, most previous structures are
simply stack inputs without distinction. However, these features
are at different resolutions, and their contributions to the fused
features are often not equal. To solve this problem, we introduce
an improved BIFPN (Tan et al., 2020) that can carry out
adaptive weight adjustment during feature fusion by attention
mechanism and Mish activation (Misra, 2019). Moreover, CRB-
Net optimizes the initial value of the anchor frame based on the
K-means algorithm, which makes the anchors match the shape
characteristics of an obstacle. The main contributions of this
paper are:

(1) Water Surface Object Detection Dataset, a novel image-
based benchmark dataset for water surface object detection,
is proposed with the most categories of common obstacles,
and the broadest ranges of water environments and weather
conditions. The images in WSODD can reflect real visual
objects more accurately.

(2) A novel detector (CRB-Net) is proposed, and a benchmark
of performance comparison with 16 state-of-the-art object
detection methods is presented. The results reveal CRB-Net
outperforms other methods in terms of detection precision.
In addition, we explore the detection performance of various
detectors for objects of different sizes in WSODD.

(3) A boat-types-recognition dataset is chosen to perform
cross-dataset generalization because it is the only publicly
available image-based water surface dataset. The results
suggest that WSODD has more patterns and properties

than boat-types-recognition, and that CRB-Net has excellent
generalization ability.

In addition to advancing object detection studies in water surface
vision, WSODD will put forth new questions about methods that
are worth exploring in the field of machine vision.

RELATED WORKS

Datasets
Currently, there are not so many datasets for water surface
object detection. Boat-types-recognition dataset is the only public
image-based dataset which can be found in this area. It contains
1,462 images of the water surface, with three categories of
common objects: boat (gondola, inflatable boat, kayak, paper
boat, sail boat), ship (cruise ship, ferry boat, freight boat), and
buoy. Though the water environments and shooting times of
this dataset are significantly abundant, the annotations for object
detection are not provided in the dataset.

The generic image-based datasets can also be used for water
surface detection. For instance, MS COCO is a large generic
dataset, including 91 categories of objects, and a total of 328,000
images. However, there is only one category (boat) related to
water surface detection, which contains 3,146 images. Obviously,
the number of obstacles and images in this dataset is not
enough to assure the effective training of a deep learning neural
network. Another dataset named ImageNet provides a large-
scale of annotations, but the categories related to water surface
object detection include only four kinds: catamaran, trimaran,
container-ship and aircraft-carrier, and these images are quite
different from the real water surface conditions. Additionally,
Places2 is a generic dataset which contains 365 categories,
but only five categories are related to water surface, which
are harbor, lake, loading-dock, water and river, respectively.
Generally speaking, most of these images cannot be used for
water surface object detection tasks due to the lack of water
surface obstacles. Table 1 shows a comparison of WSODD and
other image-based WSODD.

In addition, there are some video-based WSODDs, such as
Singapore-maritime dataset (Prasad et al., 2017), MODD dataset
(Kristan et al., 2016), and Visual-Inertial-Canoe dataset (Miller
et al., 2018), but most of them also have the problems of little
obstacle categories and relatively simple environment, thus it is
difficult to achieve better performance of object detection.

Methods
It is well-known that for early generic object detection methods

[e.g., LBP (Ojala et al., 2002), DPM (Felzenszwalb et al., 2010)]
it is difficult to extract features from images. Additionally, the

precision and speed of object detection are also not satisfied.

After 2012, with the development of deep learning, many high-
efficiency CNN-based detectors have emerged, which can be

mainly divided into two categories: two-stage object detection
methods and one-stage object detection methods (Liang et al.,
2020). The most famous two-stage object detection method is the
R-CNN (Girshick et al., 2014) series [e.g., Faster R-CNN (Ren

Frontiers in Neurorobotics | www.frontiersin.org 2 September 2021 | Volume 15 | Article 723336

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Water Surface, Dataset, Detector

TABLE 1 | Comparison of WSODD and other image-based water surface object detection datasets.

Dataset Dataset’s type Main categories Main

environments

Weather conditions Shooting time Images

MSCOCO Generic 1 Sea Sunny Daytime 3,146

Lake Cloudy

ImageNet 4 Sea Sunny Daytime 1,996

Lake Foggy

Places2 5 Lake Sunny Daytime 6,514

River

Boat-types-recognition Specialized 3 Sea Sunny Daytime 1,462

Lake Twilight

River Night

WSODD 14 Sea Sunny Daytime 7,467

Lake Foggy Twilight

River Cloudy Night

Themain categories refer to the number of categories related to water surface object detection. The boat-types-recognition dataset includes many kinds of boats, which are all considered

as boat here. Similarly. Images in this Table refer to the number of images related to water surface object detection.

et al., 2016), Mask R-CNN (He et al., 2017), and Cascade R-
CNN (Cai and Vasconcelos, 2018)]. In terms of one-stage object
detection method, Yolo (Redmon and Farhadi, 2018) and SSD
(Liu et al., 2016) are the most remarkable methods. Moreover, the
one-stage detector can also be transformed into an anchor-free
detector such as CenterNet (Duan et al., 2019).

As an important part of computer vision, water surface target
detection has attracted much attention. Before the emergence
of deep learning methods, the method of combining wavelet
transform and image morphology (Yang et al., 2004) is the
dominant method to realize the water surface object detection.
An object detection system was introduced (Wijnhoven et al.,
2010) based on HOG (Dalal and Triggs, 2005) for finding ships
in the maritime video. Matsumoto (Matsumoto, 2013) proposed
a HOG-SVM method to detect ships on the images from ship
mounted camera. In 2016, Kaido et al. used support vector
machine and edge detection in the detecting of ships. Moreover,
a vessel number plate identification was proposed by using two
cameras and identification of various vessels passing through the
port (Kaido et al., 2016).

The technique of deep learning significantly pushes the
progress of this field. Due to variation in size, appearance,
and disturbances, unsupervised methods (Liu et al., 2014)
are severely limited. Therefore, it is more common to use
supervisedmethods (Mizuho et al., 2021). Yang (Yang et al., 2017)
proposed an architecture which uses Fast R-CNN to realize the
identification and classification of ships. In addition, a hybrid
ship detection method (Yao et al., 2017) was presented that
integrates deep learning methods. Specifically, they utilized Deep
Neural Networks (DNNs) and Region Proposal Networks (RPNs)
to obtain a 2D bounding box of target ships. Furthermore, a
fast detection method was designed for surface objects based on
ResNet (Chae et al., 2017), and the speed of object detection can
reach 32.4 frames per second (FPS). Moreover, Qin (Qin and
Zhang, 2018) adopted FCN for surface obstacle detection, which
has a good robustness. In 2019, an improved RBox-based water

surface target detection framework (An et al., 2019) was proposed
to obtain accuracy recall rate and precision of the detection.
And Sr et al. proposed a ship algorithm using an improved
YOLO and multi-feature ship detection method to detect ships.
For this method the SIFT features are reduced by MDS (multi-
dimensional scaling) and RANSAC (random sample consensus)
was used to optimize SIFT feature matching and effectively
eliminate mismatching (Sr et al., 2019). Moreover, a real-time
water surface object detection method (Zhang et al., 2019) was
proposed based on improved Faster R-CNN, which includes
two modules and integrates low-level features with high-level
features to improve detection accuracy. The proposed method
was utilized to detect the floats on the water surface via a three-
day video surveillance stream of the North Canal in Beijing, and
validated its performance. In addition, the deep residual network
and cross layer jump connection policy was employed (Liu et al.,
2019) to extract the advanced ship features which help improve
the performance of object recognition. In 2020, a method was
proposed based on yolov2 (Chen et al., 2020b) to detect small
ship, and which can also be utilized for identification of various
obstacles on the water surface. AndH-Yolo (Tang et al., 2020) was
proposed to detect ship based on region of interest preselected
network. The principle of this approach is to distinguish
suspected areas from the images based on hue, saturation, value
(HSV) differences between ships and the background. Then, a
water surface detection method was proposed called Yolov3-
2SMA (Li et al., 2020), allowing real-time and high-precision
object detection in dynamic aquatic environments. Moreover,
Jie et al. (2021) improved yolov3 to detect ships in inland
waterways, the mAP and FPS of the improved method increased
by about 5 and 2%. Recently, ShipYolo (Han et al., 2021) was
introduced to solve the problem of missed inspection of small-
scale ships. This algorithm designed a new amplified receptive
field module with dilated convolution and Max-Pooling, which
improves the model’s acquisition of spatial information and
robustness of target space displacement. However, most of the
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FIGURE 1 | Typical environments and conditions in WSODD.

above methods are not feasible to be applied by autonomous
ships are based on the static cameras for port management and
thus do not match the shipborne surveillance systems on moved
autonomous ships (Jie et al., 2021). Furthermore, even with all
the proposed algorithms, they still encountered drawbacks of
efficiency and accuracy.

BENCHMARK DATASET FOR WATER
SURFACE OBJECT DETECTION

Most researchers believe that a dataset should cover as many real
images as possible and have as little personal bias as possible
in the annotation process. The dataset proposed in this paper
includes more instances, categories, environments, shooting
times, and weather conditions than previous datasets.

Image Acquisition
All of the images in the WSODD were captured by an industrial
4G HD camera during the period of July 16 to September 10,
2020. The temperature range was 20–35◦C.

In order to enrich the environments and reflect the real world
as accurately as possible, five water areas consisting of three
types of water surface environments were chosen. These are the
Bohai Sea (Dalian, Liaoning Province, China; ocean), the Yellow
Sea (Yantai, Shandong Province, China; ocean), Xuanwu Lake
(Nanjing, Jiangsu Province, China; lake), Nanhaizi Lake (Beijing,
China; lake), and the Yangtze River (Nanjing, Jiangsu Province,
China; river).

For the purpose of enriching the climate categories,
every water environment was photographed under

different weather conditions, such as sunshine, clouds,
and fog.

At the same time, the obstacles were photographed under
different lighting conditions including midday (high light), dusk
(low light), and evening (very low light), so that enough research
materials were collected for the dataset.

Figure 1 shows some typical environments of WSODD. It is
clear that the images not only show numerous surface obstacle
information, but also include relevant information about the
surrounding sea, land, and port, which is closer to the actual
water surface object detection application (Kristan et al., 2014).

Selection of Categories
Water Surface Object Detection Dataset was selected and
annotated with 14 common objects on the surface, namely, boat,
ship, ball, bridge, rock, person, rubbish, mast, buoy, platform,
harbor, tree, grass, and animal. Figure 2 displays two images of
each category.

The core criterion for choosing the objects is their
commonness in real water environments. Water Surface Object
Detection Dataset’s object category division is relatively broad.
For example, the ship category includes large warships and
passenger ships; at the same time, other researchers can test
methods directly based on this dataset, or classify an existing
category in more detail. Table 2 lists the number of images and
instances for each category of WSODD.

Image Annotation
Water Surface Object Detection Dataset was annotated in two
ways, the same as PASCAL VOC (Everingham et al., 2010) and
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FIGURE 2 | Typical categories in WSODD.

TABLE 2 | Images and instances for each category.

Label Images Instances

Boat 4,325 8,179

Ship 1,832 3,423

Ball 652 2,609

Bridge 1,827 2,014

Rock 696 1,540

Person 357 695

Rubbish 461 669

Mast 177 354

Buoy 153 167

Platform 480 614

Harbor 1,211 1,224

Tree 72 219

Grass 103 110

Animal 50 94

Total 7,467 21,911

MS COCO (Lin et al., 2014). The annotation files were saved in
XML format.

Considering that many researchers conduct experiments
based on COCO format annotation files, we will provide the
code that can convert VOC files into COCO files. When other
researchers want to use COCO format annotation files, they can
use this code to easily convert the format.

It is worth noting that this research focuses on annotating a
water surface dataset, and does not include land objects. All of
the annotations, including the omitted objects, were checked by
an engineer in order to ensure more detailed annotation.

Dataset Statistics
The statistics for different water surface environments are shown
in Figure 3. There are 1,771 images of ocean environments,
4,114 images of lake environments, and 1,581 images of river
environments, respectively accounting for 24, 55, and 21% of
WSODD (Zhang et al., 2020). It should be noted that the ship
category inWSODD covers only seas and rivers, because Xuanwu
Lake and Nanhaizi Lake are small lakes that cannot host large
ships. The platform category only exists for the sea. During
the shooting, we found that there are many such platforms in
the offshore waters for marine aquaculture and seawater quality
testing, but no such objects were found on rivers or lakes.
Conversely, the grass classification only exists for rivers and lakes,
but not the sea, where no large area of grass has ever been found.
A possible reason for this is that the impact of waves will devastate
the growth of the grass.

Figure 4 depicts the number of images under different
climatic conditions. The majority of images, 4,918, representing
66% of WSODD, were photographed on sunny days, while the
fewest images, 589, or 8% of the dataset, were taken on foggy days.

The data for the different shooting times are depicted in
Figure 5. The majority of the images, 6,354, or about 85% of the
total, were collected in the daytime. In addition, an average of
3.15 instances for each image were taken during the daytime. A
similar number of instances were taken for each image at twilight,
3.24 (Alessandro et al., 2018). However, the average number of
instances for each image taken at night was 1.19. There are two
main reasons for this large discrepancy. One is that the number
of objects that continue to move at night, such as boats, is small.
The other is that the light is so dim at night that many existing
objects cannot be found, especially for objects that are far away
from the shooting location or objects that are small.
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FIGURE 3 | Statistics under different surface environments.

FIGURE 4 | Statistics under different climate conditions.

FIGURE 5 | Statistics under different shooting times.
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FIGURE 6 | Statistics of the scale of an instance in its image.

Some instances may be as small as 0.01% of an image, while
others can be more than 40%. The distinct differences between
instancesmake the detection task evenmore challenging, because
themodel must be flexible enough in order to deal with extremely
small as well as extremely large objects (Li et al., 2018). Figure 6
depicts the statistics of the scale of an instance in its image.

NOVEL DETECTOR FOR WATER SURFACE
OBJECTS

To build the baselinemethod ofWSODD, we proposed CRB-Net,
which is an enhanced target detector based on CSPResNet (Wang
et al., 2019).

Network Architecture
Figure 7 displays the architecture of CRB-Net. The backbone of
CRB-Net uses the ResBlock_building block to obtain five output
feature layers, and the feature point in every feature layer is set to
three anchors.

In addition, each detection frame of each detection layer was
offset based on a different anchor frame. The width and height
values of each anchor need to be obtained based on the shape
characteristics of the objects to be detected. We use the K-means
clustering algorithm to optimize the initial value of the anchor
frame, which can make anchors more suitable for water surface
scenarios while reducing the training time significantly.

Next, two SPPNets (He et al., 2014) were used to increase the
receptive field of F4 and F5, which can isolate the most significant
contextual features.

A common way to fuse features with different resolutions is
to resize their resolutions to be the same before adding them
up. However, different inputs contribute unequally to the fusion
process. To solve this problem, we designed an improved BIFPN
by incorporating an attention mechanism.

Finally, the feature layers after semantic fusion were sent into
five Yolo heads to obtain the prediction result.

Network Module Details
ResBlock_Body

This is actually a CSPResNet, whose structure is shown in
Figure 8. The residual blocks are stacked in the trunk part.
The other part, the residual edge, is connected directly to
the end after some processing. This structure alleviates the
gradient disappearance problem caused by increasing the depth
in the DNN.

K-Means Algorithm

To find the optimal clustering effect, we selected multiple groups
of different numbers of clusters for experimental comparison.We
found that when the number of clusters reached 15, the increase
in avg IoU almost stopped (the calculation method of avg IoU
was done by calculating IoU for each training set label and the
center obtained by clustering, taking the largest IoU value as the
value of this label, and finally averaging all of the label values
to obtain it). Considering that the risk of model overfitting will
increase as the number of clusters increases, 15 cluster centers
were finally selected.

Improved BIFPN
This integrates the bidirectional cross-scale connections and the
fast normalized fusion. The best value of 1.35 was selected as the
BiFPNwidth scaling factor. To better illustrate the fusion process,
P2 is chosen as an example to describe the fused features.

P
tmp
2 = Conv

(

ω1 � P
in
2 + ω2 � Resize

(

Pin3
)

ω1+ω2+β

)

(1)

Pout2 = Conv

(

ω1
′
� Pin2 + ω2

′
� P

tmp
2 + ω3

′
� Resize

(

Pout1

)

ω1
′ + ω2

′ + ω3
′ + β

)

(2)
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FIGURE 7 | The architecture of CRB-Net.

FIGURE 8 | CSPResNet.

where ωi is the adaptive weight that represents the contribution
of each input, and is set from 0 to 1; β = 0.0001 is to avoid

numerical instability; P
tmp
2 is the intermediate feature, and Pout2

is the final output at this level. To improve the fusion effect,
batch normalization and Mish activation were applied after
each convolution.

Moreover, CRB-Net uses the following schemes: CutMix
(Yun et al., 2019), DropBlock regularization (Ghiasi et al.,
2018), CIoU-loss (Zheng et al., 2020), CmBN (Yao et al.,
2020), and NMS (Bodla et al., 2017). We tried to use Mosaic
data augmentation (Bochkovskiy et al., 2020), class label
smoothing (Szegedy et al., 2016), and cosine annealing scheduler

(Loshchilov and Hutter, 2016), but these schemes did not
work well.

EXPERIMENT AND DISCUSSION

The purpose of object detection is to accurately recognize
the categories and position information of various objects in
the image.

Benchmark Testing Methods
Compared with traditional object detection methods, the object
detection methods based on deep learning are attracting
increasing attention in academia because of their excellent
performance in general object detection.

Excluding CRB-Net, two traditional object detection methods
and 14 methods based on deep learning were selected in this
paper to carry out the baseline test for the dataset. Notably,
Yolov3-2SMA and ShipYolo are two methods specifically
designed for surface target detection. It is Table 3 lists these 16
state-of-the-art object detection methods and their backbones.

Evaluation Indexes
A true positive (TP) is defined as the number of detection boxes
in which the model correctly predicts the positive class. A true
negative (TN) represents the number of detection boxes in which
the model correctly predicts the negative class. A false positive
(FP) is defined as the number of detection boxes in which the
model incorrectly predicts the positive class. A false negative (FN)
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TABLE 3 | Sixteen benchmark testing methods and their backbones.

Method Backbone

DPM (Felzenszwalb et al., 2010) /

RANSAC-SVM (Debnath et al., 2015) /

Faster R-CNN (Ren et al., 2016) VGG-16

Mask R-CNN (He et al., 2017) ResNet-101

Cascade R-CNN (Cai and

Vasconcelos, 2018)

ResNet-101

TridentNet (Li et al., 2019) ResNet-101-DCN

SSD (Liu et al., 2016) VGG-16

RetinaNet (Lin et al., 2017) ResNet-50

Yolov3 (Redmon and Farhadi, 2018) Darknet-53

RFBNet (Liu et al., 2018) VGG-16

M2Det (Zhao et al., 2019) VGG-16

CenterNet (Duan et al., 2019) ResNet-50

EfficientDet (Tan et al., 2020) EfficientNet

Yolov4 (Bochkovskiy et al., 2020) CSPDarknet-53

Yolov3-2SMA (Li et al., 2020) Darknet-53

ShipYolo (Han et al., 2021) CSPDarknet-53

represents the number of detection boxes in which the model
incorrectly predicts the negative class.

The results of the detectors were evaluated by using metrics
such as FPS, Intersection over Union (IoU), average precision
(AP), and mean average precision (mAP).

Frames per second represents the number of images detected
by the method per second.

AP50 represents the AP when IoU is 0.5. If IoU exceeds 0.5,
the detection will be considered successful and it will be recorded
as a TP. If IoU is <0.5, it will be considered as false alarm and
recorded as an FP. Undetected will be denoted as an FN.

Intersection over Union involves dividing the area of overlap
by the area of union. When IoU exceeds 0.5, the detection is
considered successful and it is recorded as a TP.

IoU =
Detection Result ∩ Ground Truth

Detection Result ∪ Ground Truth

=
TP

TP + FP + FN
(3)

Average precision is the ratio of precision rate to recall rate on
the precision-recall curve. The larger the value, the better the
detection effect of the classifier for a certain category.

AP =

1
∑

0

(rn+1 − rn)Pinterp(rn + 1) (4)

where the calculation method of Pinterp(rn+1) is shown in
Equation (5).

Pinterp(rn+1) = maxr : r≥rn+1
P (5)

where P represents the highest precision under recall rate. The
calculationmethods of P (precision) and R (recall rate) are shown
in Equations (6) and (7).

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

Here, mAP is the mean value of the average accuracy rate of all of
the categories. It measures the detection effect of the classifier on
all categories.

Implementation Details
The operating system of the experimental platform is Ubuntu
16.04, with 80 GB of memory. The GPU used for deep learning
is the Nvidia Titan-RTX. The other software packages include
Python v3.6.10, Torch v1.2.0, and Torchvision v0.4.0.

The parameter settings of DPM and RANSAC-SVM are
identical to Felzenszwalb et al. (2010) and Debnath et al. (2015),
respectively. The hyperparameters of CRB-Net are set to the
same as (Bochkovskiy et al., 2020). For the other deep learning
methods, we set the learning rating at 0.00001, the momentum at
0.90, and the weight decay at 0.0005. Due to the limitations of the
GPU, we set the batch size of TridentNet at 2, the batch size of
Cascade R-CNN at 4, the batch size of Faster-RCNN at 8, and the
batch size of others at 16. Moreover, the other hyperparameters
were set to exactly the same as those of the original paper of
these methods. During the experiment, the original images were
resized to 512 ∗ 512.

To make a fair comparison between the different detectors, in
addition to the detectors based on traditional machine learning
(DPM and RANSAC-SVM), the other 15 deep learning-based
detectors all use the following schemes: CutMix, DropBlock
regularization, CIoU-loss, CmBN, and NMS. To ensure that
the distributions of training data and testing data match
approximately, we randomly selected 70% of the original images
as the training set and 30% as the testing set. It should be noted
that in the experiment, we used annotations in the same format
as the PSCAL VOC dataset.

Experimental Results
Figure 9 shows the detection effect of CRB-Net on some images
in WSODD. We selected the detection results in different
scenarios, including weather conditions, shooting times, and
environments. Figure 9A shows the effectiveness of CRB-Net in
different scenarios, while Figure 9B shows areas in which our
detector needs further improvement.

The benchmark testing results on WSODD are listed in
Table 4 (IoU = 0.5). Columns 3–14 in Table 4 show the AP50
for each category in WSODD. This table reveals that traditional
machine learning methods have a poor effect not only in
detection precision but also in detection speed. The FPS of
one-stage detection methods is much faster than that of two-
stage detection methods. Furthermore, CRB-Net has the best
detection accuracy of all of the benchmark testing methods and
its detection speed is also relatively fast.
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FIGURE 9 | Detection results of CRB-Net. (A) Good detection effect (different environments, weather conditions and shooting times). (B) Poor detection effect.

It can be seen that the detection effect of ball is poor, likely
because most of the obstacles in these images are small objects.
And the small objects covers fewer pixels, indicating that features
used for detection are insufficient and feature representation
is weak (Chen et al., 2020a). In addition, the reflection of
ball from water surface will also affect the detection result to
some extent. In addition, the AP50 of boat is low (especially
for the Faster RCNN, Yolov3, Yolov4,M2Det, Yolov3-2SMA,
ShipYolo, and CRB-Net), possibly because WSODD considers
all of the sailing boats, canoes, speedboats and tourist boats as
boat, making it difficult for the DNN to extract features of this
category. The category of animal cannot be detected very well
(especially in Faster RCNN, Mask R-CNN, and EfficientDet),
which may be because of the small number of instances
of this category. As a result, the fitting effect of the DNN
is poor.

To more deeply explore the detection performance for objects
of different sizes, we selected nine algorithms with mAP greater
than 40% in Table 4 for experiments. During the experiments, an
instance whose scale size is less than 10% in its image is marked
as a small object, and mAP (small) is obtained when IoU is 0.5.
Similarly, mAP (Medium), mAP (Large), and mAP (VeryLarge)
represent the AP of medium objects (10–20%), large objects (20%
to 30 T), and very large objects (≥30%) (Li et al., 2018). Table 5
shows the test results. It can be seen that, compared to other
detectors, CRB-Net has higher precision for the detection of small
and medium-sized objects.

In addition, we experimented with various algorithms using
different input sizes. As the input size increased, the detection
accuracy became higher. When the input size was in the range
of 512 ∗ 512 pixels to 1,024 ∗ 1,024 pixels, the detection accuracy
of all algorithms improved by more than 3%. The improvement
came mainly from small objects, meaning that higher resolution
was very useful for detecting small objects. However, detecting
objects in higher resolution images has more computational
overhead. Therefore, it is necessary to design efficient detectors
for high-resolution images in the future.

It is worth noting that the performance of thesemethods based
on this dataset is much lower than that in their original paper.
This may be caused by higher image resolution, larger calculation
dimension andmarkedly different object categories. It is for these
reasons that this dataset is challenging.

Discussion
Traditional object detection methods have low detection
accuracy and poor real-time performance. Fortunately, the
emergence of deep learning has led to a new trend in object
detection. It can be concluded from experiments with 15 deep
learning benchmark methods that the one-stage object detection
method has a big advantage in detection speed, and has also
made significant progress in detection precision, which could
help to achieve better real-time detection. In the self-driving
process of USVs, object detection must have excellent real-
time performance in order to meet the information perception
and decision-making requirements of USVs. Therefore, the one-
stage object detection method will be the mainstream method in
this field.

Because the boat category in WSODD contains a variety of
boats of different shapes, to prove the poor detection effect of this
category, we tried to divide the category of boat into finer detail
and used the above-mentioned networks to retrain and redetect.
When we did this, we found that the prediction precision was
greatly improved. Although the original recognition precision
of this category was low, it is still of significance to the
detection field. First, the category could be divided in finer
detail for further surface object detection studies. Second, it will
help to improve the detection effect of categories that contain
multiple subcategories with weak correlation. It is obvious that
the proposed CRB-NET can significantly improve detection
precision while maintaining good detection speed. However, the
detection effect of this detector is poor in the detection and
recognition of weakly correlated categories. This needs to be
further improved.
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TABLE 5 | Detection performance for objects of different sizes.

Method FPS mAP

(Small)

(%)

mAP

(Medium)

(%)

mAP

(Large)

(%)

mAP

(VeryLarge)

(%)

Cascade R-CNN 29.51 12.1 17.9 31.9 50.3

TridentNet 9.83 24.9 25.6 49.1 50.8

SSD 43.42 15.6 18.7 28.4 53.7

Yolov3 44.17 23.9 26.2 42.2 56.5

CenterNet 42.98 10.1 24.2 30.3 43.3

Yolov4 45.64 24.2 25.4 42.7 59.2

Yolov3-2SMA 49.86 24.0 25.7 40.2 57.9

ShipYolo 49.27 24.7 25.4 41.9 60.7

CRB-Net 44.11 29.1 28.6 42.4 57.7

CROSS-DATASET VALIDATION

Cross-dataset validation is an effective means of evaluating the
generalization ability of a dataset and a detector. In this section,
a boat-types-recognition dataset is selected to perform cross-
dataset generation because it contains a relatively large number
of common water surface obstacles.

It should be noted that the boat-types-recognition dataset was
annotated manually because it did not provide an annotation
file. In this process, the objects in the images of this dataset
were divided into nine categories: cruise ship, ferryboat, freight
boat, gondola, inflatable boat, kayak, paper boat, sailboat, and
buoy. Because there were no official data splits, we randomly
selected 70% of the original images as the training set and 30%
as the testing set. Seven methods, namely DPM, Faster R-CNN,
CenterNet, Yolov4, Yolov3-2SMA, ShipYolo, and CRB-Net, were
chosen to evaluate this dataset. In addition, the parameter
settings of the methods are exactly the same as those in section
Implementation Details.

The results are shown inTable 6. It is important to understand
that the boat-types-recognition dataset is mainly composed of
three categories of objects: boat (gondola, inflatable boat, kayak,
paper boat, sailboat), ship (cruise ship, ferry boat, freight boat),
and buoy. Buoy, freight boat, and inflatable boat each have less
than 40 images, which is why their detection accuracy is so low.
Water Surface Object DetectionDataset containsmore categories
of objects, more images for each category, and more scenes than
the boat-types-recognition dataset.

Moreover, of all the methods, CRB-NET achieves the highest
detection accuracy plus a fast detection speed. This proves that
the proposed method has outstanding generalization ability and
can be applied to different datasets.

CONCLUSION

To better evaluate different methods, a high-quality dataset is
needed for water surface objective detection. In this paper, an
annotated dataset called WSODD is proposed. As the largest
image-based dataset, WSODD significantly enhances water
surface object detection. In addition, WSODD is a benchmark
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TABLE 6 | Results of cross-dataset generalization.

Dataset Method FPS mAP (%) AP50

Buoy (%) Cruise

boat (%)

Ferry

boat (%)

Freight

boat (%)

Gondola

(%)

Inflatable

boat (%)

Kayak

(%)

Paper

boat (%)

Sail

boat (%)

Boat-types-recognition DPM 42.74 38.1 ‘17 46 10 15 73 22 39 48 73

Faster R-CNN 21.14 44.8 31 78 11 0 80 26 41 56 81

CenterNet 43.44 37.4 11 82 11 4 74 3 52 13 86

Yolov4 47.46 49.35 14 90 6 8 80 12 66 74 86

Yolov3-2SMA 49.97 48.11 14 89 3 11 83 7 65 79 82

ShipYolo 49.56 47.78 12 87 12 6 76 22 68 68 79

CRB-Net 44.44 53.5 8 92 21 8 79 25 76 82 90

dataset that contains a variety of water environments, rich
lighting conditions, and different weather conditions. It basically
covers all of the common obstacles in water environments.
The results of 17 object detection methods also provide a
standard benchmark for WSODD, which is a solid foundation
for other researchers to carry out further work. The results of
the experiments prove that the proposed CRB-Net not only
ensures good detection speed, but also significantly improves
the detection precision, especially for small and medium-
sized objects. Finally, cross-dataset validation demonstrates that
WSODD would be a pre-eminent dataset, and that CRB-Net has
excellent generalization ability.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and

accession number(s) can be found at: https://github.com/
sunjiaen/WSODD; https://github.com/sunjiaen/BTRDA.

AUTHOR CONTRIBUTIONS

ZZ and JD initiated and supervised the research. JS wrote the
paper and carried out the experiments. JD polished the paper. JS,
JY, and KL record the data. LC and CC put forward some effective
suggestions for improving the structure of the paper. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Equipment Pre-Research
Field Fund Thirteen Five-year (No. 61403120109, BIT) and the
Fundamental Research Funds for the Central Universities (No.
21619412, JNU).

REFERENCES

Alessandro, S., Andrea, C., Lorenzo, M. T., Henning, M., andManfredo, A. (2018).

Muscle synergy analysis of a hand-grasp dataset: a limited subset of motor

modules may underlie a large variety of grasps. Front. Neurorobot. 12, 57.

doi: 10.3389/fnbot.2018.00057

An, Q., Pan, Z., Liu, L., and You, H. (2019). DRBox-v2: an improved detector with

rotatable boxes for target detection in SAR images. IEEE Geosci. Remote Sens.

57, 8333–8349. doi: 10.1109/TGRS.2019.2920534

Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M. (2020). YOLOv4: optimal speed

and accuracy of object detection. arXiv Preprint. arXiv,abs:2004.10934.

Bodla, N., Singh, B., Chellappa, R., and Davis, L. (2017). “Soft-NMS-improving

object detection with one line of code,” in Proceedings of the IEEE

International Conference on Computer Vision (Venice: ITA), 5561–5569.

doi: 10.1109/ICCV.2017.593

Cai, Z., and Vasconcelos, N. (2018). “Cascade R-CNN: delving into high

quality object detection,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (Salt Lake City), 6154–6162.

doi: 10.1109/CVPR.2018.00644

Chae, K. H., Moon, Y. S., and Ko, N. (2017). “Visual tracking of objects for

unmanned surface vehicle navigation,” in International Conference on Control,

Automation and Systems (Jeju), 335–337. doi: 10.1109/ICCAS.2016.7832338

Chen, G., Wang, H., Chen, K., Li, Z., Song, Z., Liu, Y., et al. (2020a). A survey of

the four pillars for small object detection: multiscale representation, contextual

information, super-resolution, and region proposal. IEEE Trans. Syst. Man

Cybern. Syst. 2020, 1–18. doi: 10.1109/TSMC.2020.3005231

Chen, Z., Chen, D., Zhang, Y., Cheng, X., Zhang, M., and Wu, C. (2020b). Deep

learning for autonomous ship-oriented small ship detection. Saf. Sci. 130,

104812. doi: 10.1016/j.ssci.2020.104812

Clorichel (2018). Boat-Types-Recognition Dataset. Available online at: https://www.

kaggle.com/clorich~el/boat-types-recognition

Dalal, N., and Triggs, B. (2005). “Histograms of oriented gradients for

human detection,” in IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (San Diego, CA), 974–981. doi: 10.1109/CVPR.

2005.177

Debnath, S., Banerjee, A., and Namboodiri, V. (2015). “Adapting RANSAC SVM

to detect outliers for robust classification,” in British Machine Vision Conference

(Swansea), 168–179. doi: 10.5244/C.29.168

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q. (2019).

“CenterNet: keypoint triplets for object detection,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision (Seoul), 6569–6578.

doi: 10.1109/ICCV.2019.00667

Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., and Zisserman, A. (2010).

The PASCAL Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88,

303–338. doi: 10.1007/s11263-009-0275-4

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object

detection with discriminatively trained part-based models. IEEE Trans. Pattern

Anal. Mach. Intell. 32, 1627–1645. doi: 10.1109/TPAMI.2009.167

Frontiers in Neurorobotics | www.frontiersin.org 12 September 2021 | Volume 15 | Article 723336

https://github.com/sunjiaen/WSODD
https://github.com/sunjiaen/WSODD
https://github.com/sunjiaen/BTRDA
https://doi.org/10.3389/fnbot.2018.00057
https://doi.org/10.1109/TGRS.2019.2920534
https://doi.org/10.1109/ICCV.2017.593
https://doi.org/10.1109/CVPR.2018.00644
https://doi.org/10.1109/ICCAS.2016.7832338
https://doi.org/10.1109/TSMC.2020.3005231
https://doi.org/10.1016/j.ssci.2020.104812
https://www.kaggle.com/clorich~el/boat-types-recognition
https://www.kaggle.com/clorich~el/boat-types-recognition
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.5244/C.29.168
https://doi.org/10.1109/ICCV.2019.00667
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/TPAMI.2009.167
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Water Surface, Dataset, Detector

Ghiasi, G., Lin, T. Y., and Le, Q. V. (2018). “DropBlock: a regularization method

for convolutional networks,” in International Conference on Neural Information

Processing Systems (Montreal, QC) 10750–10760.

Girshick, R., Donahue, J., Darrell, T., andMalik, J. (2014). “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Columbus, OH),

580–587. doi: 10.1109/CVPR.2014.81

Han, X., Zhao, L., Ning, Y., and Hu, J. (2021). ShipYolo: an enhanced model for

ship detection. J. Adv. Transport. 2021, 1060182. doi: 10.1155/2021/1060182

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” in

Proceedings of the IEEE International Conference on Computer Vision (Venice),

2961–2969. doi: 10.1109/ICCV.2017.322

He, K., Zhang, X., Ren, S., and Sun, J. (2014). Spatial pyramid pooling

in deep convolutional networks for visual recognition. arXiv Preprint

arXiv abs:1406.4729.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep

convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 37, 1904–1916. doi: 10.1109/TPAMI.2015.2389824

Jie, Y., Leonidas, L., Mumtaz, F., and Ali, M. (2021). Ship detection and tracking

in inland waterways using improved YOLOv3 and Deep SORT. Symmetry 13,

308–326. doi: 10.3390/sym13020308

Kaido, N., Yamamoto, S., and Hashimoto, T. (2016). “Examination of automatic

detection and tracking of ships on camera image in marine environment,” in

2016 Techno-Ocean (Kobe), 58–63. doi: 10.1109/Techno-Ocean.2016.7890748

Kristan, M., Pers, J., SulicKenk, V., and Kovacic, S. (2014). “A graphical

model for rapid obstacle image-map estimation from unmanned surface

vehicles,” in Asian Conference on Computer Vision (Singapore), 391–406.

doi: 10.1007/978-3-319-16808-1_27

Kristan, M., SulicKenk, V., Kovacic, S., and Pers, J. (2016). Fast image-based

obstacle detection from unmanned surface vehicles. IEEE Trans. Cybern. 46,

641–654. doi: 10.1109/TCYB.2015.2412251

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). “ImageNet classification with

deep convolutional neural networks,” in Conference and Workshop on Neural

Information Processing Systems (Nevada), 211–231.

Li, J., Xia, C., and Chen, X. (2018). A benchmark dataset and saliency-guided

stacked autoencoders for video-based salient object detection. IEEE Trans.

Image Process. 27, 349–364. doi: 10.1109/TIP.2017.2762594

Li, X., Tian, M., Kong, S., Wu, L., and Yu, J. (2020). A modified YOLOv3 detection

method for vision-based water surface garbage capture robot. Int. J. Adv. Robot.

Syst. 17, 172988142093271. doi: 10.1177/1729881420932715

Li, Y., Chen, Y., Wang, N., and Zhang, Z. (2019). “Scale-aware trident networks for

object detection,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision (Seoul), 6054–6063. doi: 10.1109/ICCV.2019.00615

Liang, X., Zhang, J., Zhuo, L., Li, Y., and Tian, Q. (2020). Small object detection in

unmanned aerial vehicle images using feature fusion and scaling-based single

shot detector with spatial context analysis. IEEE Trans. Circ. Syst. Video Technol.

30, 1758–1770. doi: 10.1109/TCSVT.2019.2905881

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for

dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 1, 2999–3007.

doi: 10.1109/ICCV.2017.324

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).

“Microsoft COCO: common objects in context,” in European Conference on

Computer Vision (Zurich), 740–755. doi: 10.1007/978-3-319-10602-1_48

Liu, B., Wang, S. Z., Xie, Z. X., Zhao, J. S., and Li, M. F. (2019). Ship recognition

and tracking system for intelligent ship based on deep learning framework. Int.

J. Mar. Navig. Saf. Sea Transport. 13, 699–705. doi: 10.12716/1001.13.04.01

Liu, G., Zhang, Y., Zheng, X., Sun, X., Fu, K., and Wang, H. (2014). A new

method on inshore ship detection in high-resolution satellite images using

shape and context information. IEEE Geosci. Remote Sens. Lett. 11, 617–621.

doi: 10.1109/LGRS.2013.2272492

Liu, S., Huang, D., andWang, Y. (2018). “Receptive field block net for accurate and

fast object detection,” in European Conference on Computer Vison (Munich),

385–400. doi: 10.1007/978-3-030-01252-6_24

Liu,W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., et al. (2016). “SSD:

single shot multibox detector,” in European Conference on Computer Vision

(Amsterdam), 21–37. doi: 10.1007/978-3-319-46448-0_2

Loshchilov, I., and Hutter, F. (2016). SGDR: Stochastic gradient descent with warm

restarts. arXiv Preprint arXiv,abs:1608.03983.

Matsumoto, Y. (2013). Ship image recognition using HOG. J. Jpn. Inst. Navig. 129,

105–112. doi: 10.9749/jin.129.105

Miller, M., Chung, S. J., and Hutchinson, S. A. (2018). The visual-inertial canoe

dataset. Int. J. Rob. Res. 37, 13–20. doi: 10.1177/0278364917751842

Misra, D. (2019). Mish: a self regularized non-monotonic neural activation

function. arXiv Preprint arXiv,abs:1908.08681.

Mizuho, N., Koji, F., Hidetoshi, M., Chisako, M., Ryo, S., and Hiroshi,

F. (2021). Lung cancer segmentation with transfer learning: usefulness

of a pretrained model constructed from an artificial dataset generated

using a generative adversarial network. Front. Artif. Intell. 4, 694815.

doi: 10.3389/frai.2021.694815

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE Trans.

Pattern Anal. Mach. Intell. 24, 971–987. doi: 10.1109/TPAMI.2002.1017623

Prasad, D. K., Rajan, D., Rachmawati, L., Rajabaly, E., and Quek, C. (2017).

Video processing from electro-optical sensors for object detection and tracking

in maritime environment: a survey. IEEE Trans. Intell. Transport. Syst. 18,

1993–2016. doi: 10.1109/TITS.2016.2634580

Qin, Y., and Zhang, X. (2018). Robust obstacle detection for unmanned surface

vehicles. Proc. SPIE 10611, 2199–2207. doi: 10.1117/12.2285607

Redmon, J., and Farhadi, A. (2018). Yolov3: an incremental improvement. arXiv

Preprint arXiv,abs:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster R-CNN: towards real-

time object detection with region proposal networks. IEEE Trans. Pattern Anal.

Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Sr, Y. Z. Sr, J. S., Sr, L. H., Sr, Q. Z., and Sr, Z. D. (2019). “A ship target tracking

algorithm based on deep learning and multiple features,” in Proceedings of the

Twelfth International Conference on Machine Vision (Amsterdam), 1143304.

Szegedy, C., anhoucke, V. V., Ioffe, S., Shlens, J., andWojna, Z. (2016). “Rethinking

the inception architecture for computer vision,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Las Vegas, NV),

2818–2826. doi: 10.1109/CVPR.2016.308

Tan, M., Pang, R., and Le, Q. V. (2020). “EfficientDet: scalable and

efficient object detection,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops (Seattle), 10781–10790.

doi: 10.1109/CVPR42600.2020.01079

Tang, G., Liu, S., Fujino, I., Claramunt, C., Wang, Y., andMen, S. (2020). H-YOLO:

a single-shot ship detection approach based on region of interest preselected

network. Remote Sens. 12:4192. doi: 10.3390/rs12244192

Wang, C. Y., Liao, H. Y., Yeh, I. H., W, T.H., Chen, P. Y., and Hsieh, J. W. (2019).

CSPNET: a new backbone that can enhance learning capability of CNN. arXiv

Preprint. arXiv,abs:1911.11929. doi: 10.1109/CVPRW50498.2020.00203

Wijnhoven, R., vanRens, K., Jaspers, E. G., andWith, P. H. (2010). “Online learning

for ship detection in maritime surveillance,” in Procceedings of 31th Symposium

on Information Theory in the Benelux (Rotterdam), 73–80.

Yang, J., Xiao, Y., and Fang, N. (2017). “An object detection and tracking system

for unmanned surface vehicles,” in Procceedings of Target and Background

Signatures (Warsaw), 214–220.

Yang, L., Yang, J., and Yang, K. (2004). Adaptive detection for infrared small

target under sea-sky complex background. Electron. Lett. 40, 1083–1085.

doi: 10.1049/el:20045204

Yao, Y., Jiang, Z., Zhang, H., Zhao, D., and Cai, B. (2017). Ship detection in optical

remote sensing images based on deep convolutional neural networks. J. Appl.

Remote Sens. 11, 042611. doi: 10.1117/1.JRS.11.042611

Yao, Z., Cao, Y., Zheng, S., Huang, G., and Lin, S. (2020). Cross-iteration batch

normalization. arXiv Preprint. arXiv,abs:2002.05712.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019).

“CutMix: regularization strategy to train strong classifiers with localizable

features,” in International Conference on Computer Vision (Seoul), 6023–6032.

doi: 10.1109/ICCV.2019.00612

Zhang, L., Zhang, Y., Zhang, Z., Shen, J., and Wang, H. (2019). Real-time water

surface object detection based on improved faster R-CNN. Sensors 19, 3523.

doi: 10.3390/s19163523

Zhang, S., Xie, Y., Wan, J., Xia, H., Li, S. Z., and Gou, G. (2020). WiderPerson:

a diverse dataset for dense pedestrian detection in the wild. IEEE Trans.

Multimedia 22, 380–393. doi: 10.1109/TMM.2019.2929005

Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Chen, Y., Cai, L., et al. (2019). “M2Det:

a single-shot object detector based on multi-level feature pyramid network,”

Frontiers in Neurorobotics | www.frontiersin.org 13 September 2021 | Volume 15 | Article 723336

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1155/2021/1060182
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.3390/sym13020308
https://doi.org/10.1109/Techno-Ocean.2016.7890748
https://doi.org/10.1007/978-3-319-16808-1_27
https://doi.org/10.1109/TCYB.2015.2412251
https://doi.org/10.1109/TIP.2017.2762594
https://doi.org/10.1177/1729881420932715
https://doi.org/10.1109/ICCV.2019.00615
https://doi.org/10.1109/TCSVT.2019.2905881
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.12716/1001.13.04.01
https://doi.org/10.1109/LGRS.2013.2272492
https://doi.org/10.1007/978-3-030-01252-6_24
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.9749/jin.129.105
https://doi.org/10.1177/0278364917751842
https://doi.org/10.3389/frai.2021.694815
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TITS.2016.2634580
https://doi.org/10.1117/12.2285607
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.3390/rs12244192
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1049/el:20045204
https://doi.org/10.1117/1.JRS.11.042611
https://doi.org/10.1109/ICCV.2019.00612
https://doi.org/10.3390/s19163523
https://doi.org/10.1109/TMM.2019.2929005
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Water Surface, Dataset, Detector

in Thirty-Third AAAI Conference on Artificial Intelligence (Honolulu, HI),

9259–9266. doi: 10.1609/aaai.v33i01.33019259

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (2020). “Distance-IoU

loss: faster and better learning for bounding box regression,” in Proceedings of

the AAAI Conference on Artificial Intelligence (New York, NY), 12993–13000.

doi: 10.1609/aaai.v34i07.6999

Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., and Oliva, A. (2015). Places2: A

Large-Scaledatabase for Scene Understanding. Available online at: http://places2.

csail.mit.edu/ (accessed March 1, 2020).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Zhou, Sun, Yu, Liu, Duan, Chen and Chen. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 September 2021 | Volume 15 | Article 723336

https://doi.org/10.1609/aaai.v33i01.33019259
https://doi.org/10.1609/aaai.v34i07.6999
http://places2.csail.mit.edu/
http://places2.csail.mit.edu/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	An Image-Based Benchmark Dataset and a Novel Object Detector for Water Surface Object Detection
	Introduction
	Related Works
	Datasets
	Methods

	Benchmark Dataset for Water Surface Object Detection
	Image Acquisition
	Selection of Categories
	Image Annotation
	Dataset Statistics

	Novel Detector for Water Surface Objects
	Network Architecture
	Network Module Details
	ResBlock_Body
	K-Means Algorithm
	Improved BIFPN


	Experiment and Discussion
	Benchmark Testing Methods
	Evaluation Indexes
	Implementation Details
	Experimental Results
	Discussion

	Cross-Dataset Validation
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


