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The proposal of postural synergy theory has provided a new approach to solve

the problem of controlling anthropomorphic hands with multiple degrees of freedom.

However, generating the grasp configuration for new tasks in this context remains

challenging. This study proposes a method to learn grasp configuration according to

the shape of the object by using postural synergy theory. By referring to past research,

an experimental paradigm is first designed that enables the grasping of 50 typical

objects in grasping and operational tasks. The angles of the finger joints of 10 subjects

were then recorded when performing these tasks. Following this, four hand primitives

were extracted by using principal component analysis, and a low-dimensional synergy

subspace was established. The problem of planning the trajectories of the joints was

thus transformed into that of determining the synergy input for trajectory planning in

low-dimensional space. The average synergy inputs for the trajectories of each task were

obtained through the Gaussian mixture regression, and several Gaussian processes were

trained to infer the inputs trajectories of a given shape descriptor for similar tasks. Finally,

the feasibility of the proposedmethod was verified by simulations involving the generation

of grasp configurations for a prosthetic hand control. The error in the reconstructed

posture was compared with those obtained by using postural synergies in past work.

The results show that the proposed method can realize movements similar to those of

the human hand during grasping actions, and its range of use can be extended from

simple grasping tasks to complex operational tasks.

Keywords: grasping, anthropomorphic hand, postural synergy, dimension reduction, Gaussian mixture regression

INTRODUCTION

Recent technological advances in robotics and related areas have led to the development of
sophisticated anthropomorphic hands with an increasing number of degrees of freedom (DoFs)
(Belter et al., 2013; Portnova-Fahreeva et al., 2020). Due to improvements in their flexibility,
such anthropomorphic hands can perform tasks requiring dexterity in several areas of the
manufacturing and services industries (Leidner et al., 2015). However, controlling an arm with
several DOFs is a difficult task in which the accuracy of motion of all joints needs to be guaranteed
and their trajectories need to be pre-planned according to the requirements of the given task
(Shimoga, 1996; Bicchi and Kumar, 2000). For an industrial manipulator, an inverse kinematic
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technique is used to compute robotic joint motions, but this
method requires a large amount of calculation (Chattaraj et al.,
2014). In prosthetics, several grasping modes are planned in
advance, the operator’s intention is identified, and finite-state
machines (FSM) or pattern recognition (PR) methods are
used to switch between modes (Purushothaman, 2016). The
disadvantages of this method are a slow controller and poor
universality because different modes are discrete (Pylatiuk et al.,
2007). It is thus important to find an appropriate control strategy
to improve the operational capability and range of application
scenarios of anthropomorphic hands.

The human hand is a complex system of 19 articulations, 31
muscles, and more than 23 DoFs. It can complete with ease a
diversity of grasping tasks that require dexterous manipulation
(Terlemez et al., 2015; Mandery et al., 2016). Improving our
understanding of the human grasp control strategy can help
simplify artificial manipulator control systems. Research in
neuroscience has shown that the central nervous system can
cope with redundant DoFs in a control space of reduced
dimensionality (Mussaivaldi, 1999; Philippe et al., 2001; Philipp
et al., 2016). Synergies are defined as the principal patterns
of motor control in this context (Marco et al., 2013). By
combining pre-organized patterns, the central nervous system
can generate a variety of movements by simultaneously activating
multiple DoFs, instead of separately controlling individual
joints or muscles (Bian et al., 2012; Marques et al., 2014).
Postural synergies were proposed in 1998 during the analysis
of static grasping postures (Santello et al., 1998). In the
relevant study, the authors recorded 15 angular positions of
five subjects while they grasped 57 kinds of imagined objects.
The results of principal component analysis (PCA) subsequently
revealed that two main principal components (called postural
synergies herein) accounted for more than 80% of the requisite
postural information.

The theory of postural synergy was subsequently applied
to the control of anthropomorphic hands. Ciocarlie and Allen
(2009) proposed a grasp planner in a subspace of hand postures
with highly reduced dimensionality, and performed posture
reproduction on four models of hands through joint-to-joint
mapping. Matrone et al. (2010) collected sensory data from
a 16-DoF under actuated prosthetic hand while it performed
50 grasping tasks, and then used a PCA-based algorithm to
drive the hand with a two-dimensional (2D) control input.
Wimböck et al. (2011) proposed a synergy impedance controller
for DLR Hand II. For torque-controlled robot hands, it can
imitate the behavior of a synergistic under actuated hand. Its
performance was verified for configurations of the hand as
it held a ball and grasped a bottle. Bernardino et al. (2013)
proposed a method to generate different types of precision
grasps by using postural synergies extracted from data on
the movement of the Shadow Hand and iCub Hand as they
performed grasping tasks on 12 objects. Bicchi’s group (Santina
et al., 2018) designed Pisa/IIT SoftHand 2 based on the soft
synergy model. This hand has only two degrees of actuation
(DoAs) but can carry out a large variety of grasping and
manipulation tasks by relying on the intelligence embodied in the
mechanism (Piazza et al., 2020).

Although the ability of postural synergy to simplify control
systems has been verified, most relevant research has focused
on the reproduction of tasks already recorded in the relevant
databases. It is challenging to generate the grasp configuration for
a new task by using postural synergy. This problem can be solved
by inferring the synergy coordinates of objects from basic shape
descriptions of them (Rodriguez and Behnke, 2018; Rodriguez
et al., 2018).

This study proposes a method to generate grasp
configurations based on synergies of the hand and a shape
descriptor. A dataset of human grasping actions was first created.
Data on the movements of the hands of 10 subjects were
recorded while they performed grasping tasks on five typical
categories of objects. The sizes of the objects along the direction
in which they were grasped were also recorded. Following this,
four hand synergies were extracted by using the PCA method,
and the trajectories of the corresponding average synergy inputs
of each task were obtained through the GMM/GMR method.
Gaussian processes (GPs) were then trained for each category
of grasping task to infer the synergistic input trajectories of a
given shape descriptor. Finally, the feasibility of the proposed
method was verified by simulations on grasp configurations of a
prosthetic hand control. The results showed that the proposed
method can realize movements similar to those of the human
hand during grasping actions, and its use can be extended to
complex operational tasks.

The remainder of this paper is organized as follows:
Section Experiment describes the creation of the database
of human grasping tasks, and Section Method provides the
method used to extract hand primitives and generate synergistic
input trajectories. Section Result details the evaluation of the
performance of the proposed method, and Section Discussion
discusses the differences between its results and those of methods
proposed in previous studies. Section Conclusion summarizes
the conclusions of this study and suggests directions for future
work in the area.

EXPERIMENT

Participants
Ten healthy subjects (22–28 years old; nine men and one woman,
all of whom were right-handed) volunteered to participate
in the experiment. All participants were in good health, and
reported no history of neurological or motor disorders. We
analyzed their preferences for pre-grasping shapes of the hand.
The experimental procedure was approved by the Institutional
Review Board (IRB) of the Harbin Institute of Technology in
P. R. China. Before the experiment, all subjects provided their
informed consent, including agreeing to the aims and duration
of the entire experiment and its procedure.

Experimental Environment and Protocol
The experimental setup and equipments are shown in Figure 1.
The experimental setup consisted of a visual tracking system,
a Cyberglove, infrared passive markers (IRm), six sets of
fundamental objects, and two reference target positions.
CyberGlove (Virtual Technologies, Palo Alto, CA, USA) was used
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FIGURE 1 | The experimental setup and the motion capture system.

FIGURE 2 | The angular data recorded by the Cyberglove. In total of 19 joints

angular data containing flexion of the MetaCarpal-Phalangeal (MCP), Proximal

Inter-Phalangeal (PIP), Distal Inter-Phalangeal (DIP) joints of the four fingers, the

Carpometacarpal (CMC), MCP, and Inter-Phalangeal (IP) joint of the thumb,

and the abduction joint (ABD) joints between adjacent fingers were recorded.

to measure the angular data on the joints during reach-to-grasp
movements. As is shown in Figure 2, angular data on a total
of 19 joints were recorded. A simple method to calibrate the
joint angles was applied according to the linear mapping of their
individual ranges of motion (Jarrassé et al., 2014).

The Vicon motion capture system (Oxford Metrics Ltd.,
Oxford, UK) was used in this study owing to its high accuracy
(0.1mm). The system comprised eight T-40s Vicon cameras to
collect frames at 50Hz. To capture the position and posture of
the entire hand as well as the relative relationship between it and
the object, three 9.5-mm reflective markers were placed on the
back of each subject’s dominant hand. Although we focused on

hand postures here, the relationship between the hand and the
object was also examined for future research.

The objects were chosen by referring to the YCB Object Set
(Calli et al., 2015) and a method to categorize convex objects
(Benn and Ballantyne, 1993). Finally, five categories of typical
objects (sphere, cube, cylinder, disk, and cuboid) and a set of
complex tools were selected. These objects with simple shapes
were parameterized by the three primary axes of a, b, and h. The
selected objects are shown in Figure 3A, and their dimensions are
given in the Appendix.

The experiment involved two kinds of tasks. For typical
objects, the subjects performed simple grasping and moving
tasks. Before the experiment, the grasping habits of each subject
were investigated. The approach direction and orientation for
each kind of object were considered, and the possible grasped
dimensions were listed as shown in Figure 3B. The subjects were
asked to select the direction from which they thought could
achieve stably grasping, and the frequency of selected posture
across subjects were shown in Figure 3C. The subjects had a
clear tendency to grasp objects along the side with the smallest
dimension except in case of disks, but there were some differences
for individual objects. For Disk01 and Disk05, several subjects
thought that grasping from the side was more conducive to the
stability of grasping. For Prism04 and Prism04, a part of subjects
chose to grasp from the secondary short dimension, because it
was more consistent with the hand natural aperture. While for
Column05 and Column06, some subjects selected to pick up the
object from the top in line with their grasping habits. Finally, the
grasping posture for each kind of object was unified to avoid large
differences in the same tasks. Long objects were selected to grasp
from the side, rather than using the longest dimension. Disks
were formulated to grasp from the top, whereas prisms were
defined to grasp by the smallest dimension. The final grasping
posture was consistent with those used in previous studies (Feix
et al., 2014).

Once they had familiarized themselves with their grasping
postures for the objects, the subjects were asked to move each
object from its initial position to a target position according to
instructions on a desktop computer. The start command was
issued by the computer, and the requisite grasping postures and
task progress were shown on the screen. With tasks requiring
tools, subjects needed to perform virtual operations according to
the functions of the given tool. In these tasks, the subject needed
to adjust to a firm grasping posture after picking up the object,
and then performed schematic operations based on the object’s
characteristics and function. The operational data enabled us to
better express the operational space of the hand, and determine
whether there was a difference between the human instinctive
reaction and the given operational purpose. These data can also
help extend traditional research on static grasping postures.

The subjects were required to perform each grasping and
moving or virtual operation task 10 times.

METHODS

Figure 4 shows the framework used to extract temporal synergic
strategies according to the size of the object. Principal component
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FIGURE 3 | Five categories of typical objects and a set of complex tools used in this paper, and the type of grasping posture selected corresponding to the objects.

(A) Five categories of typical objects and a set of complex tools selected for grasping and virtual operation tasks. (B) Optional grasped dimensions for each kind of

object. (C) Frequency of grasped dimension in each object type.

analysis (PCA) was first applied to the data on grasping to
establish a low-dimensional synergy space and obtain hand
primitives. Gaussian mixture regression (GMR) was then used to
reconstruct a unique and dynamic model for each object sample.
Following this, several GPs were trained to generate trajectories
at the synergistic level by using the similarity between objects.
Finally, the trajectories in the synergistic space weremapped back
to the joint space to obtain a sequence of grasping postures. The
implementation is explained below.

Dimension Reduction and Hand Primitives
Extraction
PCA can be used to analyze the synergies of hand pstures
(Patel and Burns, 2015). Linear hand primitives (called postural
synergies) extracted by PCA are highly interpretable, and can be
easily reproduced by a mechanical structure (Brown and Asada,
2007). Therefore, we used the PCA algorithm to obtain hand
primitives in this study.

A second-order two-way low-pass Butterworth filter was
applied on the data on the joint angles at a cut-off frequency
of 5Hz. To ensure that all grasping movements made by

each subject had the same weight, the angles of each of their
joints were normalized to the range [0, 1], according to the
minimum and maximum values of the sensor data obtained
in the calibration process. Owing to the poor accuracy of DIP
joint measurement in some subjects, the DIP angular data were
discarded altogether. Finally, the posture matrix J that was
obtained contained postures from 10 subjects when performing
50 kinds of grasping movements:

J = [j1; j2; ...; jN ] ∈ ℜN×D (1)

where j ∈ ℜ1×D represents a hand posture vector, D was 15
according to the number of preserved joint angles, and N is the
number of sample posture vectors recorded in the dataset.

The hand primitives can be calculated as eigenvectors si ∈

ℜ15×1(i < 15) of the covariance matrix of the posture matrix
j̃. Each posture data was zero-centered by being reduced to the

average posture j̃i = ji −
1
N

N
∑

i−1
ji. Then, the covariance matrix
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FIGURE 4 | The framework of extracting object-specific hand primitives and the synergy inputs for trajectories according to the size of the object.

Σ =
j̃j̃
T

N of the zero-centered posture matrix was calculated and
decomposed as follows:

Σ= SEST (2)

Where E = diag (δ1, δ2, . . . , δD) is the matrix of eigenvalues and
S = [s1 s2 . . . sD] is the eigenvector matrix. Finally, eigenvectors
corresponding to the k largest eigenvalues were reserved as the
hand primitives.

Each hand posture was thus approximated as a linear
combination of these hand primitives:

j̃Ti = j
T
i + [S1...Sk ]15×k







W1
...

Wk







k×1

(3)

where S = [s1 s2 · · · sk] ∈ ℜ15×k represents the matrix
of hand primitives, and is time invariant. The vector wi =

[w1;w2; · · · ;wk] ∈ ℜk×1 represents the synergy inputs, and
is the projection of original data on the eigenvectors. For
continuous movement, it can be regarded as a sequence of
synergy input vectors controlling the hand primitives. Therefore,
if the synergy input sequence is obtained, the grasping movement
can be dynamically reproduced for each task.

Gaussian Mixture Regression of Grasps
For each task, several steps of data preprocessing were applied to
the synergy input sequenceW:

W = [w1 w2 · · ·wt]
T ∈ ℜt×k (4)

For each trajectory, the parts before the start of the movements
and after the object had been stably grasped were manually
removed, and the remainder was resampled to 100 frames. The
mean value of the synergy input sequence of each task was then
calculated for each subject. In this way, 10 sets of sequences of
synergy inputsWi ∈ ℜ100×k were obtained for each task.

To fit the probabilistic distributions of the joints to the
sequences of synergy inputs, the Gaussianmixturemodel (GMM)
was applied, and was defined as follows:

[

t
W

]

∼

3
∑

n−1

πn N
(

µn,
∑

n

)

(5)

where t represents the temporal value vector, and πn,µn, and
∑

n

represent the prior probability, the covariance and the mean
of the nth Gaussian component, respectively. The GMM
was computed by initializing the mixture of Gaussian
components with k-means clustering and optimizing them
through expectation maximization. The number of Gaussian
components was set to three because using more components
did not improve the generalization capabilities of the latent
trajectory model (Romero et al., 2010).

Following the above, Gaussian mixture regression (GMR) was
applied to reconstruct a reference sequence of synergy inputs for
each task (Calinon et al., 2007). For each Gaussian component
n at given time step t, the estimated instantaneous mean and
covariance of synergy input w are

⌢
µw,n = µw,n +

∑

wt,n

(

∑

t,n

)−1
(

tn − µt,n
)

⌢
∑

w,n
=

∑

w,n
−

∑

wt,n

(

∑

t,n

)−1∑

tw,n
(6)
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As the result of a mixture of n Gaussian components, the
conditional expectations of the mean and covariance of the
synergy input w at a given time step t are

⌢
µw =

3
∑

n−1

βn
⌢
µw,n

⌢
∑

w
=

3
∑

n−1

β2
n

⌢
∑

w,n
(7)

where βn is the probability that the Gaussian component n

is responsible for time step t. Thus, by calculating

[

⌢
µw,

⌢
∑

w

]

at different time steps t, a generalized form of the sequences
of synergy inputs associated with the covariance matrices
was generated.

Learning Postural Synergies
The obtained sequences of synergy inputs can be used to generate
postures for new movements under certain constraints. Humans
can transfer their previous knowledge of similar objects to a
new instance and generate an appropriate grasp. In light of
this, we propose a supervised learning method to learn grasping
movements according to the shape of the object. Previous
studies have shown that the size of the object along the grasped
dimension is closely related to grasping postures (Dessalene et al.,
2019; Starke et al., 2020). Therefore, this was used as a shape
descriptor to establish the relationship with graspingmovements.

We encoded the shape descriptor and the sequences of synergy
inputs with a GP-based machine learning method. We assumed
that the synergy inputs associated with the same category of
objects were distributed in a Gaussian manner. Thus, according
to the number of synergy inputs, several GPs were trained
(Rasmussen andWilliams, 2004). All GPs were parametrized with
the radial-basis function (RBF) kernel. The GPs encoded the
desired relation between inputsD to the shape descriptor and the
outputsW of the synergy trajectory as

[

W
w∗

]

∼ N

(

E0,

[

K (D,D) + σ 2
n I K

(

D, d∗
)

K
(

d∗,D
)

K
(

d∗, d∗
)

])

(8)

where N represents the Gaussian distribution, and w∗ is the
predicted synergistic trajectory corresponding to a new shape
descriptor d∗. The best predicted output is the mean value of the
normal distribution.

w∗ = K
(

d∗,D
) [

K (D,D) + σ 2
n I

]−1
W (9)

Finally, the continuous movement of the hand is obtained by
mapping the synergy input sequence back to the joint space
as shown in equation (3). Through Gaussian regression, the
temporal grasping postures for a new object can be constructed
by using the hand primitives, instead of planning the motion of
each joint independently for each task.

FIGURE 5 | The contributions of four extracted hand primitives to the posture

configuration.

RESULT

Extracted Hand Primitives
Four PCs were extracted as hand primitives for the 10 subjects
as they explained 87% of the variance. The contributions of
these four primitives to the posture configuration are shown
in Figure 5. The main effect of each hand primitive can be
summarized as follows:

• Hand Primitive 1: This featured the flexion of MCP and
PIP joints of the four fingers, and the range of bending
increased gradually from the index finger to the little finger.
This primitive controlled the overall posture of the hand, and
had the most important influence on grasping.

• Hand Primitive 2: This consisted of the reverse movement
of the MCP joints of the first four fingers and PIP joints of
the last four fingers. In other words, when the MCP joints
of the thumb, index, middle, and ring finger were flexed, the
PIP joints of the index, middle, ring, and little finger were
extended, and vice versa. This primitive was important for
the overall configuration, especially when grasping cubic and
prismatic objects.

• Hand Primitive 3: This consisted of the reverse movement
of joints in the index, middle, ring, and little fingers. When
the index finger approached the object, the middle, ring,
and little fingers moved away from it, and vice versa. This
primitive usually determines the form of applied force for the
grasping task.

• Hand Primitive 4: This consisted of the adduction of the
thumb and the four fingers. This primitive controlled the range
of spreading of the entire hand. It also played an important role
in the flexion movement of the thumb.

The values of the low-dimensional synergy input corresponding
to the above hand primitives are shown in Figure 6A. Similar
trends can be observed for these categories of tasks. In the
plane consisting of primitives 1 and 2, all the movements had a
common starting point in the lower-right corner. In the plane
consisting of primitives 3 and 4, the starting point was at the
center. This shows that different movements had roughly the
same starting posture, where primitive 1 was slightly lower than
zero, and primitives 2, 3, and 4 were close to zero.
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FIGURE 6 | The values of the low-dimensional synergy input corresponding to the above four hand primitives, and the comparison results of frequency distribution of

these hand primitives between grasping tasks and virtual operation tasks. (A) The distribution of synergy inputs in the low-dimensional synergy subspace spanned by

the execution of grasping and moving tasks and virtual operations. Each color represented one kind of task. (B) Histograms of the frequency distribution of four

synergy inputs in the grasping tasks and the virtual operation tasks.

When the subject grasped a spherical, columnar, or disk-
shaped object, the change in primitive 1 during the grasping
movement was significant, while the range of values of primitive
2 was narrow. The trajectories of primitives 1 and 2 in these tasks
presented a zonal distribution. When the subject grasped a cubic
or a prismatic object, a significant variation in primitive 2 was
observed for different objects of different sizes. The trajectories
of primitives 1 and 2 in these tasks presented a fan-shaped
distribution. The distributions of synergy inputs on the plane
of primitives 3 and 4 were more similar for different tasks. The
variation in primitive 4 was usually small, and primitive 3 moved
toward the negative direction as themovement progressed.When
the subject grasped a disk-shaped object, a large synergy input
was recorded because the disk had a large diameter of 120 mm.

In addition, values of the synergy inputs for the virtual
operation tasks involving tools covered a larger area in the
synergy subspace than those of typical grasping tasks. This
shows that the operational tasks offered a suitable complement
to the hand movement database. Histograms of the frequency

distribution of four synergy inputs in the grasping tasks and the
virtual operation tasks are shown in Figure 6B. A majority of the
values of primitive 1 for the operation tasks were significantly
lower than those for the grasping tasks; primitive 2 showed
the same trend. The distribution of primitives 3 and 4 in the
operational tasks and the grasping tasks were consistent. The
experiments showed that the subjects tended to use precision
pinching instead of power grasping when picking up and moving
the objects. Only when further operational tasks were posed did
the subjects switch to the power grasping mode to firmly grasp
the object in the palm. This phenomenon should be considered
when planning postures for anthropomorphic hands.

It was also important to record the trajectory of the entire
movement. The fingers may not execute the flexion movement
during the grasping task. In a previous experiment (Ong et al.,
2019), the participants spread their fingers to increase contact
with the object to stabilize the grasp. This phenomenon was
verified in this paper. Figure 7 shows samples of trajectories
of the synergy inputs when grasping spheres of three sizes.
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FIGURE 7 | Samples of trajectories of the synergy inputs when grasping Sphere02, Sphere05, and Sphere08.

When grasping a larger sphere, the subjects opened their hands
before performing the envelopingmovement, which helped avoid
premature collision and increased the contact area. If our system
had considered only the final grasping posture, this strategy
would have been difficult to identify.

Generating Sequences of Synergy Inputs
Figure 8A shows the process of generating a continuous path in
the synergy space by using the GMM/GMR model, where the
green ellipses indicated the corresponding Gaussian components
used to approximate the trajectory of the synergy input. The
mean and variance of the regression trajectory are shown on
the right of the figure. The results show that three Gaussian
components yielded good regression performance.

Figure 8B shows several typical regression trajectories of
objects of different sizes and shapes. For the convenience of
comparison, the synergy inputs on the frame of the final grasping
postures for typical objects are also shown in Figure 9. The
dynamic characteristics of trajectories of the synergy inputs of
the four primitives and their relationships with the size of the
object are now discussed by using the grasping of spherical
objects as example.

Primitives 1 and 4 had the highest correlation with the size of
the object. With increasing object size, the value of primitive 1
gradually increased while that of primitive 4 gradually decreased.
The posture gradually reduced the flexion of the last four fingers,
and led the thumb to be adducted to the direction of the palm.
This trend is clear in Figures 9, 10, and this rule was applicable
to most tasks except the grasping of prism-shaped objects. On the
whole, primitive 1 usually had the widest range of variation, and
played a major role in the first half of the movement. This shows
that people usually approach objects quickly at the beginning of
grasping movements and then make adaptive adjustments.

Figures 8B, 9 show that the effect of primitive 2 was not
prominent in grasping spherical objects, possibly because the
main function of primitive 2 was to adjust the angle between the
distal phalanx and the object. However, when grasping spherical

objects, the fingers could wrap around the object well so that
there was no need to adjust its value. The value of primitive 3
usually decreased with the size of the object, and contributed in
the middle and later stages of the movement. The main function
of primitive 3 was to control the range of bending of the last three
fingers, but its effect was not as prominent as that of primitive
1. Therefore, this primitive was suitable for finely adjusting the
tightness of the grip according to the size of the object, and its
range of change for each task was small.

The grasping of prism-shaped objects was significantly
different from the other tasks, as is clear from Figures 9, 10.
This is because of different requirements for grasping oblate
objects, which have been often ignored in previous studies.
When only primitive 1 operated, the joints of all fingers turned
in the same direction for the grasping action, and the fingers
quickly approached the object. However, this caused the angle
between the object and the finger to become too large or even
vertical, which is not consistent with the scenario of a human
hand grasping an object. The angle between the finger and the
object determined the direction of the grasping force, and thus
was important for ensuring the stability of grasping and the
further enveloping of the object. Figure 8B shows that the role
of primitive 2 in grasping prism-shaped objects was the most
prominent. It influenced the first half of the movement, and was
highly synchronized with primitive 1.

Prism01 and prism02 were different from movements for
objects in the same category. They represented a lateral pinch for
small, oblate objects. This kind of movement is frequent in daily
life. Although the four fingers had a large flexion angle during the
relevant motion, as when grasping spherical objects, the posture
of the thumb was not similar. Therefore, it was necessary to
divide these movements into separate kinds.

For categories of objects of similar sizes, the trajectories of
the synergy inputs were often close. Figure 8B shows that the
trajectories of Cube08 and Column05 were almost coincident.
A similar strategy could be used for the precision grasping
of long prism-shaped and cylindrical objects of similar sizes.
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FIGURE 8 | The process of generating a trajectory of the synergy input and several typical regression trajectories of objects of different sizes and shapes. (A) The

process of generating a continuous path in the synergy by using the GMM/GMR model. (B) Typical regression trajectories of objects of different sizes and shapes.

The trajectories of small spheres and cubes were also very
similar, such as sphere03 and cube02 in Figure 8B. However,
as the size of the object increased, the curvature of its surface
changed, and the corresponding requisite trajectories shifted.

This phenomenon was most prominent in the trajectory of
primitive 2, and led to a difference in grasping configuration
between motions used to grasp cubic and spherical objects.
Because a disk can be regarded as the cross-section of a
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FIGURE 9 | The synergy inputs on the frame of the final grasping postures for typical objects.

sphere, the same strategy could be used for it as for grasping
spherical objects.

To sum up, the grasping movements of five typical objects
were re-divided according to the similarity in the trajectories
of the synergy inputs. The following five categories of grasping
strategies were determined as follows.

Category 1: Including spherical objects (A≈B≈H, with
large surface curvature) and disk objects(A≈B>>H, with large
curvature on cross section). The most widely used type of
grasping posture, with a large distribution area of synergy inputs
in primitive 1 and primitive 4.

Category 2: Including cube objects (A≈B≈H, with small
surface curvature). Grasping strategy in this category was
quite similar with that of Category 1, and the difference
was distribution area of synergy inputs in primitive 2
was wider.

Category 3: Prolate objects including columns and long prisms
(A≈B<<H). These objects were usually grasped from the side,
with a large value in primitive 2 and low value in primitive 3.

Category 4: Including oblate objects whose convex hull
could be regarded as a prism with general shape (A>>B>>H;
A≈B>>H, with small curvature on cross section). These objects
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FIGURE 10 | The trend of primitives for each category of objects inferred from the mean predictions of the Gaussian Processes. The red line represented the mean

value, and the gray shaded area represented the covariance. (A) Sphere and disk, (B) Cube, (C) Column and long prism, (D) Prism with general shape, (E) Small size

objects.

were usually grasped by the smallest dimension, with the highest
value of primitive 2 and primitive 3.

Category 5: Objects with small volume and are very thin.
These objects usually use lateral grasping posture.

The above five cases can basically include common objects
in daily life. For objects with special shapes, their convex
hull can be used to get an appropriate grasping strategy. In
Figure 10, the synergy inputs inferred from the mean predictions
of the Gaussian Processes for each category given the shape
descriptor were shown. In the subsequent posture reconstruction
experiment, similar grasping strategies were used for objects of
the same category.

Posture Reconstruction Experiment
To evaluate the performance of the proposed framework, the
regressed trajectories were used to reproduce the grasping
movements. A virtual grasping experiment was carried out by

using a standard model of the human hand. The model featured
four independent degrees of freedom in each finger, including
one adduction joint and three flexion joints. Because DIP joint
data were not available, we assumed that the ratio of the angular
velocity of the DIP joint to that of the PIP joint was 2:3, and that
the DIP joint stopped moving after coming into contact with the
object. A simulation was carried out in V-REP(v3.3.2), and the
result of posture reconstruction is shown in Figure 11.

Figure 11 shows changes in the grasping postures with the
size of the objects, and six new objects in the YCB object
set were introduced. For spheres and cubes, the grasping
positions gradually moved from the index finger to the hollow
of the palm with the increase in object size, and the thumb
adducted to the palm. When grasping cubic and column-
shaped objects, the four fingertips were nearly parallel to the
objects and opposite the thumb. The MCP joints bent only
slightly, which showed the function of primitive 2. When

Frontiers in Neurorobotics | www.frontiersin.org 11 September 2021 | Volume 15 | Article 740262

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Learning Grasp for Anthropomorphic Hands

FIGURE 11 | The results of virtual grasping experiment on typical objects.

grasping a prism-shaped object, the four fingers were not
exactly parallel to the object, and instead made a small acute
angle with it. The thumb was roughly opposite the middle
finger.

Figure 11 shows that the index finger did not come into
contact with objects in some tasks, such as those involving the

grasping of large spheres and squares. This is because none
of the four groups of hand primitives was responsible for the
independent movement of the index finger. However, when
grasping large objects, the role of the index finger was not
significant. In past work (Abbasi et al., 2016), large forces for the
thumb, middle finger, and palm were recorded when grasping
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FIGURE 12 | The generated grasping movements of two objects which were not included in the dataset above. (A) The generated grasping movement on a sphere

with a diameter of 80mm. (B) The generated grasping movement on a 20-mm-thick prism.

objects with large diameters, while a small force was recorded
for the index finger. For tools object, the trajectories of the
synergy inputs were planned independently. In order to perform
corresponding tasks, the power drill should be firmly grasped
in the palm. Therefore, the value of primitive 1 should be low
as discussed in Extracted hand primitives. In addition, grasping
postures were also closely related to task requirements. If only
considering the shape of the object, the large marker and mug
should be grasped from the side. However, when the constraints
introduced by a task, the grasp choice also changed. The large
marker should be held from the top, and the mug was always
grasped from the handle.

Figure 12 shows the generated grasping movements on a
sphere with a diameter of 80mm and a 20-mm-thick prism,
respectively. These two objects were not included in the dataset
above. From top to bottom are shown the trajectories of the
synergy inputs, angular data of the joints, and the distance
between the fingertip and the object. The figure shows that the
trend of the reconstructed movement was the same as that in
the grasping experiment involving humans. A greater adjustment
space was obtained by spreading the palm, and the difference in
contact frame between each finger and the object was not large.
These results show that the generated trajectories of the synergy
inputs met the requirements of the grasping task.
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FIGURE 13 | The errors in posture reconstruction when using two, three, and four sets of object-specific hand primitives and former postural synergies. (A) The errors

in posture reconstruction using two sets of synergies. (B) The errors in posture reconstruction using three sets of synergies. (C) The errors in posture reconstruction

using four sets of synergies.

The hand primitives proposed in this paper had a different
function from the postural synergies extracted in previous
studies—especially hand primitive 2. The second postural
synergy in past work has usually been used to represent the
opening and closing movements of the last three fingers with
respect to right ones, or the flexion at the MCP joints with
adduction in all fingers. However, that the inverse motion of the
MCP and PIP joints is more important than the above postural
synergies has rarely been considered. We compared the error
in the reconstructed motion of the joints when using the hand
primitives proposed in this study, and the postural synergies
extracted by (Santello et al., 1998) and (Jarque-Bou et al., 2019).
The errors in posture reconstruction when using two, three,
and four sets of synergies are shown in Figure 13. The hand
primitives proposed in this paper yielded good performance.
When using two sets of synergies, the errors in the MCP and
PIP joints of the middle and the ring fingers were significantly
reduced comparing with the other two groups. When using
three to four sets of hand primitives, error in the reconstruction
of the thumb was reduced. However, using more postural
synergies extracted by Santello et al. only slightly improved the

accuracy of reconstruction, possibly because they considered
only imaginary grasping tasks, which cannot accurately simulate
empirical contact conditions. The error of posture reconstruction
using four sets of synergies extracted by Jarque-Bou et al. also
achieved a better result, but the movement of the MCP joints
were still not ideal.

Functional verification experiments on a prosthetic hand
were performed to evaluate our approach. The hand used in
the experiment was linkage-driven, and the last four fingers
were modular-designed. Each finger could provide two active
DOFs (MCP and PIP joints) and one passive DOF (DIP joint).
The thumb could also provide two active DOFs (MCP and
ABD joints) and one passive DOF (IP joint). Besides, adaptive
movement could be carried out between finger joints. The hand
primitives were simplified according to the DOF-configuration
of the hand. Primitive 1 controlled the coordinated closure of all
fingers, primitive 2 controlled the PIP flexion of four fingers when
the MCP joints were blocked, primitive 3 controlled the closing
movements of the middle, ring, and little fingers with respect
to the index finger, and primitive 4 controlled the adduction of
the thumb.
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The performance in terms of posture reconstruction on typical
objects is shown in Figure 14A. For each category, objects of
increasing size were evaluated. Qualitatively, with the increase of
object size, the number of fingers involved in grasping gradually
increased. The postural configuration for a sample object was
determined by the weighted mean and co-variance relative to
reference trajectory in the corresponding category. While for
irregular shaped objects, appropriate grasping strategies were
selected according to the shape of their convex hull. For example,
pear used grasping strategy of spherical objects, carambola used
grasping strategy of prolate objects, and cleaner used grasping
strategy of oblate objects. The results were generally consistent
with the grasping strategies of the synergy learner, and the
additional adaptive movement helped in closing the fingers
until contact.

As discussed above, the biggest difference between grasping
tools and other objects was that tools usually needed to adopt
power grasping for further operation tasks. Therefore, when
grasping the screwdriver, brush, and glue gun, we used a
larger primitive 1 value to make each finger bend significantly.
In addition, we also reproduced the process spanning from
precision grasping to power grasping of a screwdriver as
shown in Figure 14B. This complex task can be considered a
combination of several groups of simple tasks. At the beginning,
the screwdriver was pinched up using the grasping strategy of
prolate objects. Then, through varying the value of primitives 2
and 4, the relative position of the thumb and four fingers were
adjusted so that the object rotated counterclockwise. Next, the
value of primitive 3 decreased and the primitive 4 increased, led
to the thumb and index finger were released while the last three
fingers held the object. Finally, the value of primitives 1 and 4
were reduced to enable the stable enveloping of the object by
all fingers. This process was similar to the functionally divided
manipulation synergy proposed in (Todorov and Ghahramani,
2004; Santina et al., 2019). Through this example, it can be
seen that the four hand primitives extracted in this paper have
certain in-hand postural adjustment ability, and can meet the
requirements of complex operation tasks.

DISCUSSION

The experimental paradigm used in this paper included grasping
and moving tasks involving five typical categories of objects as
well as simulated tasks involving common tools. In previous
studies, postures in the taxonomy of grasping have been set as
the experimental paradigm. However, this taxonomy is based on
the number of fingers involved in the task, because of which it
contains many postures that are similar to one another but are
not frequently used in daily life (like prismatic 2 finger, prismatic
3 finger, prismatic 4 finger). The frequency of picking up objects
through precision grasping is higher in daily life than that
through power grasping. Therefore, the experimental paradigm
considered here can better fit human grasping habits, simplify
postures in the grasping taxonomy, and help better understand
grasping strategies from a data-driven perspective. Moreover, the
size-related information of the objects was recorded, and can be

used to identify the relationship between the trajectories of the
synergy inputs and the grasped objects. In previous studies, this
content has often been ignored even though it is important for
automatic posture planning.

Because of the use of different experimental paradigms, the
functions for the hand primitives extracted in this paper were
different from those in previous studies. The most significant
difference was in the primitive 2, which controlled the reverse
movement of the MCP and PIP joints of the last four fingers.
The most important effect of primitive 2 was to adjust the angle
between the distal phalanx and the object. This conclusion is
consistent with the perspective of anatomy. The musculoskeletal
system of the human hand is complex. The flexor digitorum
profundus (FDP) and superficialis (FDS) are the extrinsic flexors,
radial interosseus (RI), ulnar interosseus (UI), and lumbrical
(LU) are the intrinsic muscles, and the long extensor (LE)
lumps the two extrinsic extensor muscles: the extensor digitorum
communis (EDC) and extensor indicis (EI). Synek compared
the maximum isometric fingertip based on the wEM model and
the noEM model (Synek and Pahr, 2016). The results showed
that the wEM model accords with the biomechanical properties
of human hands. In this model, the routing of the extensor
tendon crosses all joints of the fingers, and causes the flexion
of the MCP joint as well as the extension of the PIP and DIP
joints. This extensor can generate fingertip forces over a wide
range of postures along several directions of force, and enables
the finger to be more versatile during grasping. This form of
movement is in accordance with primitive 2 in this paper.
Implementing a similar structure for the anthropomorphic hands
to improve their operational performance is a matter suitable for
future investigation.

This study has some limitations. In the reconstruction
experiment, not all fingers came into contact with the object, and
the grasping forces exerted by different fingers were different.
This shows that different fingers have varying importance for
the success of grasping actions. Reasonably distributing the
importance of different fingers in the relevant model, and
ensuring that the more important joints come into contact with
the object are important issues to advance investigation in this
domain. In addition, although the flexion of the DIP joints
could not be accurately calculated here, they play an important
role in the adaptive movement. Data on them should thus
be collected.

CONCLUSION

This study proposed a method for predicting hand movements
to grasp objects of different sizes. To acquire the necessary
movement-related data, the angular values of the joints of 10
subjects were recorded as they grasped and moved typical objects
in experiments and virtual operation tasks. Four hand primitives
were extracted by PCA, and the corresponding trajectories of the
synergy inputs during each task were saved. TheGaussian process
was used to obtain the latent representation of the grasps and the
diameter of the grasped object. Finally, hand movements were
generated according to the distribution of grasp configurations
for a given diameter of object and grasp type.
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FIGURE 14 | (A) The posture reconstruction experiments on a prosthetic hand, and the average synergy inputs of the hand primitives in different types of grasping

tasks were shown. (B) The process spanning from the precision grasping to the power grasping of a screwdriver, and the tendency of four synergy inputs variation

during the task was shown.
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In the experimental paradigm used, the natural grasping
habits of humans were considered, and the results showed that
the frequency of precision grasping was much higher than
that of power grasping. Only in operational tasks was power
grasping required. The four hand primitives extracted here
explained 87% of the variance. The function of primitive 2
was found to be significantly different from that in previous
studies. It was important for adjusting the angle between the
distal phalanx and the object, and for allowing the fingers
to be more flexible. The results showed that the proposed
method significantly reduced the error in the reconstructed
posture, especially that in the MCP and PIP joints of the
middle and ring fingers. Finally, we used a shape descriptor
to infer the trajectories of the synergy inputs and plan the
motion of the hand. The proposed, simplified hand primitives
are useful for controlling the grasping movement of a prosthetic
hand, and the relevant operational tasks can be reconstructed
through segmentation.

This paper mainly explored the grasp planning of the
typical shape objects. However, the grasping of complex
objects by human hand can also be regarded as the local
adaptive movement after the approximate posture configuration.
Therefore, we will further analyze which joints the adaptive
movement mainly occurs in, and reproduce adaptive movement
with hand primitives through mechanical mechanism. Besides,
in addition to the posture configuration, the distribution
of grasping force also has a great influence on the success
rate of grasping. In the future study, we will consider
motion and mechanics data synthetically, evaluate the
importance of each fingers to the grasping task, and give
the stably grasping condition from the data-driven point
of view.
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