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Abstract: A community in a complex network refers to a group of nodes that are densely connected
internally but with only sparse connections to the outside. Overlapping community structures are
ubiquitous in real-world networks, where each node belongs to at least one community. Therefore,
overlapping community detection is an important topic in complex network research. This paper pro-
poses an overlapping community detection algorithm based on membership degree propagation that
is driven by both global and local information of the node community. In the method, we introduce
a concept of membership degree, which not only stores the label information, but also the degrees of
the node belonging to the labels. Then the conventional label propagation process could be extended
to membership degree propagation, with the results mapped directly to the overlapping community
division. Therefore, it obtains the partition result and overlapping node identification simultaneously
and greatly reduces the computational time. The proposed algorithm was applied to a synthetic
Lancichinetti–Fortunato–Radicchi (LFR) dataset and nine real-world datasets and compared with
other up-to-date algorithms. The experimental results show that our proposed algorithm is effective
and outperforms the comparison methods on most datasets. Our proposed method significantly
improved the accuracy and speed of the overlapping node prediction. It can also substantially
alleviate the computational complexity of community structure detection in general.

Keywords: complex network; social network; overlapping community detection; label propagation;
membership degree; clustering

1. Introduction

Complex networks are natural manifestations of many real-world problems, such as
social networks, computer networks, and protein interaction networks. Although a long
history of complex network development exists, a sharp increase in related problems
and data has ushered in a more extensive development of these networks in recent years.
Small world [1] and scale-free [2] properties, as well as high aggregation [3] are the most
obvious characteristics of complex networks. The aggregation feature is often measured ac-
cording to the community structure of a network [4,5]. In complex networks, a community
refers to a group of nodes that are densely connected internally but sparsely connected
to the outside. Generally, the nodes belonging to the same communities have similar
functions or properties and vice versa. For example, the nodes in a same community of
social network often indicate that they might have a same family, a same career, or a same
hobby [6], while those of a protein–protein interaction network are probably proteins with
similar functions [7]. Through studying the community structure of a complex network,
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we can better understand the network nature as a whole and different functions as local
communities as well.

In a complex network, there are interactions between different communities with
an important form wherein different communities share the same nodes. We call these
nodes overlapping nodes, and the communities are referred to as overlapping communities.
Overlapping nodes and overlapping communities exist widely in complex networks in the
real world. For example, one individual may be in multiple communities (e.g., families)
of a social network. In the biomolecular network, different communities can represent
different biological functions, and a gene or protein can participate in a variety of biological
functions. In the academic circle, a scholar often works in multiple fields. Overlapping
nodes often play an important role in complex networks. Because overlapping nodes
belong to and connect multiple overlapping communities and play a pivotal role in infor-
mation flow, identification of overlapping nodes is an important research topic in complex
network analyses. For example, Mengoni et al. have studied student population com-
munity elicitation, and found that the co-occurrence of people’s activities is an emerging
epiphenomenon of hidden, implicit exchanges of information in side-channel communi-
cations [8]. Many researchers have investigated the importance of overlapping nodes in
epidemic spreading, and then developed immunization strategy accordingly [9–11].

In 2002, Girvan and Newman proposed the well-known Girvan–Newman (GN) al-
gorithm [4], which defines the concept of edge betweenness and holds that the edge
betweenness within a community should be smaller than the edge betweenness between
communities. Since then, many community detection algorithms have been proposed,
details can be found in Liu et al.’s review of community mining in complex networks [12].
However, traditional non-overlapping community detection algorithms cannot be directly
applied to overlapping community detection; hence various overlapping community de-
tection algorithms have been developed, which could be classified into seven categories:
(1) clique percolation, (2) link partitioning, (3) local expansion and optimization, (4) fuzzy
detection, (5) matrix (tensor)-based model, (6) statistical inference (7) label propagation.
For comprehensive overview, one can refer to [13,14].

Clique percolation method (CPM) holds that the inner edges of a community are closely
connected with each other and have high edge density; thus, it is easier to form cliques (com-
plete subgraphs) within communities [15]. In CPM, communities consist of those cliques
being strongly connected with each other and overlapping nodes are recognized if they
belong to multiple cliques assigned to different communities [16]. Cui et al. have extracted
fully connected sub-graphs using maximal sub-graph method [17]. Link partitioning [18,19]
is based on edges to find the community structure. If a link is put in more than one cluster,
then the nodes this link connects to are labeled as overlapping nodes [20]. Arasteh M
and Alizadeh S proposed a fast divisive community detection algorithm based on edge
degree betweenness centrality [21]. A classical local expansion and optimization model is
local fitness model (LFM) [22], which starts from a random seed node and extends the
community step by step until the fitness function is locally maximized. Subsequently,
LFM randomly selects a node that is not in the generated communities as a new seed node
and repeats the expansion of the community until all nodes belong to one or more commu-
nities. Then, those nodes belonging to multiple communities are considered as overlapping
nodes. Following the idea of LFM, the greedy clique expression (GCE) [23] selects the
maximal clique as the seed. Guo K et al. proposed a local community detection algorithm
based on internal force between nodes to extend the seed set [24]. Zhang J et al. proposed
a series of seed-extension-based, overlapping, community detection algorithms to reveal
the role of node similarity and community merging in community detection [25]. Eustace
et al. have utilized neighborhood ratio matrix to detect local communities [26]. Other local
expansion and optimization models include OSLOM [27], Infomap [28], Game [29], and so
on. Fuzzy detection [30] calculates the connection strength between each pair of nodes and
between communities; it also assigns a membership vector to each node. The dimension
of membership vectors must be determined, as they can be used as algorithm parameters
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or calculated from data. Matrix(Tensor)-based model represents the network structures by
matrix or tensor, and yields a more robust community identification in the presence of
mixing and overlapping communities by matrix factorization [31] or tensor decomposi-
tion [32]. Statistical inference can effectively tackle the problem of community detection and
has many useful methods like: MMSB, AGM and BIGCLAM et al. MMSB, which combines
global parameters that instantiate dense patches of connectivity (blockmodel) with local pa-
rameters that instantiate node-specific variability in the connections (mixed membership),
can be used in overlapping community detection [33]. AGM is a community-affiliation
graph model that builds on bipartite node-community affiliation networks [34]. BIGCLAM
(cluster affiliation model for big networks) is an overlapping community detection method
which scales to large networks of millions of nodes and edges [35].

The final widely used type of overlapping community detection algorithm is based on
label propagation. Its main idea is to assign a label to represent its class for each node, and to
propagate the label messages according to network structure and the label distribution
until it is converged. After the label propagation, the nodes in the same community are
assigned a same label. The classical label propagation algorithm (LPA) [36] was developed
for non-overlapping community detection. Because of LPA, several groups have extended
the method into overlapping community detection. For example, community overlap
propagation algorithm (COPRA) [37] allows assignment of multiple labels for each node,
associated with belonging coefficients to indicate the strengths of memberships for different
classes. In contrast to COPRA, Xie et al. proposed another label propagation algorithm,
which spreads labels among nodes during iterations and saves previous label information
for each node [38]. Le B D et al. proposed an improved network community detection
method using meta-heuristic based label propagation [39]. Because the label propagation
process is just like that of speaker-listener communication, the algorithm is referred to
as the speaker–listener label propagation algorithm (SLPA). Based on SLPA, Gaiteri et al.
proposed the SpeakEasy algorithm [40], which introduced the label global distribution
information into label propagation, and effectively superseded the local neighborhood
label information.

SpeakEasy as mentioned above is suitable for several different kinds of networks,
and has good adaptabilities compared to previous algorithms. However, the threshold to
identify overlapping nodes is difficult to determine, which might result in poor recognition
of overlapping nodes. Furthermore, SpeakEasy requires generating community partitions
many times to obtain a robust result, which is computationally time consuming.

To address the above weaknesses, this paper proposes a new overlapping community
detection algorithm. In our method, it is the membership degree being propagated rather
than the label information in existing label propagation algorithms, and therefore is called
membership degree propagation algorithm (MDPA). The membership degree represents
the probability that a node belongs to a potential community, which replaces SpeakEasy’s
sampling of community partitions. Our method is different from COPRA since the latter
propagates label information and gives a belonging coefficient for each label. MDPA has
been applied to a Lancichinetti–Fortunato–Radicchi (LFR) artificial dataset and to nine
commonly used real datasets. Numerical results show that MDPA greatly improves the
recognition of overlapping nodes in accuracy and speed. The main contributions of the
paper are (1) the introduction of the concept of membership degree, which not only stores
the label information, but also the membership degree of the node belonging to the label;
and (2) the significant reduction computing cost for that MDPA does not need replaying
the algorithm to achieve the overlapped community partition.

2. Introduction of Label Propagation Methods

The methods based on label propagation have been greatly developed and widely
used. Generally speaking, the methods based on label propagation consist of four parts,
namely that initialization, label propagation, community partition and overlapping node
identification, the general framework is shown as Figure 1. In initialization, the label
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propagation methods usually need to assign a buffer to each node to store the label
information. The size of the buffer can be fixed or not fixed, but it must have the maximum
size. In label propagation, the methods usually iterate many times to make labels propagate
in the whole network. Finally, it comes to convergence. In order to judge whether it is
convergence or not, it is necessary to judge the difference between the current network
and the network after the latest iteration. It’s simpler to iterate enough times which will
consume a lot of computing time. In community partition, at least one label should be
assigned to each node. Some methods will divide communities according to the label
information of its own buffer, while others will be based on the label information of
neighbor nodes’ buffer. In overlapping node identification, the basic idea is that a node will
be determined as an overlapping node if it belongs to two or more communities. Different
methods have different ways of discrimination.
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As mentioned in Section 1, MDPA is a natural extension of the existing label prop-
agation methods, such as LPA, COPRA, SLPA, and most notably, SpeakEasy. Therefore,
SpeakEasy is taken as an example to describe the details of Label propagation methods in
the following of this section. Figure 2 shows the flowchart of SpeakEasy with four steps,
which are described as follows:

1. Initialization. To initialize the node buffers of the whole network, the ID numbers of
all nodes are set as potential community labels initially. Each node’s ID number is
pushed into its own buffer at the beginning. Then, the neighbor ID numbers will be
randomly selected to fill the buffer of each node, until it is fully filled.

2. Label propagation. To propagate the labels iteratively, each node should update its
buffer by pushing in the most “significant” label in its neighbor buffers and pushing
out the first one at the beginning. The “significance” of a label is determined by the
difference of its distribution in the local neighborhood buffer set and the distribution
in the global buffer set. In other words, the more it is in the local buffer set, and the
less it is in the global buffer set, the more “significant” the label is. This process is
performed iteratively, until it is converged.

3. Community partition of single round. After the label propagation process is converged,
each node should be assigned the community ID number by most labels in its neighbor
node buffers. Then, we will get a community partition P.

4. Common community partition. Repeat step 1 to step 3 for N times to obtain N candidate
partitions {P1, P2, ···, PN}. The partition that is most similar to others will be selected
as the final nonoverlapping community partition, denoted as P* = {C1*, C2*, ···, CK*},
where Ci* is the ith cluster in partition P*. This is a more robust result than that of only
one iteration for a nonoverlapping problem. If the problem is for nonoverlapping
community detection, the algorithm can stop here; otherwise, it will continue to
step 5.

5. Overlapping node identification. Denote aij as the number of times nodes vi and vj cluster
together in the obtained N partitions, and let aii = 0; then, the co-occurrence matrix
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A can be constructed. Assuming node vi is not a member of the jth cluster Cj* in
partition P*, define the weight of vi to Cj* by:

w
C∗j
vi =

∑u∈C∗j
au,vj∣∣∣C∗j ∣∣∣ · N (1)

where N is the number of partitions, and |·| means the size of a cluster. If the weight is big
enough, node vi is considered an overlapping node of cluster Cj*. In [16], the threshold is
set as 1/Kmax, where Kmax is the largest number of communities of N partitions. However,
in our experiments, sometimes this threshold resulted in too many overlapping nodes,
making it difficult to adjust the threshold.

Adjacent Matrix

Initialization

Label Propagation

Community Partition

Overlapping Node Recognition

…

Figure 2. The flowchart of SpeakEasy starts from a network (represented by an adjacent matrix),
followed by 4 main steps: (1) initializing for node buffers, (2) label propagating iteratively, and (3)
community partitioning when the iteration converges. Steps 1–3 are repeated n times. (4) Overlapping
nodes and identifying according to obtained n partition results.
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3. Membership Degree Propagation Algorithm

In the SpeakEasy algorithm, the label propagation process needs to be repeated
N times, which greatly reduces the efficiency when the network size is large. A more
important problem is that the threshold to identify overlapping node is difficult to choose,
which often leads to an improper proportion of the overlapping nodes. In view of the above
problems, a new algorithm is proposed in this paper. The main idea of the algorithm is to
define a membership degree vector for each node representing how likely it belongs to the
potential clusters, and then propagate the membership degree vector instead of the label in
the existing label propagation methods. Hence, the algorithm is called membership degree
propagation algorithm (MDPA), which is roughly divided into three steps: (1) initializa-
tion, (2) membership degree propagation, and (3) community partition. The flowchart of
MDPA is shown in Figure 3. The framework of MDPA does not have the outer loop in
Figure 2, and the overlapping node identification is merged with the community partition.
The details of the algorithm are illustrated as follows.
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Figure 3. The flowchart of MDPA starts from a network (represented by an adjacent matrix), followed
by 3 main steps: (1) initializing for node buffer and membership pairs, (2) membership degree
propagating iteratively, and (3) community partitioning when the iteration converges (overlapping
nodes are identified simultaneously).
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3.1. Initialization Process

For simplicity, we will only discuss the undirected, unweighted graph below. It is
easy to extend to a directed or weighted graph. Let V = {v1, v2, ···, vn} be the set of vertices
(or nodes); E is the set of edges, each representing a pair of nodes (x, y) ε V2, meaning that
there is an edge between nodes x and y. Now we can find the overlapping community
partition on graph G = {V , E}.

Much like SpeakEasy and other existing label propagation algorithms, we construct
a buffer for each node. However, the difference is that the buffer not only stores the
label information, but also the membership degree of the node belonging to the label.
So, an element of the buffer is a binary group. Here, we define membership as the possibility
that the current node belongs to a potential community. Thus, we denote the buffer of the
ith node vi as:

bi =
{(

l(i)1 , m(i)
1

)
,
(

l(i)2 , m(i)
2

)
, · · · ,

(
l(i)
B(i) , m(i)

B(i)

)}
,
(

l(i)2 ∈ {1, 2, · · · , n}, B(i) ≤ B
)

(2)

where l(i)j represents a potential cluster of node vi, and m(i)
j , and the corresponding mem-

bership degree of node vi belongs to cluster lj, which should satisfy

∑
j

m(i)
j = 1 (3)

The constant value B in Equation (2) represents the maximum number of potential
clusters for each node, which is set to 3 times the average node degree in our experiments.

Like SpeakEasy, the ID numbers of all nodes are set as potential community labels
initially. For each node, its own ID number is pushed into the label part of buffer at the
beginning, and the membership degree is set as 1/B. Then, its neighbor ID numbers will be
randomly selected for B-1 times, with the membership degree adding 1/B correspondingly.
It should be noted that if an ID number is selected more than one time, its membership
degree will be more than 1/B, and its buffer length will then less than B. Figure 4a shows
an initialization example of a simple network with seven nodes, where the parameter B is
set as 5.
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Figure 4. Schematic diagram of MDPA. (a) initialization, (b) membership degree propagation, (c) final state of membership
degree propagation, and (d) result of community partition. In the green columns of the two-row illustrations, the l on
the top row represents the cluster label, and the m on the bottom row represents the membership degree belonging to
a corresponding cluster.



Entropy 2021, 23, 15 8 of 33

3.2. Membership Degree Propagation

The main idea of the membership degree propagation process is to increase the mem-
bership degree of the clusters with higher local distribution and lower global distribution,
and vice versa. For a cluster c, the global distribution is its appearing frequency in the
entire network buffers, which is calculated by:

gc =

∑
j

m(j)
c

n · B (4)

The local distribution of cluster c for node vi is the occurrence frequency in its neighbor
node buffers, which is calculated by:

f (i)c =

∑
j∈neighbor(i)

m(j)
c

|neighbor(i)| · B (5)

Taking Figure 4a as an example, the global distribution is listed in Table 1, and the local
distribution of node d is listed in Table 2.

Table 1. Global distribution of all labels.

Label a b c d e f g

Global distribution 3/35 5/35 6/35 10/35 3/35 3/35 5/35

Table 2. The local distribution in the neighbor buffers of node d.

Label a b c d e f g

Local distribution 2/25 2/25 3/25 9/25 2/25 2/25 5/25

With these tables in place for each node, we now calculate the difference between
local distribution and global distribution for each cluster ID in its neighbor buffers. For the
calculation to make sense, it should be normalized into a same scale; in our experiments,
the scale is set as [0, 5]. Therefore, the normalized difference of cluster c for node vi is
computed by:

d(i)c = α ·

(
f (i)c − gc

)
−min

j

(
f (i)j − gj

)
max

j

(
f (i)j − gj

)
−min

j

(
f (i)j − gj

) (6)

where α is the scale parameter, set as 5 in our experiments. Then, cluster c will be selected
to update the buffer of node vi according to the probability:

p(i)c =
ed(i)c

∑
c∈neighbor(i)

ed(i)c
(7)

Still taking node d in Figure 4a as an example, the original difference, the normalized
difference, and the corresponding probabilities of each label are listed in Table 3.
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Table 3. Original difference, normalized difference, and corresponding probabilities of each label in
the neighbor buffers of node d.

Label a b c d e f g

Original difference −1/175 −11/175 −9/175 13/175 −1/175 −1/175 10/175
Normalized difference 50/24 0 10/24 5 50/24 50/24 105/24

Corresponding
probability 0.0316 0.0039 0.0060 0.5831 0.0316 0.0316 0.3122

Next, we randomly select a cluster from the buffers of node vi according to the
probability of Equation (7). If the selected cluster has already existed in the buffer bi,
the corresponding membership degree adds 1/B, and the other clusters’ membership
degrees are adjusted to let the sum remain equal to 1. Otherwise, the selected cluster
should be added into the buffer bi with the membership degree of 1/B. If the buffer
length is larger than B, the cluster with the smallest membership degree is removed.
However, if there are many clusters with the smallest membership degree, randomly
delete one. The membership degrees are then adjusted to let the sum remain equal to 1.
In each iteration, all nodes in the network need to update its buffer as described above.
When the processing is converged or the number of iterations reaches its limit, the loop
stops. The membership degree propagation pseudo-code is shown as Algorithm 1.

Algorithm 1: Membership Degree Propagation (B, NUM, G’)

Input: Buffer Size: B, The number of iterations: NUM, Initialized graph: G’
Output: The convergent graph after Membership Degree Propagation: G”

1 i = 0;
2 for i < NUM do
3 for v ∈ G’ do
4 g← Calculate the probability distribution of all labels in the current network;

5
f (v) ← Calculate the probability distribution of all labels in the local subgraph of the

current node v;
6 L← Get the maximum difference label L according to d(v), where d(v) = f (v) − g;

7
G”← Increase the membership degree corresponding to label L and update the

buffer of v;
8 end
9 i = i + 1;

10 end

For node d in Figure 4a, suppose the randomly selected label is d according to the
probabilities computed as Table 3. The result after updating the buffer of node d is shown
in Figure 4b, and the final result is shown in Figure 4c.

3.3. Community Partition

At the end of membership degree propagation process, we obtain the buffer sets for all
the nodes in the network. A buffer contains no more than B binary groups, each of which
represents a potential cluster and its membership degree correspondingly. Then, the com-
munity partition can be divided into two simple steps:

1. Assign the max membership cluster in the buffer as the first community for each node

vi ← arg
c

m(i)
c (8)

where vi is the ith node, and m(i)
c is the membership of vi, which belongs to cluster c.

2. Identify the secondary communities for each node. For node vi, we make the travers-
ing of its buffer as follows:

vi ← c i f m(i)
c > r (9)
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where r is a membership threshold, which is simply set as r = 1/Nl, where Nl is the account
number of the first communities assigned to nodes in the above step. Therefore, N1 can be
considered as the initial number of communities assigned to all nodes. Then, according to
Equation (9), if the membership m(i)

c is larger than the probability randomly assigns a node
to any a community, node i is considered as a member of cluster c.

This process is simple, and it is easy to recognize overlapping nodes just by checking
to see if more than one cluster have been assigned to them. Therefore, MDPA does not
need to repeat the outer loop (initialization and propagation) multiple times, which re-
duces computational cost greatly when compared to SpeakEasy. The pseudo-code of the
community partition is shown as Algorithm 2. The final community partition result is
shown in Figure 4d.

Algorithm 2: CommunityPartition (r, B, G”)

Input: Threshold: r, Buffer Size: B, The convergent graph after Membership Degree
Propagation: G”
Output: The result of community detection: C

1 for v ∈ G” do
2 flag = 0;
3 for (l(v), m(v)) ∈ bv do
4 // l(v) represents a potential cluster of node v;
5 //m(v) is the membership degree of node v belonging to cluster l(v);
6 if m(v) > r then
7 l(v) ← l(v) ∪ {v};
8 C← C ∪ {l(v)};
9 flag = 1
10 end
11 end
12 //m(v) <= r is true for all m(v);
13 //The node v is an overlapping node and belongs to all the clusters in buffer bv
14 if flag = 0 then
15 for (l(v), m(v)) ∈ bv do
16 l(v) ← l(v) ∪ {v};
17 C← C ∪ {l(v)};
18 end
19 end
20 end

3.4. Complexity Analysis

In the initialization phase, MDPA needs to traverse the whole network and fill the
membership degree of each traversed node’s buffer. Each node needs to be filled B times,
so it needs nB operations:

Nl = nB (10)

In the propagation phase, it is assumed that N iterations are needed and adjusting
each buffer needs fixed A operations. For the current node v traversed, we need to calculate
the global probability distribution at first, and the number of required operations is nB.
Then we calculate the local probability distribution of node v. It needs at most Nv

nei × B
operations, where Nv

nei is the number of neighbor nodes of node v. Finally, the buffer is
adjusted through A operations. Therefore, the maximum number of operations MDPA
needs to perform in this process:

Np = N ×∑
v
(nB + Nv

neiB + A) (11)

We can see that n is much larger than Nv
nei, and the change of global probability is

only due to the update of the buffer of one node. After adjusting the buffer of one node
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each time, the new global probability distribution can be obtained by only a few operations.
Here, the number of operations to adjust the global probability can be regarded as a fixed
number of operations. Based on this idea, after optimizing the algorithm, the maximum
number of operations needed for MDPA in the propagation phase is as follows:

Np = nB + N ×∑
v

(
Nv

neiB + A + Ag
)
= nB + 2mNB + nNA + nNAg (12)

where Ag is the fixed number of operations required to adjust the global probability
distribution. In other words, at the beginning of the propagation process, we calculate the
global probability distribution, and then adjust the global probability distribution after
completing the buffer adjustment of the current node.

In the overlapping node identification stage, MDPA only needs to traverse each node
and compare the membership degree of each node buffer with the threshold r, so MDPA
needs nB operations at most in this stage.

No = nB (13)

So, the maximum number of operations required by MDPA is as follows:

Ntotal = Nl + Np + No = 3nB + 2mNB + nNA + nNAg (14)

For space complexity, since the buffer allocated to each node in the network contains
up to B potential communities, MDPA takes up nB storage units at most.

4. Experiments and Results
4.1. Experiment Setup

In this paper, two types of experiments are designed to test the proposed MDPA
method, one for the LFR benchmark dataset [41], and the second for real dataset.

The LFR benchmark provides many parameters to control the structure of the gen-
erated network. Using different parameter values, we have generated 180 networks for
experiments. To test the performance of the proposed MDPA, four state-of-the-art methods
are executed for comparison, namely, SLPA, Olsom, Copra, and SpeakEasy, respectively.
The LFR benchmark has many advances, for example, it has clear ground truth for eval-
uation, and its parameters can be set flexibly. However, it still has some limitations: it is
more suitable for generating medium-sized networks and therefore cannot meet the needs
of large networks for experiments; it is difficult to analyze theoretically because of the
complexity of the algorithm; and it is far from generating very large realistic artificial net-
works [42]. Therefore, we also applied our proposed method to real dataset for validation.

For the real data set, we conducted MDPA on the nine datasets (listed in Table 5). For the
comparison, 8 state-of-the-art algorithms are also executed on those datasets, which are
SpeakEasy, Perception, SLPA, Ego, Angel, Demon, Kclique, and LFM, respectively.

All of the experiments were executed on a PC with a 2.40 GHz Intel(R) Xeon(R) CPU,
16GB memory, and the Windows 7 Ultimate 64-bit operating system. We used Java to
implement the code and the programming environment was Eclipse.

4.2. Evaluation Metrics

There are many methods to evaluate a partition result, however, each of them has its
applicability and limitations. In the LFR benchmark dataset, the ground-truth are known,
therefore the similarity of partition result with ground-truth could be used for evaluation.
NMI (normalized mutual information) [22] is commonly used metrics to measure the
similarity of two partitions. For a network with n nodes, assuming that there are two
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partitions: P = {p1, p2, . . . , pI}, and G = {g1, g2, . . . , gJ}, where I and J are the community
numbers of P and G, the NMI between P and G is defined by Equation (15):

NMI(P, G) = 1− 1
2
[H(P|G)norm + H(G|P)norm] (15)

where H(P|G)norm (or H(G|P)norm) is the normalized conditional entropy of P (or G) with
respect to G (or P). For more details of NMI formula for overlapping communities, please
refer to Appendix B in reference [22].

NMI works well to validate the functionality of proposed methods in ad-hoc networks
but are not directly interpretable in a comparative evaluation of clustering quality. The met-
ric of SG evaluates the similarity of two partitons is to inquire into the “closeness” of the
two corresponding community size distributions [43]. Assume there are r different sizes of
communities in partition P, and arrange sizes ascendly as {x1

P, x2
P, . . . , xr

P}, and those of
partition G are {x1

G, x2
G, . . . , xs

G}. Then SG could be defined by:

SG(P, G) =
1
2

r

∑
i=1

s

∑
j=1

min

nP(xP
i
)

NP ,
nG
(

xG
j

)
NG

δ
(

xP
i , xG

j

)
(16)

where nP(xi
P) means the community number with size of xi

P in partition P, and similarly for
nG(xj

G), NP and NG are the total number of communties in partions P and G, δ(xi
P, xj

G) = 1
if xi

P = xj
G and 0 otherwise. SG evaluates high level of clustering similarity between two

partitions, but can not detect similarity on iner-community level. It is better to combine it
with NMI to evaluate the similarity of two partitions.

Since overlapping nodes generally play key roles in overlapping community networks,
it is important to predict overlapping nodes correctly in the overlapping community
detection. In this sense, the overlapping node detection could be considered as a binary
classification problem. Recall, Precision and F1 measures are commonly used metrics in
classification problems, as defined in Equations (17)–(19):

Recall = TP/(TP + FN) (17)

Precision = TP/(TP + FP) (18)

F1 = 2 × (Precision × Recall)/(Precision + Recall) (19)

where TP is the number of positive samples predicted as positive samples; FN is the
number of positive samples predicted as negative samples, and FP is the number of
negative samples predicted as positive samples. The F1 measure is a more comprehensive
metric, which combines Recall and Precision together.

In real data sets, the ground-truth is often considered as unknown. Under this condi-
tion, the goodness of a partition could be verified by characterizing how community-like
the connectivity structure of partition is. The idea is to that a “good” partition has dense
connections with communities and sparse connections between different communities.
There are many ways to determine whether a partition meets the above criteria, for ex-
ample, based on internal connectivity, based on external connectivity, combining internal
and external connectivity, and based on network model [44]. They all have their own
advantages, but also have different limitations. Conductance is a metric combining internal
and external connectivity, defined by:

Conductance(P) =
cP

2mP + cP
(20)

where mP is the total number of edges within single communities in partition P, and cP
is the total number of edges between different communities in partition P, respectively.
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Thus, metric Conductance measures the fraction of total edge volume that points outside
the cluster [45].

Modularity Q [46,47] is a well-known metric based on network model, defined by:

Q =
1

2m∑i,j

(
wij −

kik j

2m

)
δ
(
li, lj

)
(21)

δ(x, y) =
{

1 x = y
0 otherwise

(22)

where m is the number of edges of the whole network (then 2m is the sum of degrees
in the undirected graph), wij the weight of edge between node i and j, being 1 or 0 for
undirected networks. ki is the degree of node i, li is the community ID that node i belongs to.
Modularity Q measures the difference between the number of edges between nodes within
single communities and its expected number in a random graph with identical degree
sequence. However, it doesn’t consider the impact of overlapping nodes. Modularity
EQ [48] is a variant for overlapping community detection, defined by:

EQ =
1

2m∑i,j
1

OiOj

(
wij −

kik j

2m

)
δ
(
li, lj

)
(23)

where Oi is the number of communities containing node i. Modularity EQ is more suitable
for overlapping community detection, and we use it as the evaluation metric together with
Conductance in real data sets.

4.3. Experiments on LFR Benchmark Dataset

To verify the performance of the proposed MDPA, it is executed on 180 LFR gener-
ated networks. For comparison, four state-of-the-art methods, Oslom, SLPA, Copra and
SpeakEasy are also executed on the same data sets. The 180 generated networks are com-
bined by the following parameter sets: n = {1000, 2000, 3000}, d = {10, 20}, Om = {1, 2, 4, 6, 8},
µ = {0.05, 0.1, 0.2, 0.3, 0.4, 0.6}, and On = {30, 90, 150}, which are listed in Table 4.

Table 4. Parameter setting of generated 144 test networks.

n d µ On Om

1000 10 {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} 30 {1, 2, 4, 6, 8}
1000 20 {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} 30 {1, 2, 4, 6, 8}
3000 10 {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} 90 {1, 2, 4, 6, 8}
3000 20 {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} 90 {1, 2, 4, 6, 8}
5000 10 {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} 150 {1, 2, 4, 6, 8}
5000 20 {0.05, 0.1, 0.2, 0.3, 0.4, 0.6} 150 {1, 2, 4, 6, 8}

Figure 5 shows the NMI comparison of our simulation results of MDPA and those of
Oslom, SLPA, Copra and SpeakEasy. Figure 5a shows the average NMI values of different µ,
On and Om for specified n and d combinations, and Figure 5b shows the average NMI values
of different n, d, On and Om for specified µ values. From the figures we could find that
OLSOM and MDPA are significantly superior to the other three algorithms, and OLSOM is
slightly better than MDPA. With the parameter µ increases, the networks are changing to
highly overlapping, and the performance of all the methods decreased, especially when µ
is larger than 0.5, the performance dropped sharply. The detail comparison results of NMI
on 180 LFR datasets could be inferred to Figure A1 in Appendix A.



Entropy 2021, 23, 15 14 of 33
Entropy 2021, 22, x FOR PEER REVIEW 14 of 35 

 

n=1000,d=10 n=1000,d=20 n=3000,d=10 n=3000,d=20 n=5000,d=10 n=5000,d=20
0.0

0.2

0.4

0.6

0.8

1.0

 SLPA  copra  OLSOM  SpeakEasy  MDPA

N
M

I

 
(a) 

u=0.05 u=0.1 u=0.2 u=0.3 u=0.5 u=0.6

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

 SLPA
 copra
 OLSOM
 SpeakEasy
 MDPA

 
(b) 

Figure 5. Comparison results of NMI on LFR datasets: (a) the average NMI values of different μ, On and Om for specified 
n and d combinations, and (b) the average NMI values of different n, d, On and Om for specified μ values. 

Figure 5. Comparison results of NMI on LFR datasets: (a) the average NMI values of different µ, On and Om for specified n
and d combinations, and (b) the average NMI values of different n, d, On and Om for specified µ values.

Figure 6 shows the SG comparison results. Figure 6a shows the average SG values
of different µ, On and Om for specified n and d combinations, and Figure 6b shows the
average SG values of different n, d, On and Om for specified µ values. The results are similar
with those of NMI, OLSOM and MDPA are much better than the other three algorithms,
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and OLSOM is slightly better than MDPA. The detail comparison results of SG on 180 LFR
datasets could be inferred to Figure A2 in Appendix A.
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To further investigate the performance of detecting the overlapping nodes, MDPA,
Oslom, SLPA, Copra and SpeakEasy algorithms are also compared on F1 measure. Figure 7
shows the comparison results of the five algorithms on the F1 measure. Those missing
points in the graph mean that the algorithm could not obtain a feasible F1 value, namely
that no overlapping nodes were correctly found. It is easy to see that SLPA, Olsom and
Copra are very unstable, they have 15, 12 and 70 missing points out of 144 (when Om = 1
means there is no overlapping nodes, therefore, only Om = 2, 4, 6, 8 are evaluated for
F1 measure), respectively, while SpeakEasy and MDPA have no missing points at all.
The detail comparison results could be inferred to Figure A3 in Appendix A. Compared
with Speakeasy, our proposed MDPA algorithm is significantly better on almost all the
networks with different setup parameters, where the only exception is the point of Om = 2
on the case of n = 1000, and µ = 0.4. Taking n = 3000, d = 10, and µ = 0.4 as an example,
the F1 measures of MDPA are 0.21, 0.32, 0.37, and 0.35 respectively for Om = 2, 4, 6, and
8, while those of SpeakEasy are only 0.06, 0.07, 0.07, and 0.07. The main reason is that
SpeakEasy tends to predict too many overlapping nodes thereby obtaining high recall
values but too low of precision values, resulting in really low F1 measures, while MDPA
could get a better balance of precision and recall values by predicting the proper number
of overlapping nodes.
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The main factors affecting the running time of the algorithms are the network size
(node number n) and average degree (d). Figure 8 shows the average executing times on
each pair of n and d of the five compared algorithms. It clearly shows that MDPA runs
slightly faster than Olsom, and much faster than SpeakEasy, especially when the networks
were complex. The main reason is that SpeakEasy repeats the propagating process many
times while MDPA executes it only once. Among the five algorithms, Copra and SLPA are
the most fast two ones, the main reason is that they don’t execute multi-round iterations of
the label propagation process, while it also results in high instability.
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4.4. Experiments on Real Benchmark Datasets

In order to further examine our proposed MDPA method, we apply it to nine com-
monly used real benchmark datasets. For comparison, eight state-of-the-art methods,
namely, SpeakEasy [40], Perception [49], SLPA [39], Ego [32], Angel [50], Demon [51],
Kclique [15], and Lfm [22] are also executed on the same datasets. Detailed information on
the datasets is listed in Table 5.

Table 5. Detailed information of the real benchmark datasets.

Network n M Description

Karate [52] 34 78 Social network of friendships between 34 members of
a karate club at a US university in the 1970s.

Dolphins [53] 62 159
An undirected social network of frequent associations
between 62 dolphins in a community living off Doubtful
Sound, New Zealand.

Pol. Books [54] 105 441

A network of books about US politics published around
the time of the 2004 presidential election and sold by the
online bookseller Amazon.com. Edges between books
represent frequent co-purchasing of books by the
same buyers.

Football [4] 115 613 Network of American football games between Division
IA colleges during regular season Fall 2000.

Jazz [55] 198 2742 List of edges of the network of Jazz musicians.

CA-GrQc [56] 5242 14,496
Collaboration network of Arxiv General Relativity
category. There is an edge if authors coauthored at least
one paper.

Brightkite [57] 58,228 214,078
Brightkite was once a location-based social networking
service provider where users shared their locations by
checking-in.

DBLP [58] 317,080 1,049,866
The DBLP computer science bibliography provides
a comprehensive list of research papers in
computer science.

Amazon [58] 334,863 925,872
Network was collected by crawling Amazon website.
It is based on the ‘Customers Who Bought This Item Also
Bought’ feature of the Amazon website.

The first column lists the dataset name and corresponding reference; the second gives the number of
nodes in networks; the third shows the number of edges in networks, and the fourth gives a brief
description of the dataset.

Figure 9 shows the comparison results of MDPA with eight state-of-the-art methods
on Conductance and EQ metrics. It could be found that SpeakEasy, Ego, kclique and
Lfm can not obtain the reasonable results always on those “big” real datasets, namely,
loc_brightkete, Dblp and Amazon datasets. Of the other 5 algorithms, MDPA, angle and
demon obtains twice of rank 1 positions on Conductance metric (Figure 9a), respectively.
While on modular EQ, MDPA obtains three times of rand 1 position, one less than SLPA,
both of them are significantly superior to the other algorithms (Figure 9b). Table 6 shows
the average Conductance and EQ values of different real datasets for all the nine algorithms.
For Conductance, angle and MDPA get 0.447 and 0.444 average values and occupy the
top 2 positions, which are significantly better than other algorithms. While for EQ, SLPA
and MDPA are top 2 methods with values of 0.552 and 0.545, more than 30% higher than
that of the third method (perception, 0.414). On the other hand, angle obtained the best
performance on Conductance, but its average EQ value is only 0.319, far less than SLPA
and MDPA. Similarly, though SLPA is the best one of average EQ, its average Conductance
is only 0.231, about half of those of angle or MDPA.
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Table 6. Average EQ and Conductance of different methods on 9 real datasets.

Methods SpeakEasy Perception SLPA ego Angle Demon Kclique lfm MDPA

Ave Con-
ductance 0.344 0.341 0.231 0.358 0.447 0.382 0.361 0.0004 0.444

Ave EQ 0.320 0.414 0.552 0.012 0.319 0.219 0.337 0.0437 0.545

4.5. Analysis

In this section, we will select each case from LFR and real datasets for further analysis
on the obtained results of MDPA and SpeakEasy. For the LFR dataset, we take the case
of n = 3000, d = 10, µ = 0.4 and Om = 6 as an example. Figure 10 shows the partition
results of both SpeakEasy and MDPA, revealing that the community partition generated
by MDPA is closer to the standard community partition than that by SpeakEasy. The local
partition result of MDPA in Figure 10c is almost the same with its corresponding part in
the ground truth of Figure 10b, while that of SpeakEasy in Figure 10d is quite different
from the ground truth.Entropy 2021, 22, x FOR PEER REVIEW 22 of 35 
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Figure 10. Visualization of LFR network where n = 3000, d = 10, µ = 0.4 and Om = 6. (a) All nodes are colored according
to the generated communities, and the nodes in the same community have the same color; (b) a community in (a); (c) the
nodes in (b) are recolored according to the partition result of MDPA, and (d) the nodes in (b) are recolored according to the
partition results of SpeakEasy.

Overlapping node identification is most important for overlapping community detec-
tion. Table 7 shows the confusion matrix for the two algorithms. From the confusion matrix,
it is easy to see that too many non-overlapping nodes are recognized as overlapping ones
by SpeakEasy, while MDPA performs much better. Figure 11 shows the distribution of
the weight defined by Equation (1) in SpeakEasy. SpeakEasy repeats the partition loop
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many times to find the consensus partition and the overlapping nodes as well. Due to
randomness, the results are different each time, which results in a large amount of weights
between 0 and 1, especially in the interval close to 0. According to the rule described in
SpeakEasy [40], the weight threshold should be taken as 0.0057 (denoted as r in Figure 11).
However, in a very wide neighborhood of r, the distribution of weights is evenly and not
significantly different. That means it is difficult to find a better threshold, which determines
whether a node belongs to another community. In fact, SpeakEasy recognizes too many
nodes as overlapping in this case. It should be noted that we diligently sought a better way
to determine the weight threshold, but it is difficult to find a rule that consistently works
well for different instances. By propagating membership vectors instead of the node labels
in SpeakEasy, MDPA can obtain the partition result and overlapping node identification
simultaneously, which greatly reduces the computational time and avoids the difficulty of
determining weight threshold in SpeakEasy.

Table 7. Confusion matrix for SpeakEasy and MDPA.

SpeakEasy Predicted Yes Predicted No MDPA Predicted Yes Predicted No

Actual Yes 88 2 Actual Yes 70 20
Actual No 2390 520 Actual No 221 2689
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Figure 11. Distribution of the weight defined by Equation (1) in SpeakEasy. r = 0.0057 represents the weight threshold
in [36,55], and t = 0.0001 is the interval step.

For real benchmark datasets, the Football dataset was taken as the example for further
analysis. There are 115 teams in the network represented by nodes and the teams are
divided into 12 leagues, which can be considered ground truth for community partition.
Figure 12 shows the ground truth of the Football network and the partition results of
SpeakEasy and MDPA. Figure 12 also reveals that the partition results of MDPA are very
similar to the ground truth while the partition results of SpeakEasy have many differences
from the ground truth. In Figure 12c, Region A contains 15 overlapping nodes that
belong to two or three communities, denoted by different colors. A total of 15 nodes
are colored yellow and dark blue, which means the yellow community and dark blue
communities are exactly the same. Most Region A nodes (13 from 15) belong to the same
community in the ground truth (seen as orange nodes in Figure 12a). To further study this
community, we found no predominant node, but we found many dominant nodes with
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the same or similar degrees; therefore, a tendency to retain more than one label within
the community surfaced after label propagation in SpeakEasy, which led to the same or
basically identical groups of nodes often identified as overlapped communities. While in
MDPA, the membership values were propagated instead of the node labels, thereby getting
more robustness and avoiding SpeakEasy sameness.
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5. Conclusions and Discussion

In this research, a novel overlapping community detection algorithm is developed,
i.e., the membership degree propagation algorithm (MDPA). The main idea is to propagate
the community membership degree according to the difference between global distribution
information and local distribution information. After the propagation process, it assigns
cluster numbers to a node according to its membership degree. MDPA can substantially
reduce both overlapping and non-overlapping community detection problems. In both
cases, it does not produce as many partition results as the existing methods did. Moreover,
the final partition, as well as the overlapping node recognition result, could be obtained in
a single effort based only on the converged membership degree vectors. Hence, it requires
a significantly lower computation time and avoids the memory complexities of other
programs designed to achieve the same objectives.

To verify the effectiveness of the proposed MDPA, it is applied on synthetic LFR
datasets, and 9 real benchmark datasets. Numerical results show that MDPA is competitive
compared with other state-of-the-art algorithms. It was one of the top algorithms in terms
of both of NMI and SG on LFR datasets. Especially, focused on the overlapping node
detection, MDPA is significantly better than other comparison methods on F1 measure.
On the real benchmark datasets, compared with other 8 competitive algorithms, MDPA
also obtains the best comprehensive performance in terms of Conductance and EQ metrics.

It should be noted that although only the undirected and unweighted networks are
discussed in this paper, the proposed MDPA can easily be extended to directed and/or
weighted networks just by adding a directed weighting factor into the superscript of e in the
probability formula (Equation (7)) of the membership degree propagation process. In other
words, MDPA has strong adaptability for different kinds of community detection prob-
lems, such as social network partition, biomarker detection in bionetworks, and epidemic
spreading.
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Figure A1. Comparison results of NMI on 180 LFR datasets, which are classified into six groups according to different 
node number (n) and degree (d) values, i.e., (a) n = 1000 and d = 10, (b) n = 1000 and d = 20, (c) n = 3000 and d = 10, (d) n = 

Figure A1. Comparison results of NMI on 180 LFR datasets, which are classified into six groups according to different node
number (n) and degree (d) values, i.e., (a) n = 1000 and d = 10, (b) n = 1000 and d = 20, (c) n = 3000 and d = 10, (d) n = 3000
and d = 20, (e) n = 5000 and d = 10, (f) n = 5000 and d = 30. In each group, parameters Om and µ have five different values,
Om = 1, 2, 4, 6, 8 and µ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.6 respectively.
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Figure A2. Comparison results of SG on 180 LFR datasets, which are classified into six groups according to different 
node number (n) and degree (d) values, i.e., (a) n = 1000 and d = 10, (b) n = 1000 and d = 20, (c) n = 3000 and d = 10, (d) n = 

Figure A2. Comparison results of SG on 180 LFR datasets, which are classified into six groups according to different node
number (n) and degree (d) values, i.e., (a) n = 1000 and d = 10, (b) n = 1000 and d = 20, (c) n = 3000 and d = 10, (d) n = 3000
and d = 20, (e) n = 5000 and d = 10, (f) n = 5000 and d = 30. In each group, parameters Om and µ have five different values,
Om = 1, 2, 4, 6, 8 and µ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.6 respectively.
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