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Abstract: Visual-motor tracking movement is a common and essential behavior in daily life. However,
the contribution of future information to visual-motor tracking performance is not well understood
in current research. In this study, the visual-motor tracking performance with and without future-
trajectories was compared. Meanwhile, three task demands were designed to investigate their
impact. Eighteen healthy young participants were recruited and instructed to track a target on
a screen by stretching/flexing their elbow joint. The kinematic signals (elbow joint angle) and
surface electromyographic (EMG) signals of biceps and triceps were recorded. The normalized
integrated jerk (NIJ) and fuzzy approximate entropy (fApEn) of the joint trajectories, as well as
the multiscale fuzzy approximate entropy (MSfApEn) values of the EMG signals, were calculated.
Accordingly, the NIJ values with the future-trajectory were significantly lower than those without
future-trajectory (p-value < 0.01). The smoother movement with future-trajectories might be related
to the increasing reliance of feedforward control. When the task demands increased, the fApEn values
of joint trajectories increased significantly, as well as the MSfApEn of EMG signals (p-value < 0.05).
These findings enrich our understanding about visual-motor control with future information.

Keywords: sensorimotor control; visual-motor tracking; MSfApEn; EMG; future information

1. Introduction

Sensorimotor control theories hold that the central nervous system (CNS) utilizes
expected sensory consequences generated by motor commands for motor planning, and
compares with the online sensory feedback originated from specialized senses (vision,
audition, vestibular) for real-time monitoring and correction of motor execution [1]. Visual-
motor tracking has been widely used to investigate the mechanism of sensorimotor con-
trol under various conditions in previous studies. The ever-changing target in visual-
motor tracking would reveal more information in sensorimotor control than the stationary
target [2,3]. Previous studies mainly focused on the error correction in the process of
the motor execution effect through online visual feedback. Bank et al. discovered the
effects of visual information (i.e., scaling factor and optical flow density) on motor per-
formance and control strategy during visual tracking tasks [4]. Byblow et al. suggested
that central demands increased when attention was directed away from the most relevant
visual information, and led to changes in sensorimotor control strategies [5]. Visual-motor
tracking training was also considered an effective way to help stroke survivors recover [6].
Therefore, the use of visual-motor tracking is not only beneficial to explore the changes of
sensorimotor control, but can also further help solve clinical issues.

The information about future properties showed great potential in improving motor
performance. The future visual information about the target can improve the tracking
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performance by providing knowledge of the future state of the goal [7]. This information
was utilized to track the target prospectively, leading to a smaller spatial error, a lower
duration, and a better adaption to feedback delays than unpredictable ones during contin-
uous tracking movement [7–9]. Furthermore, the longer the duration of information about
future behavior, the more motor performance was improved [10]. Apart from the future
information, the task demands also have an impact on motor performance. In previous
studies, task demands have depended on external force loads, movement speed, and
irregularity of target trajectories, etc. [11–13]. People respond to changes in task demands
by making adjustments to accuracy and amplitude constraints [14,15]. It has been reported
that a more difficult task elicited a more vigorous and less smooth movement, which
might be the result of less preplanned and more online control than movement in a simple
task [16]. Glinka et al. found that participants with higher cognitive and physical demands
tended to move less than those with lower demands while standing [17]. In an isometric
tracking study, the force output variability increased gradually with the increase in task
demands [18].

The changes of control strategy in a neuromuscular system can be reflected by the
analysis of motor performance. Previous studies analyzed the movement performance of
subjects by using the speed and reaction time of simple movement, but these parameters
may not be applicable to a more complex trajectory assessment [14,19,20]. Smoothness has
been related to velocity, health condition, and even the emotion of participants [13,21,22].
Flash and Hogan found that humans may try their best to control their movements to
maximize smoothness under certain conditions [23]. Compared with a series of kine-
matic analysis methods, normalized integrated jerk (NIJ) was a suitable evaluation of
smoothness [24].

Kinematic parameters reflect the external motor performance, which will be influ-
enced by the internal neurological changes [25]. Joint movement is the consequence of
the biological forces produced by skeletal muscle contraction. The electromyographic
(EMG) signals generated by skeletal muscle contraction contain abundant neuromuscular
system information [26]. The internal muscular changes with future information and task
demands can be reflected through the analysis of EMG signals. In previous studies, the
time and frequency domain methods were commonly used for EMG analysis [27]. The
consistency of these methods among multi-measurements needs further improvement as
they are easily influenced by EMG amplitude to avoid inconsistent results. [13]. Recent
studies have revealed that entropy analysis is a useful method to characterize the com-
plexity of electrophysiological signals and has been widely used in physiological signal
analysis [25,28–31]. Fuzzy approximate entropy (fApEn) can distinguish the complexity of
various signals more consistently and have less parameter dependence than Approximate
Entropy (ApEn) [28]. Previous studies have shown that fApEn can provide tools to detect
the neurological changes by analyzing the complexity of EMG signals [25]. Costa et al.
pointed out that the dynamics of a complex nonlinear system are represented on multiple
intrinsic scales of the observed time series, and therefore, the entropy estimation calculated
on a single scale is not a sufficient descriptor [32]. They proposed using a “coarse-graining”
method to extract the various scales of the input data and then calculate entropy estimates
for each scale separately, named the multiscale entropy (MSE) method. In recent years,
the MSE algorithm has been successfully applied to analyze different kinds of physiologi-
cal signals [29,33,34]. In this study, the fuzzy approximate entropy after coarse-graining,
namely multiscale fuzzy approximate entropy (MSfApEn), was used to analyze the EMG
signals in visual motion tracking.

The analysis of joint trajectories and EMG signals comprehensively reflect the influence
of task demands and future information on visual motor tracking. Although the effects of
future information on visual-motor tracking have been investigated in previous studies,
easily predictable target trajectories, such as sinusoids, were applied [9]. The sinusoidal
trajectory is easy to be perceived and learned in the tracking tasks, which weakens the
effect of future information. The random variation in the target trajectories could avoid the
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predictability of the target. Target trajectories with different complexity were designed to
quantify task demands, including a noise-free sinusoid and sinusoid mixed with random
noises. Further, as the task demands also have an important impact on motor performance,
three complex levels of target trajectories were designed to explore it. Participants were
asked to track the target with or without future-trajectory, respectively. Furthermore,
changes in motor performance were assessed by fApEn values and NIJ values of the
elbow joint trajectories. The MSfApEn method was used to analyze the complexity of
electromyographic signals in biceps and triceps of each time scale.

2. Materials and Methods
2.1. Participants

First, 18 healthy young adults (9 females, 9 males, mean age of 25.05± 1.61) voluntarily
participated in this study. All the participants were right-hand dominant and had no
known motor and neural impairment history. All the experimental procedures of this
study were approved by the ethics committee of Guangdong Work Injury Rehabilitation
Center (AF/CS-07/2017.09).

2.2. Apparatus and Procedure

Figure 1a,b show the setup of the experiment. Participants were asked to sit in a
chair and attach to a handle with their forearm. The handle supported elbow flexion and
extension in the horizontal plane. Two circular Ag-AgCl bipolar surface electrodes with a
center distance of 2 cm were fixed on the bellies of the biceps and triceps, which provided
the main force for flexion and extension of the elbow joint. The surface EMG signals
were captured throughout the tracking process by an 8-channel EMG signal acquisition
instrument (Shenzhen ThreeG Tech co., Ltd., Shenzhen, China) with a gain of 5000, and then
recorded at a 1000 Hz sampling rate by data converters (DAQ-6341, National Instruments,
Austin, TX, USA). A motion capture system (OptiTrack, Natural Point, Corvallis, OR, USA)
synchronously captured the coordinates of the markers that were attached to the handle
and elbow joint at 100 Hz. There was a screen set-up in front of subjects, which provided a
real-time display of the target and actual elbow joint angle. The interface displayed on the
screen is shown in Figure 1c. The main interface of tracking tasks is shown in Figure 1c.
The red and blue rectangles slid left/right along the slide track and was displayed on
the screen to provide visual feedback. The blue rectangle (2 cm in width and 4 cm in
length) represented the target cursor, the movement trajectory of which was generated
by the LabVIEW program. While the red rectangle (1.5 cm in width and 4 cm in length)
reflected the real-time elbow angle, the actual elbow joint angle was calculated as the angle
between the line formed by the two marks and the extension line of the upper arm. The
size of the target cursor was different from that of the control cursor so that subjects could
easily distinguish them. There was a module above the slide track that displayed the
future-trajectory. In the tasks with future-trajectory, this module displayed the 3 s trajectory
of the future in real time. According to previous studies, the 3 s future-trajectories can
provide sufficient future visual information for visual-motor tracking [9].

After understanding the experiment protocol, subjects were asked to flex or extend
their elbow joints within [30◦, 90◦] and try their best to catch up with the target cursor.
The target cursor moved along 3 kinds of target trajectories. There were 2 kinds of visual
conditions designed for each task demand; one of them was set to display a 3 s future-
trajectory in a frame above the target cursor and the other not. The experiment involved
6 kinds of combinations corresponding to 3 (target trajectories) × 2 (visual condition). The
average fApEn of target trajectories in each combination is shown in Table 1. Participants
were asked to perform one combination in each trial, and the duration of each trial was
36 s. Participants were asked to complete 3 blocks after three practice trials. Each block
contained 6 different trials described above and the sequence of trials was randomly
arranged. Participants were asked to complete all the combinations before moving on to
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the next block. There was a 5 min break between each block and 30 s interval between
each trial.
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Table 1. Task conditions and the average fuzzy approximate entropy (fApEn) of target trajectories in
each condition.

Task Demand P Visual Condition
fApEn of Target Trajectories

Mean SD

Level 1 0
with future-trajectory 0.00183 3.07 × 10−8

without future-trajectory 0.00183 2.27 × 10−8

Level 2 0.3
with future-trajectory 0.00681 0.00034

without future-trajectory 0.00724 0.00048

Level 3 0.6
with future-trajectory 0.01090 0.00068

without future-trajectory 0.01083 0.00066

In order to avoid the adaptation of participants in tracking regular targets, three task
demand levels were designed by applying different trajectories during the experiment.
The target trajectories were designed as follows [35]:

MIX(P)j = 2− ZjXj + XjYj (1 < j < N) (1)

where N is the data length of target trajectories in each trial; Xj =
√

2 sin(2π j/12); Yj is the
real random variables with independent identically distributed (i.i.d), which is distributed
in the interval [−0.5, 0.5] uniformly. Zj is an i.i.d random variable composed of 1 and 0,
where the probability of 1 is P and the probability of 0 is 1 − P. The trajectories of the target
from levels 1 to 3 were generated by MIX (0), MIX (0.3), and MIX (0.6), respectively. The
complexity of target trajectories was quantified by fApEn values. Larger P indicates greater
demands of the tracking tasks. The target trajectories were created separately, and different
noises were mixed with the sinusoid with different subjects.
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2.3. Data Analysis

The normalized integrated jerk (NIJ), which removed the influence of tracking dura-
tion and distance, was used to measure the movement smoothness. It was calculated as
follows [36].

NI J =

√
duration5

2× length2 ×∑ jerk(t)2 (2)

where Jerk is a quantization of the changes in acceleration, and calculated as jerk(t) = d3θ
dt3 .

The entire joint trajectory was divided into the flexion phase (increase phase of joint angle)
and extension phase (decrease phase of joint angle). Both the flexion phase and the exten-
sion phase were all calculated in data analysis. The normalized factor duration5/(2 × length2)
was proposed in the jerk analysis [37] as the duration time in the flexion phase and exten-
sion phase was different. The duration is the duration time of each phase, and length is the
data length of each phase. In this study, the sum of all phases was used to evaluate the
movement smoothness.

A 20–450 Hz 4th-order Butterworth band-filter was employed to filter the EMG signals.
The filtered EMG data from biceps and triceps of 36 s were divided into 6 segments, each of
which lasted for 6 s, and the mean value of the 6 segments was calculated as the result of the
EMG data. Our previous work combined multiscale entropy with fApEn, and found that
the result was susceptible to irrelevant noise by using single-scale entropy [38]. Multiscale
fuzzy approximate entropy (MSfApEn), which is a combination of multi-scale entropy and
fApEn, was used in this study to reveal the complexity of signals in multiple time scales.
The algorithm of MSfApEn consisted of two steps: (1) Coarse-grained process, which was
used for information extraction under various time scales; and (2) using fApEn to estimate
the complexity of each coarse-grained time series.

The original signal was set as {x(I):1 ≤ I ≤ N}, which is a one-dimensional series.
First, the original signal was divided into nonoverlapping segments of length τ, called
coarse-graining. Second, the coarse-graining signal of each time scale consisted of the
average of every segment. The calculation was as follows:

yτ
j = 1/τ

jτ

∑
i=(j−1)τ+1

x(i)(1 ≤ j ≤ N
τ
) (3)

The signal after coarse-graining at time scale 1 (τ = 1) was the original signal. The
bigger the time scale, the shorter the length(N/τ) of the coarse-graining signal. The data
length of each trial was 6000, and the time scale τ was set from 1 (N = 6000) to 20 (N = 250).
The fApEn was then used to evaluate the complexity of both actual elbow joint angle and
coarse-graining EMG signals in each trial [39]:

For a given time series with length N {u(i):1 < i < N}, dimension m, and similar
tolerance r, the vectors sequence is formed as:

Xm
i = {u(i), u(i + 1), . . . , u(i + m− 1)} − u0(i) (i = 1, 2, . . . , N −m + 1) (4)

where u0 = m−1
m−1
∑

k=0
u(i + k);

The distance of two vectors, Xm
i and Ym

i , is defined as:

dm
ij = d[Xm

i , Ym
i ] = max

k∈(0,m−1)
{|[u(i + k)− u0(i)]− [u(j + k)− u0(j)]|}(i, j = 1, 2, . . . , N −m; i 6= j) (5)

The similarity degree is defined as:

Dm
ij = µ

(
dm

ij , n, r
)
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where n and r determine the width of the exponential function and the gradient of the
boundary, respectively.

f ApEn (m, r, N) = ϕm(N, r)− ϕm+1(N, r) (6)

The function ϕm(N, r) was used to average the similarity of each vector in the time
series to the others, and the function is defined as:

ϕm(N, r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

Dm
ij

)
(7)

Therefore, we could obtain ϕm+1(N, r) by

ϕm+1(N, r) =
1

N −m− 1

N−m−1

∑
i=1

(
1

N −m− 2

N−m−1

∑
j=1,j 6=i

Dm+1
ij

)
(8)

Based on previous work, both m and n were set as 2, and r was 0.15 × std (signal) in
this study.

The multi-scale entropy index (MEI) was used for comparison and analyzed the
EMG signals:

MEI =
∑20

11 MS f ApEnτ

10
(9)

2.4. Statistical Analysis

To judge the effects of future-trajectory and the task demands on the performance of
the visual-motor tracking process in this study, a two-factor analysis of variance (repeated-
measure ANOVA) was employed. When the significance was obtained, post-hoc pair-t
analyses with Bonferroni correction was utilized to identify (1) whether the future in-
formation and task requirements had a significant impact on tracking performance; (2)
whether there were significant differences in performance between the conditions. The
significance level was set at 0.05. SPSS21.0 (SPSS Inc., Chicago, IL, USA) was applied for
statistical analysis.

3. Result

Figure 2 shows an example of target trajectories, actual joint trajectories, and the
real-time EMG signals in visual-motor tracking with three different complexities with
future-trajectories. The complexity of target and joint trajectories increased with the
increase in p values. The waveform of the EMG signal of both biceps and triceps changed
significantly across different task demand levels.

The mean NIJ values at three levels with two display modes are shown in Figure 3a.
The values of NIJ increased as the target trajectories became more complex. With the
displaying of the future-trajectory, subjects traced the target with lower NIJ values than that
only showing the current cursor. Two-way ANOVA revealed that there was a significant
influence of both task levels (F = 22.825, p-value < 0.01, η2 = 0.573) and visual condition
(F = 6.776, p-value = 0.019, η2 = 0.285) on NIJ values. The paired t-test suggested that
tracing for the sine trajectories target had much lower NIJ values than tracing the more
complex tasks (p-value < 0.001; p-value = 0.001). No significant difference was observed
between task demand level 2 (P = 0.3) and level 3 (P = 0.6). The fApEn values of joint
trajectories are shown in Figure 3b. The fApEn values of joint trajectories increased as
the tasks became more complex, and the mean fApEn value of joint trajectories with
future-trajectory was higher than that only showing current cursors. Two-way ANOVA
showed that task demands had a significant impact on fApEn values of joint trajectories
(F = 93.648, p-value < 0.001, η2 = 0.93). However, the fApEn values of joint trajectories with
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the future-trajectory was not significantly different from those without future-trajectories
(F = 2.628, p-value = 0.087, η2 = 0.134).
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The averaged MSfApEn values of all subjects of biceps and triceps EMG signals are
shown in Figure 4. It could be seen from the results that for all visual conditions and
task demands, the fuzzy entropy values of both biceps and triceps showed a tendency
of first increasing and then decreasing. Specifically, the fuzzy entropy values increased
significantly on the scale of 1–5, and then decreased gradually on the scale of 5–20 to the
level equivalent to the scale of 1. The results of two-way ANOVA analysis revealed that the
time scale factor significantly influenced the fuzzy entropy values of the EMG of the biceps
(F = 37.870, p-value < 0.001, η2 = 0.666) and triceps (F = 47.725, p-value < 0.001, η2 = 0.715).
In addition, task demands also affected the EMG of biceps (F = 55.774, p-value < 0.001,
η2 = 0.746) and triceps (F = 38.084, p-value < 0.001, η2 = 0.667). Especially when the
time scale factor was 5–20, the fuzzy entropy values of biceps and triceps EMG signals
showed significant differences under different task demands (all p-values < 0.05). The
mean MEI of both biceps and triceps as shown in Figure 5 was significant lower for
fewer task demands than higher ones (F = 21.730, p-values < 0.001, η2 = 0.626; F = 10.949,
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p-values = 0.002, η2 = 0.457). The paired t-test revealed that the MEI of level 2 and level
3 were significantly lower than that of level 1(P = 0) with and without future-trajectories
of targets (p-values < 0.05), but there was no significant difference between that of level
2 and level 3. The MEI of both biceps and triceps EMG slightly reduced but showed
no significant difference between the tracking tasks with and without future-trajectories
(F = 0.635, p-values = 0.44, η2 = 0.047; F = 3.269, p-values = 0.094, η2 = 0.201).
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4. Discussion

This study devoted to exploring the changes in motor performance and EMG signals
among healthy adults with and without future-trajectory, and the target trajectories were
mixed with random noises to increase the unpredictability of the target. The NIJ values
of real tracking trajectories reflected the smoothness of the elbow joint, and the complex
variations in joint trajectories and neuromuscular control were represented by fApEn values
of elbow joint trajectories and EMG signals, respectively. In particular, our study quantifies
the regularity of EMG signals on different time scales by coarse-grained processing of the
original EMG signals, to improve the accuracy of entropy estimation.

4.1. Effects of Future Information on the Joint Trajectories and EMG Signals

The lower NIJ values suggested a smoother elbow flexion-extension joint trajectory
with future-trajectory than without it. The changes in movement smoothness may be the
consequence of the different control strategies in motor execution when the task demands
were the same [40]. Previous studies suggested that sensorimotor control was based on the
optimal integration of sensory feedback with our predictions, and tended to minimize the
adverse effects of noises to achieve more stable and accurate motor control [41,42]. In this
integration, more reliable information sources should gain a higher weight [43]. Displaying
the future-trajectory in tracking tasks may increase the reliability of the prediction, resulting
in an increased weight of the feedforward control, which is an open loop control with
negligible delay and has a lower degree of noise than the feedback control. The application
of the target’s future-trajectory might facilitate the generation of more accurate predictions
in the forward model [44]. With these predictions, participants were able to catch the
target and reduce sub-movements during the tracking process for error correction [45],
and smooth the trajectories of joints. In this study, the tasks with future-trajectories incite
feedforward control to a greater extent in sensorimotor control than those without future-
trajectories, and resulted in a significant decrease in NIJ values. Norio et al. also found the
influence of visual condition on the smoothness of the upper limb movement [46].

Through the calculation of multi-scale fApEn, the fApEn values of EMG signals were
increased from scale 1 to 5, but decreased continuously from scale 5 to 20, which indicated
that the time scale had an effect on the analysis of physiological signals. As the surface
EMG signal was easily affected by nonphysiological and physiological factors, the collected
EMG signals in our study might be confused with irrelevant noises. According to a study
on gait leg muscles during treadmill walking, both the old and the young participants
showed a low entropy value at larger scales [47], which suggested that entropy analysis of
a large time scale could eliminate the influence of irrelevant noise. In addition, previous
studies have also demonstrated that the coarse-grained process can gradually filter out
random components that are unrelated, such as white noise [32]. The rise at small scales
and the fall at large scales might be influenced by the time scale and noises. As shown
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in Figure 3, the slightly reduced fApEn values of elbow joint trajectories indicated fewer
complex movements with the future-trajectory. The fApEn values of the EMG of triceps
increased significantly with future-trajectory, which could be influenced by the number
of recruited motor fibers, firing rate, modification of motor fiber conduction velocity, and
motor unit synchronization [48].

4.2. Effects of Task Demands on the Joint Trajectories and EMG Signals

The rise in MEI caused by the increasing task demands represent the irregular EMG
signals of both biceps and triceps, which indicated less predictable muscle firing pat-
terns [49]. Previous studies found that the task demands influenced the muscle patterns
through the number of recruited motor fibers and firing rates of motor units [50,51]. In
addition, Enders et al. pointed out that increased task demands altered the neuromuscular
control strategy and resulted in an increased structure in motor execution [52], which also
led to more unpredictable muscle firing patterns. However, Murrilo et al. observed an
inverse relationship between the complexity of movement and EMG signals when explor-
ing the effects of task difficulty on posture sway [53]. As the smaller time scales fApEn
were susceptible to irrelevant noise [38], we speculated that the conflicting results might be
caused by the noises when using the single-scale entropy analysis in this study. With the in-
crease in task demands, both the complexity of joint trajectories and movement smoothness
increased significantly. The task demands of each trial were quantified by fApEn values of
the target trajectory. A previous study also reported that subjects adopt different strategies
to control their movements when task demands changed [54]. A point-to-point aiming
experiment of 30 participants also showed the same results that when the task difficulty
increased, both the young and the old would generate less smooth movement [14]. Ma’s
study also suggested that a more complex task elicited less smooth movements in the elder
subjects [16].

The limitation of this study was that only three kinds of task demands were set in
this experiment. Further study could refine the task requirements to explore more subtle
changes in joint trajectories and EMG signals. Another limitation is that we deduced
that the smoothness of joint movement might be the result of the increased weight of
feedforward control in sensorimotor control from the analysis of experimental results when
discussing the influence of future information on joint trajectories during visual-motor
tracking. However, further neuromuscular system studies are needed to verify the accuracy
of this inference.

5. Conclusions

This study investigated the joint trajectories and EMG signals responses of healthy
adults with and without future-trajectories in different task demands. The results indicated
that the smoothness of visual-motor tracking was significantly affected by task demands
and future information of the target, which might be the result of the increasing weight
of feedforward control in sensorimotor control strategies. The complexity of biceps and
triceps EMG signals, as well as elbow joint trajectories, was mainly affected by task de-
mand, resulting in less predictable muscle firing patterns. These findings can enrich our
understanding of the visual-motor control, as well as provide a basis for the design of
rehabilitation training tasks for movement disorders in clinical practice.
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